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Abstract. The development of multi-objective evolutionary algorithms
(MOEAs) assisted by meta-models has increased in the last few years.
However, the use of local search engines assisted by meta-models for
multi-objective optimization has been less common in the specialized lit-
erature. In this paper, we propose the use of a local search mechanism
which is assisted by a meta-model based on support vector machines.
The local search mechanism adopts a free-derivative mathematical pro-
gramming technique and consists of two main phases: the first generates
approximations of the Pareto optimal set. Such solutions are obtained
by solving a set of aggregating functions which are defined by different
weighted vectors. The second phase generates new solutions departing
from those obtained during the first phase. The solutions found by the
local search mechanism are incorporated into the evolutionary process
of our MOEA. Our experiments show that our proposed approach can
produce good quality results with a budget of only 1,000 fitness function
evaluations in test problems having between 10 and 30 decision variables.

1 Introduction

Evolutionary algorithms (EAs) have been successfully adopted for solving multi-
objective optimization problems (MOPs) in a wide variety of engineering and
scientific problems [1]. However, in real-world applications is common to find ob-
jective functions which are very expensive to evaluate (computationally speak-
ing). This considerably limits the application of EAs. This has motivated the
development of numerous strategies for reducing the number of fitness function
evaluations when using EAs [2]. From such strategies, the use of meta-models has
been one of the most commonly adopted. Several authors have reported the use
of surrogate models which aim to model a function by means of a simple linear
regression, polynomial regression or by more elaborated models such as Artifi-
cial Neural Networks (ANNs), Radial Basis Functions (RBFs), Support Vector
Machines (SVMs), Gaussian processes (also known as Kriging), among others.
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Most of this work, however, focuses on single-objective optimization problems,
and relatively few refer to multi-objective optimization tasks. In this paper, we
present a strategy which combines an approximation function model (based on
support vector machines) combined with a local search engine (which adopts a
non-gradient mathematical programming technique) and a multi-objective evo-
lutionary algorithm (MOEA). Our goal was to reduce the number of fitness
function evaluations, while still producing reasonably good approximations of
the Pareto optimal set.

The remainder of this paper is organized as follows. In Section 2, we present
a brief survey of previous related work reported in the specialized literature. In
Section 3, we describe in detail our proposed approach. In Section 4, we show
the results of our proposal. Finally, in Section 5 we present our conclusions and
provide some possible paths for future research.

2 Previous Related Work

The incorporation of meta-models in EAs to approximate the real fitness function
of a problem, aiming to reduce the total number of fitness evaluations performed
has been studied by several researchers. However, most of these approaches have
been developed to deal with single-objective optimization problems (see for ex-
ample [2]). Here, however, our review of previous work will focus only on MOEAs.

Ong et al. [3] proposed an approach that incorporates surrogate models for
solving computationally expensive problems with constraints. The authors used
a combination of a parallel EA coupled with sequential quadratic programming
in order to find optimal solutions of an aircraft wing design problem. A local
surrogate model based on RBFs is the strategy adopted to approximate the
objective and the constraint functions.

Emmerich and Naujoks [4] proposed several metamodel-assisted MOEAs.
Gaussian field (Kriging) models fitted by results from previous evaluations are
used in order to pre-screen candidate solutions and decide whether they should
be evaluated or rejected. Three different rejection mechanisms were proposed
and integrated into MOEA variants (NSGA-II and ǫ-MOEA).

In [5], Knowles proposed “ParEGO”, which consists of a hybrid algorithm
based on a single optimization model (EGO) and a Gaussian process, which is
updated after each function evaluation, coupled to an evolutionary algorithm.
EGO is a single-objective optimization algorithm that uses Kriging to model the
search landscape from the previously visited solutions.

