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Abstract

In this paper, a partial enumeration selection method
(PESM) is adopted in a genetic algorithm for solv-
ing a multi-objective flowshop problem. Based on the
idea of adjusting selection pressure and reinforcing the
Pareto front, the PESM-based genetic algorithm bal-
ances the exploitation and the exploration. Without the
time-consuming computation of distance information
among individuals and the hard-set parameters, this al-
gorithm implicitly maintains diversity in the population.
The PESM-based genetic algorithm is implemented and
tested on a multi-objective flowshop scheduling prob-
lem. In order to compare the solution quality, an out-
performance rate measure is proposed to work together
with comparison of diversity. Simulation results show
that the algorithm proposed improves specific results
recently available in the literature and gets smooth non-
dominated fronts.

1 Imntroduction

Most real-world optimization problems in manufactur-
ing systems and economics are multi-objective. For
these problems, where a set of Pareto solutions are
more preferable than a single "best” solution, multi-
objective genetic algorithms (MOGAs) are attracting re-
searchers’ attention because these algorithms maintain
a large amount of solutions at a single run.

Keeping diversity is usually more important for
MOGA than for a single objective genetic algorithm
(SOGA) (1, 6, 7). Various methods [1, 11] are proposed
to promote uniform sampling and to control the distri-
bution of individuals. Most of them define and calculate
the genotype or phenotype distance among pairs of indi-
viduals. Parameters are also introduced. Without prior
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understanding of the problem landscape, these parame-
ters are hard to be set [1].

In this paper, a partial enumeration selection method
(PESM) is applied to maintain and control the diversity
among the individuals in the genetic search. The PESM
is originally proposed to solve single-objective jobshop
scheduling problems [5] by adjusting the selection pres-
sure. Without computation of distance information, di-
versity among individuals is maintained implicitly.

For each generation, the PESM samples a fixed num-
ber of individuals and enumerates some of their neigh-
bors for selection of the individuals to replace the sam-
pled ones. It gives us a chance to reinforce a Pareto front
edge if a sampled individual lies in the current Pareto
front. On the other side, if the PESM chooses not so
good individuals, it may help to increase exploration.
Furthermore, at each generation, the elitist individuals
are preserved.

Lacking of a fair methodology for comparing results
for a multi-objective problem restricts the development
of MOGAs [8]. In this paper, a measure named outper-
formance rate is proposed to give us a clear numerical
understanding. Together with comparison of diversity,
we suggest a way to compare two MOGAs.

The genetic algorithm is implemented and tested on
a multi-objective flowshop problem which first appeared
in [6]. Simulation results show that the PESM improves
the solution results easily and gets smooth Pareto fronts
with high diversity.

This paper is organized as follows. After a statement
of the multi-objective flowshop problem and a brief de-
scription of related works in sections 2 and 3, respec-
tively, we describe the PESM in section 4. Finally, we
present the definition of outperformance rate, report the
simulation results, and give the conclusions in sections



5, 6, and 7, respectively.

2 Multi-Objective
Problem

Flowshop

2.1 Problem statement

A permutation flowshop problem has n jobs (J1,..., J,)
that must be processed on a set of m machines
(M, ..., My,) with the same processing route. Each
job J; consists of m operations O;;(j = 1,...,m) which
must be processed on machine M; with processing time
Pij. A job can not be processed on different machines at
the same time and no preemption is allowed. For each
job J;, a due date d; is assigned.

Assuming that all the job sequences on the machines
are the same, which greatly decreases computational
complexity without sacrificing solution quality, a fea-
sible schedule S is represented by a sequence of jobs:

@, dn} (1)

In order to define objectives, we denote the starting
time and the finish time of job J; by b; and ¢;, respec-
tively. The objective functions concerned in [2, 6] and
also in this paper, consisting of the makespan (fy,), the
mean tardiness (f:), and the mean flow time (fy), are
given by the following equations:

minimize (fm (S), fe(S), f£(S5)) 2

where
fn(S) = max(c:) 3)
£(S) = (l/n)Z(ma.x(c,-——di,O)) @
f#(8) = (5)

(U")Z(c«' —by)

The goal is to minimize these objectives as shown
in Equation 2. This problem is very difficult since a
flowshop scheduling problem solely with makespan as
the objective to minimize has been proved to be NP-
hard [3].

