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ABSTRACT

The present paper describes a method using general-
ized data envelopment analysis (GDEA) and genetic
algorithms (GA) for generating efficient frontiers in
multi-objective optimization problems. The purpose
of GDEA is to measure the relative efficiency of deci-
sion making units and reflects the various preferences
of decision makers. In addition, GA is used for directly
finding Pareto optimal solutions of multi-objective op-
timization problems. In this paper, we suggest to com-
bine GDEA and GA and search for Pareto optimal
solutions. It will be shown that the proposed method
overcomes shortcomings of existing methods and yields
desirable efficient frontiers even in the problems with
non-convex constraints as well as convex constraints,
through several numerical examples.

1. INTRODUCTION

Many decision making problems can be formulated as
multi-objective optimization problems (MOP):
(MOP) min f(z) = (@), , fm(@)"

st. zeX = {(E | gJ(m) go? .7= 1)”' 7l}7

where = (z1,--- ,2,)T. There does not necessar-
ily exist the optimal solution that minimizes all ob-
jective functions f;(x) (i = 1,---, m) in (MOP), and

then the concept of Pareto optimal solution (or effi-
cient solution) is introduced [7]. Moreover, the value
of objective function corresponding to Pareto optimal
solution in (MOP) is called Pareto optimal value. Usu-
ally, there exist a number of Pareto optimal solutions,
which are considered as candidates of solution to the
decision making problem [6]. It is difficult for deci-
sion makers to choose one from those as a final so-
lution. Up to now, several methods using interactive
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multi-objective optimization methods have been sug-
gested so as to find out a final solution to the deci-
sion making problem. However, the function form of
various criteria functions cannot be given explicitly in
many practical problems of engineering design. Under
this circumstance, the value of criteria functions for
each value of design variables is obtained through some
analyses such as structural analysis, thermodynamical
analysis and fluid mechanical analysis. In general, it
requires considerable time to carry out these analyses,
and then it is hard to apply interactive multi-objective
optimization methods to practical engineering design
problems. Even in these cases, decision making can
be easily performed by figuring out the set of Pareto
optimal values on the objective space, i.e. the efficient
frontier in decision making with two or three objective
functions. To this end, several methods have been de-
vised for figuring out the efficient frontier. So, we give
brief explanations about methods using genetic algo-
rithms (GA) under the circumstance that the value
of objective function has been determined by analyses
such as structural analysis, and in addition, it is hard
to use differential information. In order to generate
the efficient frontier by GA, there have been developed
several methods, for example, ranking methods [4], {5]
and Tamaki et al.’s method [9], and so on. However,
it is difficult to generate smooth efficient frontier by
ranking methods. Moreover, non-dominated individu-
als obtained at intermediate generation are not neces-
sarily exact Pareto optimal solutions.

On the other hand, a method using data envelopment
analysis (DEA) with GA was proposed by Arakawa
et al. [1). DEA, which was originally suggested by
Charnes-Cooper-Rhodes, is a method to measure the
relative efficiency of decision making units (DMUs)



performing similar tasks in a production system that
consumes multiple inputs to produce multiple outputs.
So far, representative model examples are CCR model
[3], BCC model [2] and FDH model [10]. These models
are classified by how to determine the production pos-
sibility set; a convex cone, a convex hull and a free dis-
posable hull (FDH) of observed data set is considered
to be production possibility set, respectively. Almost
of all non-dominated individuals obtained at interme-
diate generation by the method using DEA become
Pareto optimal solutions. However, it produces only
convex curves (or surfaces) of efficient frontier, because
CCR model or BCC model is used for DEA there.

In this paper, we propose a method using GA with
a generalized data envelopment analysis [11], by which
CCR efficiency, BCC efficiency and FDH efficiency can
be measured in a unified way. Additionally, we try to
apply the proposed method to figure out the efficient
frontier. Finally, through several numerical examples,
it will be shown that shortcomings of existing methods
are overcome by the proposed method.

2. GENETIC ALGORITHMS FOR
MULTI-OBJECTIVE OPTIMIZATION

To begin with, we give a brief explanation on the rank-
ing method [4]. Consider an individual x° at a genera-
tion which is dominated by n individuals in the current
population, then his/her rank is given by (1 + n). All
non-dominated individuals are assigned rank 1 and re-
main at the next generation. In Fig. 1, each numbers in
parentheses represents the rank of each individual and
the curve represents the exact efficient frontier. The
ranking method based on the relation of domination
among individuals has a merit to be computationally
simple. However, the ranking method has a shortcom-
ing to need to assess until a large number of generation,
since non-dominated individuals in the current gener-
ation are often kept alive long, even though they are
not Pareto optimal solutions in the final generation.
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Fig. 1. Ranking method

Moreover, it is difficult to generate a smooth efficient
frontier by the stated ranking method.