Isaacs et al. [6] proposed a MOEA with spatially distributed surrogate mod-
els based on RBFs. In this approach, the objective functions are analyzed with
their actual values for the initial population and then periodically, at every few
generations. The approach maintains an external archive of these actual objec-
tive function values, since these values are used to train the surrogate models.
The data points are divided into multiple partitions using clustering techniques
(the k-means algorithm). The surrogate model is built for each partition using
a fraction of the points lying in that partition. The rest of the points in the



partition are used as validation data to decide the prediction accuracy of the
surrogate model.

Finally, Georgopoulou and Giannakoglou [7] proposed a metamodel-assisted
memetic algorithm for multi-objective optimization. This approach uses several
RBFs, each of them corresponding to a small portion of the search space. The
local search mechanism uses a function which corresponds to an ascent method
that incorporates gradient values provided by the metamodels. Each RBF is re-
trained by considering the current offspring, parent and elite populations. The
performance of this approach was evaluated with three benchmark problems and
a combined cycle power plant problem. This approach outperformed a conven-
tional MOEA in all the test problems adopted.

3 Our Proposed Approach

In this section, we present a new Multi-Objective Meta-Model Assisted Memetic
Algorithm (MO-MAMA) which incorporates a local search mechanism based on
non-gradient mathematical programming techniques. Our algorithm is charac-
terized by using an approximation model based on support vector regression [8].
Additionally, our approach adopts an external archive A and a solutions set R
(obtained by the local search mechanism) to create the offspring population in
the EA. The meta-model is trained with the set D, which consist of all the solu-
tions evaluated with the real fitness function values obtained up to the current
generation. The details of this approach are described next.

3.1 The Multi-Objective Meta-Model Assisted Memetic Algorithm

Initially, we create a sample S of size 2N (where N is the population size) which
is randomly distributed in the search space using the Latin hypercube sampling
method [9]. The initial population P0 is defined by N solutions randomly chosen
from S. Then, the normal evolutionary process of the MOEA is carried out. The
proposed approach uses the current population Pt, a set of solutions Rt (obtained
by the local search mechanism) and a (bounded) external archive At (defined by
all the nondominated solutions found throughout the evolutionary process) to
create the offspring population Qt at generation t. The next population Pt+1 is
obtained by selecting N individuals from Pt ∪ Qt according to Pareto ranking.
This procedure is called SelectNextPopulation in the algorithm of Figure 1,
which shows the complete scheme of our proposed MO-MAMA. Its details are
explained next.

Archiving solutions: Our algorithm uses an external archive A which stores
all the nondominated solutions found at each generation of the MOEA. The
archive A is bounded according to the population size. Thus, the maximum
number of solutions in A is N . Since we are interested in obtaining a well-
distributed set of solutions along the Pareto front, we adopted a strategy based
on the k-means algorithm [10]. At each generation, the archive A is updated



// tmax = maximum number of generations
1. t = 0,A = ∅;
2. Generate S of size 2N // using the Latin Hyper-cubes method;
3. Evaluate(S); // using the real fitness function
4. Pt = {xi ∈ S} such that: xi is randomly chosen from S and |Pt| = N ;
5. Rt = S \ Pt;
6. A = UpdateArchive(Rt,A);
7. D = S;
8. while (t < tmax)do

9. A = UpdateArchive(Pt,A);
10. Qt = CreateOffspring(Pt ,Rt,At);
11. Evaluate(Qt); // using the real fitness function
12. D = D ∪Qt;
13. Pt+1 = SelectNextPopulation(Pt ,Qt);
14. Rt+1 = SurrogateLocalSearch(Pt,A);
15. t = t + 1;
16. end while

Fig. 1. Main algorithm of our proposed MO-MAMA.

with the new nondominated solutions found in the population P . If the number
of solutions is greater than N , then we define k-means (k = N) from A. In
this way, the archive is updated with the nearest solutions to each mean. This
procedure is called UpdateArchive in the algorithm of Figure 1.