2.2 Pareto solutions

Because it is difficult to compare two solutions for a
multi-objective problem, a set of solutions called non-
dominated or Pareto solutions [7] are defined, where no
objective can be improved without sacrificing any other.
For the flowshop problem in this paper, a schedule S,
is a Pareto solution if and only if there is not another
feasible solution § satisfying the following conditions:

fm(8) < Fm(Sp), fe(S) < fe(Sp), f£(S) < £5(Sp), (6)
fm(8) + fi(S) + f3(S) < fm(Sp) + fu(Sp) + ££(Sp) (7)

3 Related work

3.1 Multi-objective genetic algorithm
preliminaries

Since the first notable work of the Vector Evaluation Ge-
netic Algorithm (VEGA), MOGAs have received consid-
erable attention. The major difference between MOGA
and SOGA lies on three points, the fitness assignment
[7], the diversity control [1] and the effect of elitism [5].

First, in order to compare two solutions for a multi-
objective problem, implicit Pareto ranking method is
widely used in MOGAs. The ranking procedure is as
follows: After Rank 0 is assigned to the non-dominated
individuals they are removed from contention; then the
next set of non-dominated individuals is assigned a Rank
1. The process is repeated until all individuals are
ranked. Rank 0 is called the Pareto front.

Secondly, because of the phenomenon known as ge-
netic drift, where individuals converge to only one so-
lution, sharing techniques are proposed to promote
uniform sampling. Goldberg and Richardson pro-
posed and embedded niche-based fitness sharing in a
non-dominated sorting genetic algorithm (NSGA). A
crowd comparison criterion is proposed in NSGA T1I,
an advanced version of NSGA, to eliminate the nich-
ing parameters. Furthermore, a coevolutionary niching
method [4] is also proposed. For all these methods, they
define distance and promote diversity based on distance
information. Some methods, for example NSGA, in-
troduce some parameters, which are difficult to be set
without prior understanding of problem landscape.

Thirdly, many authors pointed out that saving the
elitist individuals at each generation can greatly improve
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the performance of MOGA. Therefore many elitist MO-
GAs, such as SPEA, PAES and NSGA-II are proposed

[9].

3.2 Multi-objective flowshop problems

Comparing with many MOGAs for solving general
multi-objective problems, research on multi-objective
scheduling problems is rather scarce. This can be ex-
plained by the complex landscape and lacking of good
methodology for the comparison of results [8].

In [6], the NSGA is presented and implemented to
deal with flowshop and jobshop scheduling problems. By
introducing elitism, Bagchi proposed the ENGA [6]. A
detail of these algorithms and the tested problem data
can be found in [6]. In [2], Isibuchi and Murata pre-
sented a dynamic-weighted local search without consid-
ering the non-dominated properties. Recently, Brizuela
et al. [8] analyzed the genetic operators. With this
analysis they proposed an extended NSGA to improve
solution quality.

4 Partial Enumeration Selection
Method

The partial enumeration selection method is originally
proposed in solving single-objective jobshop scheduling
problems [5]. The basic idea is simple in the sense that
we do not need to compute the population diversity nor
any other related measure. The mutation operator can
be used to increase and decrease diversity. Adjusting
the selection pressure may be another alternative. The
PESM is focused on the latter issue. Sampling some
individuals and enumerating some of their neighbors for
selection of the individuals to replace the sampled ones
is the way to control selection pressure and population
diversity.

