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Abstract. An improved orthogonal multi-objective evolutionary algo-
rithm (OMOEA), called OMOEA-II, is proposed in this paper. Two
new crossovers used in OMOEA-II are orthogonal crossover and linear
crossover. By using these two crossover operators, only small orthogonal
array rather than large orthogonal array is needed for exploiting optimal
in the global space. Such reduction in orthogonal array can avoid expo-
nential creation of solutions of OMOEA and improve the performance
in robusticity without degrading precision and distribution of solutions.
Experimental results show that OMOEA-II can solve problems with high
dimensions and large number of local Pareto-optimal fronts better than
some existing algorithms recently reported in the literatures.
Keywords: evolutionary algorithms; multi-objective optimization; Pareto
optimal set.

1 Introduction

Almost every real-world problem involves simultaneous optimization of several
incommensurable and often competing objectives. Evolutionary algorithms have
the ability to find multiple Pareto-optimal solutions in one single simulation
run. They have often been used to solve multi-objective problems. Such as
vector evaluated genetic algorithm (VEGA)[1], Hajela and Lins genetic algo-
rithm(HLGA) [2], pareto-based ranking procedure(FFGA) [3], niched Pareto
genetic algorithm (NPGA) [4], pareto archived evolution strategy (PAES)[5],
nondominated sorting genetic algorithm (NSGA-II)[6], strength pareto evolu-
tionary algorithm (SPEA2) [7], rMOGAxs [8], and generalized regression GA
(GRGA) [9].

Orthogonal design method [10] is developed to sample a small, but repre-
sentative set of combinations for experimentation to obtain good combination.
Leung and Zhang incorporated orthogonal design in genetic algorithm for single
objective problems[11][12], found such method was more robust and statistically
sound. In [13], orthogonal design method is used in multi-objective evolution-
ary algorithm and developed algorithm was called OMOEA. It was showed that



OMOEA could find good solutions. But OMOEA degraded its performance on
both precision and distribution of the yielded solutions for problems with strong
interaction between variables, and when the number of objectives increases, the
solutions yielded by OMOEA increased exponentially.

In this paper, an improved version of OMOEA (OMOEA-II) is proposed.
Orthogonal design method is nested in crossover operator to select better genes
as offsprings, and consequently, enhances the performance of OMOEA. Both
orthogonal crossover and linear crossover are used in OMOEA-II. By combining
two crossover operators, faster convergence and better solutions are obtained.

The rest of this paper is organized as follows. Section 2 briefly describes
multi-objective optimization problem and orthogonal design method. Section
3 presents the proposed OMOEA-II. Section 4 shows experiment results and
discussions. Finally, Section 5 concludes with a summary of the paper.

2 Preliminary

2.1 Problem Definition

Definition 1. (Multi-objective Optimization Problem(MOP)) A general
MOP includes a set of N parameters (decision variables), a set of K objective
functions, and a set of L constraints. Objective functions and constraints are
functions of the decision variables. The optimization goal is to

minimize y = fiz) = (fi(2), f2(2), ., fx (2))
subject to e(x) = (e1(x), ea(),...,er(x)) < 0
where = (r1,T2,...,oN) E X
X = {(xl,wz,...,mN)ﬂ,- S ZTj S ’Ll,z',i = 1,2,...,N}
z= (Z17z2,"'7zN)
l= (llal27"'7lN)
u= (ul,uz,...,uN)
y=(¥1,92,--,YKx) €Y

(1)

where x is the decision vector, y is the objective vector, X denotes the
decision space, z is the center of the decision space, l and u are the upper bound
and lower bound of the decision space, and Y is called the objective space.

2.2 Orthogonal Design Methods

An example was introduced in [14] to explain the basic concept of experimental
design methods. The yield of a vegetable depends on: 1) the temperature, 2) the
amount of fertilizer, and 3) the pH value of the soil. These three quantities are
called the factors of the experiment. Each factor has three possible levels shown
in Table 1. To find the best combination of levels for a maximum yield, we can
do one experiment for each combination, and then select the best one. In the
above example, there are 3 x 3 x 3 = 27 combinations. and hence there are 27
experiments needed. In general, when there are N factors and @ levels, there



are QVV combinations. When N and @ are large, it may not be possible to do all

QV experiments. Therefore, it is desirable to sample a small, but representative

set of combinations for experimentation. The orthogonal design was developed

for such purpose [14]. Let L (QN) be an orthogonal array for N factors and

@ levels, where ” L” denotes a Latin square and M the number of combination

of levels. It has M rows ,where every row represents a combination of levels.