Generating offspring population: We consider the set D as the set of all
solutions obtained by the MOEA, and R as the set of solutions obtained by the
local search mechanism. Furhermore, we assume that our approach will even-
tually converge to the Pareto optimal set (or, at least, to a reasonably good
approximation of it). Therefore, in the last generations of the algorithm, a well-
distributed sample of the Pareto set is achieved and maintained in D. For this, the
improvement mechanism (which approximates solutions to the Pareto optimal
set) generates solutions, which, when evaluated into the meta-model, correspond
to good approximations of the real fitness values. Furthermore, since the set R
is the result of an improvement procedure, we consider that both the R set
and the A set (the nondominated set) have solutions of similar quality. Based
on the previous discussion, crossover takes place between each individual of the
population P (the current population) and an individual which can be chosen
from either R or A. Therefore, we define the parents for the crossover operator
according to the following procedure:

parent1 = xi ∈ P ∀i = 1, . . . , N

parent2 =

{

y ∈ R, if
(

g < 1 − |A|
2N

)

y ∈ A, otherwise

(1)

where g is a uniformly distributed random number within (0, 1) and y is a
solution randomly chosen from A or R. Clearly, when the archive pool A is
full, |A| = N and equation (1) guarantees to choose a solution from either R



or A (both have the same probability). The mutation operator is applied (with
a certain probability) to each child generated by the crossover operator. In this
work, we adopted the genetic operators from the NSGA-II [11] (Simulated Binary
Crossover (SBX) and Parameter-Based Mutation (PBM)). Figure 2 shows the
complete procedure for creating the offspring population.

// P = current population
// R = set of solutions obtained by the local search mechanism
// A = external archive
1. Q = ∅;
2. forall (x ∈ P)do

3. parent1 = x;
4. Define parent2 according to equation (1);
5. Generate child1 and child2 performing SBX(parent1, parent2);
6. y1 = PBM(child1) and y2 = PBM(child2);
7. Q = Q ∪ {y1, y2};
8. end forall

9. return Q;

Fig. 2. Creating the offspring population (CreateOffspring(P ,R,A)).

Local search mechanism: The main goal of the local search mechanism in-
corporated into our meta-model is to find new solutions nearby the solutions
provided by the MOEA (such solutions should be at least nondominated with
respect to the current and previous populations). While the local search engine
explores promising areas into the meta-model, the MOEA performs a broader ex-
ploration of the search space. All this procedure is called SurrogateLocalSearch

within the algorithm of Figure 1.

Approximating solutions: There exist several mathematical programming
methods designed for solving multi-objective optimization problems (see e.g., [12,
13]). Here, we are interested in solving the weighted Tchebycheff problem which
is of the form:

min
x∈Rn

max
i=1,...,k

{wi|fi(x) − z∗i |} (2)

where z∗ denotes the ideal vector, w is a vector in Rk such that 0 < w and
∑k

i=1 wi = 1 (a convex combination of weights). It is well known that, for each
Pareto optimal point there exists a weighting vector 0 < w ∈ Rk such that it
is the optimum solution of (2). Unfortunately, if the solution of the Tchebycheff
problem is not unique, the solutions generated will be weakly Pareto optimal. In
order to identify the Pareto optimal solutions, the following augmented weighted
Tchebycheff problem is suggested:

min
x∈Rn

max
i=1,...,k

{wi|fi(x) − z∗i |} + ρ

k
∑

i=1

|fi(x) − z⋆
i | (3)



where ρ is a sufficiently small positive scalar and z∗ represents the utopian vector.
Initially, a set of nw well-distributed weighted vectors W ⊂ Rk is defined (for

this task, we use the method proposed by Zhang and Li [14]). The approximate
solutions to the Pareto optimal set are obtained by solving the Tchebycheff
problem for each weighted vector. For each weighted vector wj ∈ W , a set of
solutions λj is found, which consists of all the solutions evaluated so far into
the meta-model by solving the above Tchebycheff problem. The utopian vector
z∗ is constructed with the minimum of each objective function at the current
generation. Moreover, here, we use the well-known pattern search (or Hooke and
Jeeves) algorithm [15], in order to solve each Tchebycheff problem. Clearly, all
the candidate solutions are evaluated into the surrogate model. The initial search
point xs for solving the first problem corresponding to the weighted vector w1,
is defined according to the next equation:

xs = x∗ ∈ {Pt ∪ A}, such that x∗ minimizes equation (3) (4)

where Pt and A are the population and the external archive at the current gener-
ation, respectively. The remaining sets λj (j = 2, . . . , nw) are obtained by solving
the Tchebycheff problem for the weighted vector wj . The initial search point for
obtaining λj is given by the decision vector which minimizes the Tchebycheff
problem for the weighted vector wj−1. Therefore, we define the set Λ as the
union of all the sets λ found by solving the nw Tchebycheff problems, that is:

Λ =

nw
⋃

j=1

λj (5)

Generating new solutions: We consider Λ to be the set of solutions found
by the above process. Furthermore, we consider:

P (∃p ∈ Rn : ||q∗ − p|| < δ and q∗ ⊀ p) = 1 (6)

for any small δ ∈ R+. Here, q∗ is at least a locally nondominated solution. That
is, the probability that p is nondominated with respect to q∗ is equal to one,
which implies that p is also nondominated. We generate more approximate solu-
tions using an evolutionary algorithm available within the meta-model. The dif-
ferential evolution (DE) [16] algorithm with a DE1/rand/bin strategy is adopted
for this task. Furthermore, the following dominance rule is used to select the new
individuals for the next generation:

xi,g+1 =











x∗
i,g if (x∗

i,g ≺ xi,g)

or (x∗
i,g and xi,g are nondominated)

xi,g otherwise

(7)

where xi is a solution in the current population, x∗ is the test vector and g is
the current iteration of the DE algorithm. For more details about DE see [17].
The initial population is given by G0 = Λ. Each new individual xi,g+1 is stored



(or not) in an external archive L according to the dominance rule. The archive
strategy can make that the set of solutions L increases or decreases its size.
Given the probability defined by equation (6), we generate more nondominated
solutions from L. Thus, the next population for the DE algorithm is defined by
Gg+1 = L.

Since all the solutions in the archive L are nondominated, we can say that the
algorithm has converged (at least to a local Pareto front) when it has obtained
N different nondominated solutions from the evolutionary process. That is:

if |L| = N then stop the DE algorithm (8)

Therefore, the solutions set R obtained by our local search mechanism is given
by R = L. However, this stopping criteria is not always satisfied. Thus, we can
define the R set by selecting N individuals from Λ ∪ L using Pareto ranking
after a certain number of iterations.

4 Comparison of Results

In order to assess the performance of our proposed approach, we compare it with
respect to NSGA-II [11]. The test problems adopted are the ZDT (Zitzler-Deb-
Thiele) test suite [18] (except from ZDT5, which is a binary test problem). We
adopted three performance measures to assess our results: Inverted Generational
Distance (IGD) [19], Spacing (S) [20] and the Set Coverage (SC) [18].

4.1 Experimental Setup

As indicated before, we compared our proposed approach with respect to the
NSGA-II. For each MOP, we performed 25 independent runs with each approach.
The parameters used in the algorithms are shown below.

Since our approach adopts the same genetic operators included in the NSGA-
II (SBX and PBM), we adopted the same parameter values for these operators
in both algorithms, that is: crossover index ηc = 15 and mutation index ηm = 20.
Furthermore, for both algorithms we used: crossover probability Pc = 1.0, mu-
tation probability Pm = 1

n
(where n represents the number of decision variables

of the MOP) and a population size N = 100.

The Hooke-Jeeves algorithm was implemented with: δi = upi−lowi

2 (upi and
lowi are the upper and lower bounds of the ith decision variable component,
respectively), the reduction factor was set to α = 2 and ε = 1 × 10−3. The
differential evolution algorithm was implemented using a weighting factor F =
0.5 and a crossover constant CR = 1.0. Finally, for the approximation phase,
we set nw = 5 (which is equal to 5% of the population size) as the number of
weighted vectors which define the number of Tchebycheff problems. We should
consider that more weight vectors implies more local search and with this, greater
computational effort.