Assume that the offsprings directly replace their par-
ents and selection of parents for genetic operations is
performed at random, the selection pressure is null and
we have a highly diverse population. Then the algo-
rithm becomes a random search. This high diversity
value will depend on the initial diversity of population
and there will not be any possibility of changing it since
the crossover and mutation operators will generate off-
springs in a random way. )

The PESM introduces order through the sorting of a
sampled and enlarged set of individuals, and the selec-
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Figure 1: Partial Enumeration Selection Method.

tion of the best elements to take part in the genetic op-
erations. Therefore, PESM increases the selection pres-
sure and the search is no longer a random one. Figure 1
gives a flow chart of the PESM and algorithm 1 states
it formally.

Algorithm 1. Partial Enumeration Selection
Method (PESM)

Step 1: Set k¥ = 0. Generate an initial population
Pop(k] of g individuals.

Step 2: Ranking of individuals in Pop{k]. Gen-
erate the non-dominated individual pool
Non consisting of all non-dominated indi-
viduals in Pop[k]. Assign fitness to indi-
viduals as the maximum rank number in
the population minus the individual rank
number.

Step 3: Set i = 1.

Step 4: Select one individual I; from Pop[k] by
roulette wheel selection (RWS).

Step 5: Construct a neighborhood of ¢ elements
around [; : {L', Jl,‘, Tty J(q - 1),‘}.

Step 6: If i <p then set i =i+ 1 and go to Step 4;
otherwise go to Step 7.



Step 7: From the new pg individuals select the
“best” p elements according to the rank-
ing criterion.

Step 8: Merge these p elements with the g —p indi-
viduals not selected at Steps 4 to 6 to get
Pop’{k].

Step 9: Until g individuals are chosen from Popl[k]
DO: select randomly (with replacement)
pairs of individuals and apply crossover
and mutation with their respective prob-
abilities.

Step 10: Rank all individuals in Pop[k] and the
non-dominated individual pool Non. In
Non, we have nd non-dominated solutions.

Step 11: Select nd individuals in Pop’lk] ran-
domly and replace them with the nd non-
dominated solutions in Non; and obtain
Poplk +1]. Set k =k +1.

Step 12: If the stop criterion expires then stop, oth-
erwise go to Step 2.

In the above algorithm, Pop[k] represents the set of
g individuals at generation k. Two positive numbers p
and ¢ stand for the number of individuals to sample from
Pop[k] and the neighborhood size, respectively. At Step
5, for each sampled individual, we generate ¢ neighbors.
Next at Step 7, the "best” p individuals are selected
from pg members in the pool to replace the original p
individuals in Pop[k]. Noted that the "best” p individ-
uals are gotten by the following procedure: First these
pq individuals are ranked, then we choose the ”best”
individuals from Rank 0. If they are not enough (in
number) to complete p individuals, then we choose in-
dividuals from Rank 1. This procedure is repeated until
we get p individuals.

Notice that two issues in our proposed PESM exten-
sion are different from the PESM for SOGA [5]. First,
all individuals in Pop([k] are ranked and sampled by
Roulette Wheel Selection. The second issue is adoption
of the elitism in PESM for multi-objective problems.
This second issue reinforces the Pareto front. Since a
large number of elitist individuals are inherited through
generations, it is necessary to decrease their chance of
being sampled. At Step 2, the fitness is assigned as
the maximum rank number minus the individual rank-
ing number. Therefore, the worse the individuals is, the
higher the chance of being selected for partial enumer-
ation of its neighbors. This process promotes exploita-
tion.

The diversity can be controlled by the paramster ¢.
Different values of ¢ will give different levels of selection
pressure to the PESM. By increasing g, we increase the
neighborhood size. Thus, we promote exploitation. In
the extreme condition where ¢ = 1, the PESM is a to-
tal random search algorithm except for the memory of
the preserved elitist solutions. When we increase ¢, di-
versity begins to decrease and the PESM becomes more
selective and better individuals are created.