By applying orthogonal array Las(Q”), we only select M combinations to be

tested, where M may be much smaller than Q%, For convenience, we denote

Ly (QVN) = [aij;1mxn where the jth factor in the ith combination has level a;

and a;; € {1,2,...,Q}, and the corresponding yields of the M combinations by

[yi]amx1, where the ith combination (experiment) has yield y; . The following is

an orthogonal array:

[111]
122
133
212

Ly(3®)=]223 2)
231
313
321

1332

In Lg¢(3%), there are three factors, three levels per factor, and nine combination
of levels. The three factors have respective levels 1,1, 1 in the first combination,
1,2,2 in the second combination, etc. We apply orthogonal array Le(3%) to select
nine combinations to be tested. The nine combination and their yields are shown
in Table 2. From the yields of the selected combinations, a promising solution
can be obtained by statistical methods. Firstly, the mean value of the yield for
each factor at each level is calculated, where each factor has a level with best
mean value. Secondly, the combination of the best levels is chosen as promising
solution. For example, the mean yields for temperature at levels 1, 2 and 3 can be
calculated by averaging yields for the experiments 1—2—-3,4—5—6 and 7—8—9,
respectively. The mean yields at different levels for other factors can be computed
in a similar manner. The mean yields are shown in Table 3. From Table 3, we
can see the best levels of temperature, amount of fertilizers and pH values are 25,
150 and 8 respectively. Therefore, we regard (25°C,150g/m?,8) as a promising
solution. Such solution may not really be optimal. However, orthogonal design
has been proven to be optimal for additive and quadratic models.

A special class of orthogonal arrays Ly (QF), which we shall use a simple
permutation method to construct, will be used in this paper, where @) is prime
and M = Q”, where J is a positive integer satisfying

J _
R 3)

Denote the jth column of the orthogonal array [a; j]arxp by a;. Column a; for

i=12,(Q*-1)/(Q-1)+1,(@-1)/(Q-1)+1,... ("' =1)/(Q - 1) +1are




Table 1. Experimental design problem with three factors and three levels per factor.

Factors

Levels Temperature Amount of fertilizers pH value

Level 1 20°C 100g/m” 6
Level 2 25°C 150g/m? 7
Level 3 30°C 200g/m? 8

Table 2. Nine representative combinations for experimentation and their yields based
on the orthogonal array Lg(3?).

Factors

combination Temperature(°C’) Amount of fertilizers(g/m?) pH value yield

[y

© 00 O Ok Wi

1(20) 1(100) 1(6) 2.75
1(20) 2(150) 2(7) 452
1(20) 3(200) 3(8)  4.65
2(25) 1(100) 2(7)  4.60
2(25) 2(150) 3(8) 5.58
2(25) 3(200) 1(6) 4.10
3(30) 1(100) 3(8) 5.32
3(30) 2(150) 1(6) 4.10
3(30) 3(200) 27) 437

Table 3. The mean yields for each factor at different levels.

Mean yield

Level Temperature Amount of fertilizers pH value

Levell 3.97 4.22 3.65
Level2 4.76 4.73 4.50
Level3 4.60 4.37 5.18




called basic columns. and the others are called nonbasic columns. The algorithm
first constructs the basic columns, and then generates the nonbasic columns. The
details are as follows.

Algorithm 1 Construction of orthogonal array Ly (QF)
//Construct the basic columns as follows:
FORk=1TOJ
'_Qk_l—l i
J="0=1 +1;
FORi=1TOQ’
Qi,j = I_QZJ;—lkJ mod Q;
ENDFOR
ENDFOR
//Construct the nonbasic columns as follows:
FORk=2TOJ
=Tt
FORs=1TO0j—-1,t=1TO0Q -1
A4 (s 1)(Q-1)4+t = (as x t+ aj) mod @;
ENDFOR
ENDFOR

Increment a; ; by one for —1<i< M andl <j < P; #

The used orthogonal array in this paper is required to satisfy P > N and M is
as small as possible. That is the columns P of L (QF) must be larger than the
number of factors (or decision variables) in the hope of sampling small number of
points (combinations) for obtaining better solution. It only needs to determine @
and J for determining L (QF). Lar(QF) is determined by solving the following
minimization problem:

Minimize M = Q7

Subject to P = %J:11 >N (4)

where () is a prime and @ > 3, J is a positive integer.

L (QF) is the full size of the orthogonal array, which has P columns. For
a problem with N decision variables, we discard the last P — N columns of
Ly (QF) and get an orthogonal array Las(QY).