On the other hand, a method was suggested to divide
the population into a number of small groups and try
to maintain good features in each small group [8]. Sub-
sequently, Tamaki et al. proposed the method to com-
bine the above two approaches and to obtain good ef-
ficient frontiers for multi-objective optimization prob-
lems with non-convex objective function, too [9]. How-
ever, in many cases, non-dominated individuals gener-
ated at the current generation are far from the exact
efficient frontier. . ‘

Arakawa et al. suggested a method using DEA (1] in
order to overcome the shortcomings of the methods
stated above. In DEA, the efficiency € of an individ-
ual 2° (0 =1,--- ,p) is given by solving the following
linear programming problem:

M o
st [f@b), -, Fl@)] A 0f(z°) L0,
A20, AeRer.

The degree of efficiency 8 represents the degree how far
DEA efficient frontier is, and when 6 is equal to one,
it means that an individual z° is located on DEA ef-
ficient frontier. (A efficient frontier generated by CCR
method, or BCC method is said DEA efficient fron-
tier.) Selection in GA is performed by taking the de-
gree of efficiency 6 for fitness. In other words, this
method is to investigate the relation of domination
among individuals with respect to the shaded region
{See Fig. 2). In Fig. 2, the solid curve represents the
exact efficient frontier and the dotted line represents
DEA efficient frontier at a generation. As the figure
shows, individuals like C, D and G are removed fast,
and then efficient frontier can be obtained efficiently.

£

Fig. 2. GA with DEA method
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That is to say, when the efficient frontier is convex!,
non-Pareto solutions can be removed at a young gen-
eration. However, when the efficient frontier is non-
convex, the sunken part of it can not be generated by
DEA method.

3. THE PROPOSED METHOD

Whereas DEA efficient can provides only convex, the
efficient frontier in FDH model [10] is non-convex, since
free disposable hull ? of the given data set becomes non-
convex. Subsequently, Yun-Nakayama-Tanino [11] sug-
gested a generalized data envelopment (GDEA) which
includes the existing DEA methods by varying the
value of a parameter.

In GDEA, the efficiency of DMUo (0 = 1,--- ,p) with
inputs «;, (i = 1,---m) and outputs yx, (k =1, -:-n)
is judged by solving the following problem:
(GDEA) max A
A p, v
st. ALdi+a (kZ B (Yko — Yrj)+
=1

m

Z V‘i(_xio + ml]) E] ] = 13' Y )

ni:l m

E: Hi + z: v; = 13
k=1 i=1
/.Lk_Z_E, k=1,---,n,
v; ;; & i = 11' cr,m,

where d; :=  max {vk (Yro — Yrs) 5 pi (—io + Tij)},
i=1,,m

« is a constant and ¢ is sufficiently small number.

For a given o, DMUo is defined to be a-efficient if
the optimal value of the problem (GDEA) is equal to
zero. We have the following properties between DEA
efficiencies and a-efficiency [11].

Theorem 1. DMUo is BCC efficient if and only if
DMUo is a-efficient for sufficiently large a > 0.

Theorem 2. In the problem (GDEA), add the equa-
tion Zi:mkwo = Z:’;l Vi%i, to constraints. Then
DMUo is CCR efficient if and only if DMUo is a-
efficient for sufficiently large a > 0.

Theorem 3. DMUo is FDH efficient if and only if
DMUo is a-efficient for sufficiently small a > 0.

!Let E be a efficient frontier set in R” and R% be a
positive orthant in objective space. Then we call the effi-
cient frontier convez if (E + R%) is convex set. Otherwise,
efficient frontier is non-convex.

2The free disposable hull is the set consisting of points
that perform less output with the same amount of input
as observed points, and/or those that perform more input
with the same amount of output.
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Fig. 3. Efficient frontiers with variation
of a

Consequently, several kinds of DEA efficient frontiers
are conducted by changing the value of a parameter a
in the problem (GDEA). For our discussion, we employ
the example presented in Fig. 3 consisting of six DMUs
consuming a single input to produce a single output.
The figure indicates the efficient frontiers with varying
the value of a, and DMUs on the line are a-efficient.
It can be seen in Fig. 3 that as a becomes sufficiently
large, the efficient frontier changes from the form of
steps to the straight line.

In this paper, we propose a method combining GDEA
and GA to overcome the shortcomings of the ranking
methods and the DEA method. In applying GA to
problems with constraints, we introduce an augmented
objective function using penalty functions. Here, an
augmented objective function to f; (i = 1,-+- ,m) in
(MOP) is given by

!
Fi(@) = fim) + Y p; x [Plg;())]",
j=1
where p; is a penalty coefficient, a is a penalty ex-
ponent and P(y) = max {y, 0}. To the end, the ini-
tial problem (MOP) can be converted into a problem
to minimize the augmented objective function (Fj(z),
-+, Fu(x)). Here, we need to prepare the data set in
order to evaluate the degree of GDEA efficiency® of a
individual z° in the current populations. Let inputs
and outputs in GDEA be substituted by the value of
F;(z°) and the unit, respectively. Then the problem
(GDEA) reduces to the following problem (P).
P) max A

s ¥V

st. ASd—aY v(Fi(z) - Fia),
=1

.7=17 Py
m
2: v, = 17
i=1
UiZE, i=1, , M,

3We call the GDEA efficiency instead of the a-efficiency



where d; = max {vi (~Fi(z°) + Fi(z?))}. cis a
i=1l,,m

sufficiently small number. « is a monotonically de-

creasing function with respect to the number of gener-

ations.