Table 1. Results for IGD met-
ric (MO-MAMA vs NSGA-II)

MOP
MO-MAMA NSGA-II

average average

(σ) (σ)

ZDT1
0.000068 0.055665
(0.000036) (0.005467)

ZDT2
0.000186 0.065110
(0.000400) (0.006909)

ZDT3
0.000965 0.055609
(0.000028) (0.006253)

ZDT4
0.151272 0.143483

(0.033721) (0.022090)

ZDT6
0.000483 0.023264
(0.000210) (0.001469)

Table 2. Results for S metric
(MO-MAMA vs NSGA-II)

MOP
MO-MAMA NSGA-II

average average

(σ) (σ)

ZDT1
0.020216 1.285481
(0.013534) (0.848476)

ZDT2
0.034953 1.690465
(0.062620) (1.171313)

ZDT3
0.022872 1.455995
(0.007906) (1.258330)

ZDT4
6.522628 19.108133
(8.981982) (24.636678)

ZDT6
0.415136 0.226461

(0.320719) (0.162008)

Table 3. Results for SC metric
(MO-MAMA vs NSGA-II)

MOP
MO-MAMA NSGA-II

average average

(σ) (σ)

ZDT1
1.000000 0.000000
(0.000000) (0.000000)

ZDT2
0.979200 0.000000
(0.048656) (0.000000)

ZDT3
1.000000 0.000000
(0.000000) (0.000000)

ZDT4
0.673600 0.684000

(0.093590) (0.073103)

ZDT6
1.000000 0.000000
(0.000000) (0.000000)

4.2 Discussion of results

Our results are summarized in Tables 1 to 3. Each table displays both the av-
erage (showing the best results in boldface) and the standard deviation (σ) of
each performance measure, for each of the test problems adopted. Each run was
restricted to 1, 000 fitness function evaluations. These results clearly show that
our proposed approach (MO-MAMA) outperformed the NSGA-II in most of the
test problems adopted (except for ZDT4), not only with respect to IGD but
also with respect to SC. It is worth noticing that the NSGA-II performed bet-
ter with respect to S, which indicates that it produced solutions with a better
distribution. However, a better distribution of solutions is relevant only when
a good approximation of the true Pareto front has been achieved. Since in our
case, we were emphasizing efficiency (i.e., only a fairly limited number of fit-
ness function evaluations was allowed). Furthermore, according to the Wilcoxon
rank-sum test [21], our MO-MAMA is significantly better than NSGA-II over
the IGD metric (which is the most important metric that we considered in this
work) in most of the adopted test problems (except for ZDT4) with a signifi-
cance level of 0.05. In the other hand, for the ZDT4 problem the Wilcoxon test
did not show a significant variation. Therefore, we considered these results to
be satisfactory. Finally, a picture of the convergence for the IGD metric in the
ZDT1 problem is shown in Figure 3.

5 Conclusions and Future Work

We have proposed a multi-objective memetic algorithm assisted by support vec-
tor machines, with the aim of performing an efficient exploration of the search
space. Our local search engine was based on a weighted Tchebycheff function
and the Hooke-Jeeves method was adopted as our minimizer for each problem
defined by each weighted vectors under consideration. Our proposed approach
was found to be competitive with respect to the NSGA-II over a set of test func-
tions taken from the specialized literature, when performing only 1, 000 fitness
function evaluations.



As part of our future work, we plan to use our approach in problems having
more objectives (three or more) and we aim to experiment with other search
engines (e.g., with multi-objective scatter search [22]). The introduction of al-
ternative approaches to improve the uniform distribution of our solutions as
well as the use of more difficult test problems (e.g., the Deb-Thiele-Laumanns-
Zitzler (DTLZ) test problems [23] and the Walking-Fish-Group (WFG) test
problems [24]) is also part of our future work. Finally, we are also interested
in testing our approach with real-world problems having computationally ex-
pensive objective functions, and that is indeed part of our ongoing research.
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