The proposed algorithm will require the mean value of the objective at each
level of each factor. Denote the objective values of the orthogonal experiments
by [yi]lmx1 where the objective has the value y; at the ith combination, the
mean values by [A jloxn where the objective has the mean value Ay ; at the
kth level of the jth factor, and

Apj = % > ui (5)

where the orthogonal array L (Q™) has the value a; ; at ith row and jth column.
That is, the jth factor has level a; ; in the ith combination(experiment). The



objective has value y; at the ith combination, and ) y; implies the sum of y;
ai j=k
where Vi satisfy a; ; = k. The details of the algorithm are as follows
Algorithm 2 Calculation of mean value [Ag jloxn
[Akjloxn = [Oloxn;
//Add up objective result for each factor at each level
FORi=1TOM,j=1TON
4=0i,5;4q,5 = Ag,j + Yis

ENDFOR
//Average results for each factor at each level
[Akiloxn = [Akjloxn x Q/M ¢

Each factor has its best level according to the mean value matrix [Ag ;]lox~,
The combination s of the best levels is potentially a good solution. For mini-
mization problems, it is calculated by

Akj,j = min{Al,j,A2,j, ...,AQ,j},j = 1,2, ...,N (6)
s = (kl,kQ,...,k‘N)

3 OMOEA-II

OMOEA , proposde by the author [13], is an evolutionary algorithm by introduc-
ing orthogonal design for multi-objective optimization . It is good at finding good
solutions for problems with decision variables relatively independent. However,
it was found there were two problems.

1. Strong interaction between variables degrades the performance of OMOEA
including both precision and distribution of the yielded solutions.

2. As number of objectives increase, the yielded solutions will increase expo-
nentially.

The idea of OMOEA-IT is to replace a large orthogonal array by a small orthog-
onal array in order to exploit optimal efficiently relatively small space which is
generated by randomly choosing individuals in the population.

3.1 Framework of OMOEA-II
Algorithm 3 Framework of OMOEA-II

1. Randomly create population Py with size Np. Set countert =0

2. FEzecute crossover operator (Algorithm 6) on Py which yields offsprings Q,
with size N,

3. R,=P,UQ,

4. Ezecute Selection operator (Algorithm 7) on Ry whiche yields next population

Pt+1, t=t+ 1

If stopping criterion satisfied goto Step 6, else goto Step 2

6. Output Py f

N



3.2 Crossover Operator

OMOEA-II uses two kind of multi-parents crossover operators. Parents are
randomly selected from current population. Denote parents by m;,ms and
mj; = (m]-,l,mj,g, ...,mj,N), j = 1,2.

1 Orthogonal Crossover

Orthogonal design method is used on the subspace extended by the randomly
chosen parents.

H= {(321,.772, ,Z‘N)ll; S xT; S ’U.;,Z = 1,2, ,N}
P - ")
P =min{mi;, ma;} Ul = max{mi,;, ma;}

For (z1,x2,...,zn) in H, z; is regarded as the ith factor. Orthogonal array is
selected by Equation (4). Each factor ¢ is parted into ) — 1 equal portions and
yields @ levels i 4,22, ..., £Q,i, where the design parameter () must be prime
and z,4,; is given by

q=1
= li+(@—-1)82<q¢<Q -1 5
ul—1}

Q-1

where §; =

In other words, the difference between two successive levels is the same. For
convenience, denote z; = {z1 j,22;,...,2Q,; }, and call z4; the gth level of the
jth factor.

Algorithm 4 Orthogonal crossover operator

1. Randomly choose parents my and me, Construct subspace H according to
Equation (7)

2. Choose an objective k from the K objectives as optimizing objective

3. Employ orthogonal design method on H, where orthogonal array is deter-
mined by Equation (4)

4. 81 is the combination with best objective value among the M = Q7 combina-
tions in the orthogonal experiment. 82 is the potentially good solutions from
Equation (6)

5. Output 81, 82 as offsprings #

2 Linear Crossover
Algorithm 5 Linear crossover operator

1. Randomly choose parents my and my
2. For each decision variable x;, i = 1,2, ..., N, choose one of the two sub-steps
to execute with probability p. for Sub-step (a) and 1 — p. for Sub-step (b)
(o) Randomly create a; and as with a1 +as =1 in the range —0.5 < a1,a3 <
1.5.Let s; = a1my; + aima;



(b) Randomly create a1 and as in the range —0.5 < ay,a2 < 1.5. Let 5; =
a1 (ma; — 2;) + as(ma; — 2;) + 2;, where z= (21, 22, ..., ) s the center

of the decision space (See Equation ( 1))
3. Output 8 = (s1,52,...,8Nn) as offspring i

Note that sub-step (a) is helpful for the population to converge faster to good
solutions while sub-step (b) helps to diverge the population.

