Why Quality Assessment of Multiobjective Optimizers Is Difficult

Eckart Zitzler, Marco Laumanns, Lothar Thiele Carlos M. Fonseca, Viviane Grunert da Fonseca

Computer Engineering (TIK) ADEEC and ISR (Coimbra)
IT and EE Department Faculty of Sciences and Technology
ETH Zurich, Switzerland University of Algarve, Portugal
{zitzler, laumanns, thiele@tik.ee.ethz.ch cmfonsec@ualg.pt, vgrunert@csi.fct.ualg.pt
Abstract In single-objective optimization, we can define quality by
o ) _ means of the objective function: the smaller (or greater)

Quantitative quality assessment of approxima-  he yalue, the better the solution. In contrast, quality is
tions of the Pareto-optimal set is an important  jise|f multiobjective in the presence of several optimization
issue in comparing the performance of multiob- criteria. The goal is to find an approximation set that is as
jective evolutionary algorithms. Most popular close as possible to the optimal front, covers a wide range
are methods that assign each approximation set ¢ giverse solutions, etc. Therefore, it is difficult to define
a vector of real numbers that reflect differentas- 55516 riate quality measures for approximation sets, and as
pects of the quality. In this study, we investigate 5 consequence there is no common agreement about what
this type of quality assessment from a theoreti- measure(s) should be used.

cal point of view. We provide a rigorous analysis

of limitations and suggest a mathematical frame-
work on the basis of which existing techniques
are classified and discussed.

Most quantitative measures proposed in the literature are
unary, i.e., the measure assigns each approximation set a
number that reflects a certain quality aspect, and many
comparative studies use a combination of them, e.g., (Van
. Veldhuizen and Lamont 2000; Deb et al. 2000). There are
1 Introduction also binary quality measures which assign values to pairs of

With ltiobiect timizati bl K | approximation sets (Zitzler 1999). Despite of this variety,
th many muftiobjective opimization problems, KNowl- ;' naq remained unclear up to now how the different mea-

edge about the Pareto-optimal set helps the decision makg[”es are related to each other and what their advantages

in choosing the best compromise solution. For Instance, disadvantages are. Nevertheless, first steps in this di-

when designing com_puter systems, engineers often P€lection have been undertaken. Knowles, Corne, and Oates
form a so-called design space exploration tollearn morgooo) compared the information provided by different as-
about the trade-off surfa(_:e. Thereby, the d_eS|gn SPACE kassment techniques on two database management appli-
redgced to the set of c_>pt|mal trade_-offs: a first step in S€tations. Hansen and Jaszkiewicz (1998) discussed various
lecting an appropriate implementation. measures under the assumption that some knowledge about
However, generating the Pareto-optimal set is computationthe decision maker’s preference is given in terms of utility
ally expensive and often infeasible, because the compleXunctions.

ity of th_e under_lylng apphcatl_on prevents exact methods yhis paper, we will investigate and discuss unary quality
from being applicable. Evolutionary algorithms (EAs) are easures from a mathematical point of view, in particular

an _alternative: they do not guarantee the idgntification olyhat type of conclusions they allow. The only assumption
optimal trade-offs but try to find a set of solutions that ar€hade is that the decision maker prefers the nondominated

(hopefully) r_10t FOO far away from the optimal frqnt. Varl- solutions among an arbitrary set of solutions. Taking this
ous multiobjective EAs are available, and certainly we aré < 1 pasis. we will
interested in the technique that provides the best approx- '

imation for a given problem. For this reason, compara- e prove that in general it is impossible to define a finite
tive studies are conducted; they aim at revealing strengths  set of unary measures, e.qg., distance and diversity, that
and weaknesses of certain approaches and at identifying uniquely describe the quality of an approximation set,
the most promising algorithms. This, in turn, leads to the

guestion of how to evaluate the quality of approximations e show that existing measures at best allow to infer that

of the Pareto-optimal set. an approximation is not worse than another,



e present two measures that can detect dominance be- %

tween approximation sets and also show why the use T X e g p
of this type of measure is restricted, and Bl E X o
— O X [ 0 02 .
¢ classify and discuss existing unary measures. 5 ] ? & x % B O 0,
Note that we focus on comparisons of approximation sets, 1 o x

i.e., assume that for each multiobjective EA only one runis
performed. If we consider instead multiple runs, statistical
methods are required (Grunert da Fonseca et al. 2001); this 5 10 4

important issue will not be discussed in the present paper. ) .
Figure 1: Outcomes of three hypothetical algorithms de-

noted ag);, O5, andOs with respect to a two-dimensional
maximization problem. The Pareto-optimal frdhtonsist

Suppose an arbitrary optimization problem involvingb-  Of @ single objective vector.

jectives and the following preference orders on the set o
objective vectors.