The degree of the GDEA efficiency of an individual
x° in the current population is given by the optimal
value A* in the problem (P), and is considered as the
fitness in GA. Therefore, the selection of an individual
is determined by the degree of GDEA efficiency, i.e.
if A* equals to zero, the individual will remain at the
next generation.

Fig. 4. Geometric interpretation of o in (P)

With making the best use of the stated properties of
GDEA, it is possible to keep the merits, and at the
same time, to overcome the shortcomings of existing
methods. Namely, taking a large o can yield that the
non-dominated individuals which are not Pareto opti-
mal solutions are removed fast, and taking a small a
can generate non-convex efficient frontiers.

4. EXAMPLES ; TWO-OBJECTIVE
OPTIMIZATION PROBLEM

We consider the following examples with two objective
functions.

Example 1
HEH (filx), folx)) = (21, T2)
st (31—-2)%+(22-2)2-420,
T g 0, 15 ; 0.
Example 2 [9]

m:in (i), fa(z)) = (=221 + 22, T1)
s.t. (:L‘l - 1)3 + x5 é 0,
. I g 0, [o3) ; 0.
Example 3

min (fi(z), fo(x)) = (z1, T2)
s.t. 23 —3x; — 13 0,
Z1 z —1, Ty § 2.
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Fig. 5. Efficient frontiers for example-1

The efficient frontier in Example 1 is convex, and non-
convex in both Example 2 and Example 3. In order to
show the effectiveness of GDEA method, we compare
the results by (a) ranking method, (b) Tamaki et al.’s
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Fig. 6. Efficient frontiers for example-2.

method, (¢) DEA method, (d) GDEA method. The
numbers of generation are 15 (Example 1), 20 (Ex-
ample 2), 30 (Example 3), and « in the problem (P)
is given by 10 x exp(—0.2 x numbers of generation).
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Fig. 7. Efficient frontiers for example-3

We accumulate non-dominated individuals obtained at
each generation, and finally examine the Pareto opti-
mality among those individuals in objective space. The
results are shown in Fig. 5-7. The horizontal axis and



the vertical axis indicate the values of objective func-
tion f; and f, respectively. The symbols e represents
a Pareto optimal solution, and o does a non-Pareto
optimal solution.

(a) Ranking method

We obtained relatively many Pareto optimal so-
lutions. However, there are also many non-Pareto
optimal solutions among non-dominated individ-
uals at each generation. Moreover, it is usually
difficult to generate smooth efficient frontiers as
shown in (a) of Fig. 5-7.

(b) Tamaki et al.’s method

A large number of Pareto optimal solutions are
obtained by this method. Efficient frontiers gen-
erated by this method are smoother than the
ones by ranking method. However, it is seen in
(b) of Fig. 5-7 that many of non-dominated indi-
viduals at each generation are not finally Pareto
optimal solutions. :

(c) DEA method

When the efficient frontier is convex in (a) of
Fig. 5, it is smooth, nevertheless the obtained
Pareto optimal solutions are fewer than by the
above methods. On the other hand, for non-
convex efficient frontiers in (b) of Fig. 6 and Fig.
7, the sunken part of it can not be generated by
this method. Therefore, DEA method cannot be
applied to multi-objective optimization problems
with non-convex functions.

(d) GDEA method

In (d) of Fig. 5-7, the largest number of Pareto
optimal solutions are obtained among the stated
methods. Moreover, efficient frontiers generated
by the proposed method are smooth, even they
are non-convex. In addition, it is seen that al-
most of all non-dominated individuals at each
generation become the final Pareto optimal solu-
tions.

In particular, it should be noted in the ranking meth-
ods and Tamaki et al.’s method that non-dominated
individuals obtained at intermediate generation are of-
ten not Pareto optimal solutions. In practical prob-
lems, we don’t know when to stop the computation in
advance. Usually, the computation is terminated at a
relatively early generation due to the time limitation.
It is important, therefore, that non-dominated indi-
viduals at intermediate generations are finally Pareto
optimal solutions. GDEA method has a desirable per-
formance from this point of view.

5. CONCLUSION

In this paper, we have proposed a multi-objective op-
timization method combining GDEA and GA for gen-
erating efficient frontiers of multi-objective optimiza-
tion problems. The proposed method overcomes the
shortcomings of existing methods: it provides a lot of
Pareto optimal solutions in a small number of gener-
ation, and can be applied to cases of multi-objective
optimization problems with non-convex functions as
well as convex. However it requires a certain amount
of time to solve the problem (P) in order to evalu-
ate the GDEA efficiency. Since the time required for
analyses such as structural analysis, thermodynamical
analysis and fluid mechanical analysis in engineering
design problems is extremely long, the computational
time for solving the problem (P) is not so serious.
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