Algorithm 6 Crossover operator

1. Empty Q,.

2. choose one of the two sub-steps to execute with probability p, for Sub-step
(a) and 1 — p, for Sub-step (b)
(a) Ezecute orthogonal crossover (Algorithm 4) which yields offsprings s1, 82,

p = QU {s1, 82}
(b) Ezecute linear crossover (Algorithm 5) which yields offsprings s, @, =
QU {s}.

3. If the size of Q, i.e., |@Qy|, is smaller than Np, then goto Step 2, else goto
Step 4.

4. Output Q,. #

3.3 Selection Operator

Deb etc employed non-dominated sort technology in NSGA [6]. In OMOEA-II,
non-dominated sort is executed by the selection operator on R; where R; =
P; U Q,. The details of the operator are as follows

Algorithm 7 Selection operator

1. Empty Pyy.

2. Find the non-dominated set B of R,. If |B| = N, then Py, < B; if |B| >
N, then execute cutoff operator ( Algorithm 8) which eliminate |B| — N,
elements from B and assigned the reduced B to Pyi1; if |B] < Np then
move B from Ry to Piyq, i.e., Ri < R\ B and Py < Pyy1 U B, repeat
the process of finding the non-dominated set of reduced R; and moving the
non-dominated set from Ry to Pyyq till |Piyq1| = Np.

3. Output Pyyq. #

The goal of the cutoff operator on B is to enhance distribution uniformity
of the reduced B after the cutoff. Zitzler etc. used cluster analysis to serve this
goal in SPEA [7]. The cluster analysis is also employed in this paper. The details
of the cutoff operator are as follows.

Algorithm 8 Cutoff operator

1. Initialize cluster set W: ¥ = U,_pg{{i}} where each individual i € B consti-
tute a distinct cluster.
2. If [@| < N, go to Step 5, else go to Step 3.



3. Calculate the distance of all possible pairs of clusters. The distance d. of
two cluster C1,C2 € ¥ is given as the average distance between pairs of
individuals across the two clusters

= e, > dii)
c = TATTA T 11,12
|Cl||02| 11 €C1,i2€C2

where d(i1,i2) is the distance between two individuals i1 and i (here the
distance in objective space is used ).

4. Determine two clusters Cy and Cy with minimal distance d.; the chosen
clusters are amalgamated into a large cluster: ¥ = W\ {Cy,C2}U{C1 UCs}.
Go to Step 2

5. For each cluster, select a representative individual and remove all other in-
dividuals from the cluster. We consider the centroid (the point with minimal
average distance to all other points in the cluster) as the representative indi-
vidual. Compute the reduced non-dominated set by uniting the representative
of the clusters: Py = UcewC. f

4 Numerical Experiments and Discussion

4.1 Test functions

Some benchmark problems are taken to test OMOEA-II. They are: FON [15],
ZDTy,ZDTs, ZDTs, ZDTy, ZDTs (16|, DTLZ,, DT LZ3, DT LZ4, DT LZg [17].
The number of decision variables NV: NFON = 3, NZDT1 = NZDT2 = NZDT3 =
30, Nzpt, = Nzp1; = 10, Nprrz, = NpTLZ; = NDTLZ, = NDTLZ, = 12.
FON , ZDT,, ZDT,, ZDTs, ZDT,, ZDTg have 2 objectives and DT LZ;,
DTLZs;, DTLZ,, DT LZg have 3 ones. Z DT has a convex Pareto-optimal front
while ZDT, has a nonconvex one. ZDTj; represents the discreteness feature,
its Pareto-optimal front consists of several noncontiguous convex parts. ZDTy
contains 21° local Pareto-optimal fronts and DTLZ; contains 3° local ones.
Z DTg has non-uniformity of objective space. Some decision variables of DT LZ;,
DTLZs, DTLZ4 and DT LZg are of linkage.

The parameter settings for OMOEA-IT are as follows: function evaluations
25000 ( about generations 250), population size 100, orthogonal crossover prob-
ability p, = 0.1, linear crossover probability 1 — p, = 0.9 where convergence
operator probability p. = 0.8 and diversity operator probability 1 —p. = 0.2. 10
runs are repeated for each problem. These parameters were chosen after initial
experiments. They are not meant to be optimal.