5 A Measure for MOGAs

Unlike single-objective problems, comparing the solu-
tion quality of two MOGAs itself is a multi-objective
problem. That is to say, we want a large amount of
widely distributed Pareto solutions. In some cases, the
Pareto fronts obtained by two MOGAs are plotted and
we decide which one is better or worse by visual inspec-
tion. This can work effectively if the two MOGAs have
steady performances. But, we usually want to have our
decision based on many different runs of two algorithms.
In this paper, a measure called outperformance rate is
defined and it enables us to survey the results of multiple
runs.

Definition 1. Outperformance rate: Let F} and F
be the Pareto fronts obtained by MOGA1 and MOGA2,
repectively. Then we mix them and rank them. Next we
count individuals in the new combined Pareto front Fy,.
Let n; be the number of individuals in the Pareto front
F, which belong to F; and ny is the number belonging to
Fy. Then n1/(n1 +n2) is defined as the outperformance
rate of MOGAL

Another important issue is the diversity among in-
dividuals in the Pareto front. A Pareto front is bad if
most of its individuals converge to few solutions. There-
fore, we need to compare the diversity between popula-
tions. Diversity is defined as the average distance of
all pairs of individuals. The distance measures the dif-
ference between two individuals. For the permutation
flowshop problem, a phenotype distance is defined as
the Euclidean distance of all objectives by:

dif(51,52) = ((fm(S1) ~ fm(52))* + (fo(S1) -
F(S2))? + (f7(S1) — ££(S52))*)/%8)
Diversity = 1/g(g—1) Z dif(Si, S;) 9)

i4,i#]
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6 Experimental Setup and Re-
sults

A number of experiments are carried out in order to
verify the performance of the PESM. A 49-jobs and 15
machines flowshop problem presented in [6] is tested in
this paper.

First, we investigate the Pareto front and the out-
performance rate by comparing PESM with a fine tuned
elitist NSGA [8] and ENGA [6]. Secondly, we examine
the variation of diversity among all individuals in the
Pareto fronts.

The parameters of PESM and NSGA are set as fol-
lows: The population size g is set to 100 and the algo-
rithms stop after 2000 generations. Crossover rate P, is
1.0 and mutation rate P, is 0.05. Without special de-
scription, p in PESM is set to 10 and ¢ is set to 10. Shar-
ing parameter for NSGA is set to 10 which is considered
as the best value for this problem by a large amount of
simulations. The computation results are based on the
average of 50.runs.

6.1 Comparison of Pareto fronts

Figure 2 shows outperformance rates among three dif-
ferent MOGAs. Clearly, NSGA and PESM outperform
ENGA with 1.0 outperformance rate. Based on the
0.638/0.362 rate, PESM gets better result than NSGA.

Figure 3 plots a typical distribution of Pareto fronts
of these MOGAs. Again, it is observed that PESM out-
performs NSGA and NSGA outperforms ENGA. Figure
4 shows the dynamics of number of individuals in the
Pareto fronts. NSGA has more non-dominated individ-
uals-than PESM. By analyzing Figure 4 together with
the outperformance rate, it is observed that PESM has
less but higher-quality individuals in the Pareto front.

6.2 Variation of diversity

As described in section 5, diversity is a very important
issue for MOGAs. Figures 5 and 6 show the variation of
diversity among all individuals and among individuals in
the Pareto front, respectively. As expected, PESM has
higher overall diversity. It is observed from Figure 6 that
PESM maintains high diversity for all generations while
NSGA gets equivalent high diversity from the 1500th
generation.
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Figure 3: Typical Pareto front for three MOGAs

7 Conclusions

The PESM-based genetic algorithm has been applied
to solving a multi-objective flowshop problem. Without
computing various distance information, the PESM con-
trols the diversity by adjusting selection pressure. Some
features of MOGAs, such as ranking and elitism are also
adopted in this algorithm.

A measure called outperformance rate has also been
proposed. Together with the evaluation of diversity, we
have an explicit way to compare two MOGAs for multi-
objective problerns.

Simulation results show that the PESM proposed in
this paper outperforms a fine tuned NSGA and ENGA
presented in [6].
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