4.2 Results and discussion

Metric T [6] was to measure the extent of convergence of known set of Pareto-
optimal set. Metric A [6] measured the extent of spread achieved among the
obtained solutions, A is only able to measure problems with two objectives. The



smaller both the metric T and A, the better the obtained solutions. For com-
parison, the metric 7" and A of the obtained solutions on the test problems with
two objectives by SPEA, NSGA-IT and OMOEA-IT are shown in Tables 4 and 5,
where the data for NSGA-IT and SPEA were from literature [6] and both of them
also had population size 100 and evolution generations 250. For problems FON,
ZDT,, ZDT,, ZDTs, Z DTy, Z DTy with two objectives, OMOEA-II found more
accurate solutions than those of SPEA and NSGA-IT except the results FON.
Meanwhile, OMOEA-II could keep rather smaller or comparable A for diver-
sity. For the test problems with three objectives, only the simulation results of
OMOEA-II are shown; the metric 7" are shown in Table 4 while the spread of the
solutions are illustrated on Figure 1. As what Deb in [17] described that both
NSGA-IT and SPEA2 could not quit converge to true Pareto optimal on DT LZs
and DT LZg where they evolved 500 generations, for DT LZy, they could not
yield well distributed set of solutions, while OMOEA-II found solutions with
both good spread and precision on these four problems (See Table 6, Figures 1
)without changing parameter settings.

Table 4. Mean (first rows) and variance of the convergence metric 7" in 10 runs.

Algorithm || FON | ZDTy | ZDT> | ZDTs |ZDTs| ZDTs |
OMOEA-II|| 0.0032 | 0.00072 |0.00057| 0.0021 |0.0032]0.000032
0 0 0 0 0 0

NSGA-II |{0.0019 | 0.03348 | 0.0724 | 0.1145 | 0.513 | 0.2965
0 0.00475 | 0.0317 |0.00794| 0.118 | 0.0131
SPEA 0.1256 | 0.0018 |0.00134|0.04751| 7.34 | 0.0011
0.00003(0.000001 0 |0.00005(6.5725| 0.00045

Table 5. Mean (first rows) and variance of the diversity metric A in 10 runs.

Algorithm || FON |ZDT1\|ZDT>|ZDTs| ZDTsy | ZDTs
OMOEA-II|| 0.235 |0.439| 0.55 |0.8159| 0.250 | 0.235
0.000283{0.0088|0.0088|0.0099(0.00044| 0.0003
NSGA-II || 0.378 |0.39 0.43 |0.7385| 0.702 | 0.668
0.000639{0.0019{0.0047/0.0197| 0.0646 |0.00992
SPEA 0.792 |0.7845|0.7551|0.6729| 0.7984 | 0.8493
0.0055 [0.0044/0.0045|0.0036| 0.0146 | 0.0027

The population size of OMOEA in [13] is variable, and, for many prob-
lems, increases exponentially as the number of objectives increase. For problems
FON, ZDTh, ZDT», ZDTs, ZDTy, Z DT with two objectives, the precision and
distribution of solutions of OMOEA-IT are comparable with OMOEA. But, for
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Fig. 1. Distribution of obtained solutions for DTLZ1, DTLZ3, DTLZ4, DTLZ6,
where '+’ denote true Pareto-optimal fronts and '’ close-to-Pareto-optimal fronts.

DTLZy, DTLZ3, DTLZ4 and DT LZg, OMOEA yields no results since the pop-
ulation is too large, that results from the linkage variables. Since the structure
of OMOEA is not much the same as common MOEAs/MOGAs, usual metric
comparison is much convincible. Therefore, comparison between OMOEA-IT and
OMOEA was not listed.

5 Conclusion

OMOEA-II overcomes the difficulties existed in its previous version (OMOEA).
Orthogonal design method is nested in crossover operator to select better genes
as offsprings, and consequently, enhances result precision. The other crossover
called linear crossover is used, in order to converge fast to better solutions
and diverge the population for global optima by changing parameters. Experi-
mental results show that OMOEA-II can solve problems with high dimensions,



Table 6. Mean (first rows) and variance of the convergence metric

Algorithm ||DTLZ,| DTLZ3 |DTLZ,|DTLZs
OMOEA-II|| 0.0043 | 0.0127 | 0.01 |0.00078
0 0.000001 0 0

large number of local Pareto-optimal fronts, non-uniformity or discontinuity or
convex or nonconvex of global Pareto-optimal front and yield better solutions
than some reported results. Acknowledgment  This work was supported by
The National Natural Science Foundation of China (No.s: 60473037, 60483081,
40275034, 60204001, 60133010) and by China Postdoctoral Science Foundation
(No. 2003034505).
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