2 Scenario

Befinition 2 (Approximation set) Let A C Z be a set of
objective vectors A is called anapproximation seif any
Definition 1 (Dominance relations) Let Z be the n-  two members oft do not dominate each othev:z', 2> ¢

dimensional objective space ardl = (z1,...,2,),2° = A z! =22 v 2! || 22. The set of all approximation sets
(22,...,22) € Z two arbitrary objective vectors. We de- is denoted as).
fine the following relations o Now, consider the outcomes of three hypothetical algo-

o 2!~ 22 (2! dominates?) if ! is not worse thar? rithms as depicted in Figure 1. Can we say that any of
in any objective and is better in at least one objective these approximation sets is better than another? To answer

) ) . ] this question, we will extend the dominance relations from
o z! =~ 2% (' strictly dominatesz?) if 2" is better  apove to approximation sets.

thanz? in all objectives,
Definition 3 (Dominance relations on approximation sets)

o z' = 27 (2! weakly dominates®) if z' is notworse et 4;, 4, € Q) be two approximations sets. We write

thanz2 in any objective, A1 = Ay (A; dominatesA,) if every member im4s is
dominated by at least one member 4n; the relations
-, =, e, <, <=, X, and <, are defined accordingly.
Furthermore, we sayl; is better thand, (A; > As resp.
e z! || 2% (2! andz* are incomparable to each other) if 4, < A;) if Ay = A, and A; # Ay; A; and A, are

neitherz' weakly dominates® nor z* weakly domi-  incomparable to each other( || A,) if neither A, = A,

o z! >, 22 (2! e-dominatex?) if 2! is not worse than
z? by a factor ofe in any objective for a fixed > 0,

natesz!. nor A, = Aj.
The relations<, <=, =, and <. are defined accordingly, - According to this definition, we consider an approximation
l.e.,z" < 2% isequivalenttoz” - z°, etc. set to be better than anothety( > A), if any solution

. :t? the latter is weakly dominated by the former and if the
about the preference structure of the decision maker: a s ormer contains at least one solution not weakly dominated

o S %y the latter. In the above exampl@; is better tharO,
lution is preferable to another solution if the former domi and strongly dominateSs; O, dominate)s.

nates the latter in objective space. Accordingly, those ob- i o
jective vectors that are not dominated by any other objecTn€ statements we can make using therelation is

tive vector are denoted @areto optimaland the entirety Whether the outcome of one approximation algorithm is
of all of these objective vectors &areto optimal fronf  better than the outcome of another method or not. However,

Unfortunately, generating the Pareto-optimal set is ofterfv® would like to be able to make more precise statements:
infeasible, and we can only hope to find a good approxi- o |f one algorithm is better than another, can we express
mation of it. By approximation, we usually mean the set of how much better it is?

nondominated solutions found in one optimization run. In

the following, the term approximation set is used in order ® |fno algorithm can be said to be better than the other,

to formally describe what we consider as the outcome of a  are there certain aspects in which respect we can say
multiobjective EA (Hansen and Jaszkiewicz 1998): the former is better than the latter?

For a detailed discussion of these concepts, the interesteGOr this reason, quantitative quality measures have been in-
reader is referred to (Deb 2001). troduced. As mentioned in the introduction, they usually



assign real numbers to approximation sets, and then a corstatement behind is that in order to detect weak dominance
mon metric can be used to quantify the quality differenceamong objective vectors as many indicators as objectives
of two approximation sets. In the following, we will use are necessary.

the term quality indicator (as quality measure is often use "o
with diffe?ent meanings): it isqa funﬁ:tion that assigns each heoremllet 7 = R" with n > 2 and I =
tuple of approximation sets a number that somehow reflect 1 1o, I’“) be avector of unary quality indicators such
aspects of the quality or quality differences. that for anyz ez

1<i<k:IL({z"))>L({z? Ly 22
Definition 4 (Quality indicator) An m-ary quality indi- (Vi<i<k: L{) 2 L{z) & 2" = 2

cator is a function/ : Q™ — IR, which assigns each Then it holds that > n.

vector (4;, Aa, ..., A,,) of m approximation sets a real ) . )
valuel(Ay, ..., Ap). Proof. We will exploit the fact that inR the number of

disjoint open interval$a,b) = {z € R ; a < z < b} with
The goal is that we can draw conclusions about the relatiog < b is countable (Hrbacek and Jech 1999); in general,
between approximation sets by comparing their indicatothis means thalR* contains only countably many disjoint
values. Ideally, a greater (or smaller) indicator value wouldopen hyperrectangléa;, b;) x (az, by) x - - - x (ay, by,) =
imply that one set is better than the other. On the other (z;, z,,...,2,) € RF ; a; < 2z < b, 1 < i < k}
hand, we also would like to ensure that whenetés better  with a; < b,. The basic idea is that whenever fewer in-
than B also the indicator value ofl is greater (or smaller) dicators than objectives are available, uncountably many
than that of B. Thus, there are always two directions we disjoint open hypercubes arise—a contradiction. Further-
have to consider: conclusions we can draw from the indimore, we will show a slightly modified statement, which
cator values with respect to the dominance relations, ants more general: ifZ contains an open hypercube, v)"
the implications of any dominance relation on the indicatorwith + < v such that for ang!, 2% € (u,v)™:
values. In Section 4, we will introduce the terms compati- ‘ 1 5 1 9
bility and completeness for these purposes. (Vi<i<k:L{z'}) 2 L({z"}) &=z = =

The remainder of this paper focuses on unary indicators athenk > n.

they are most commonly used in the literature; what makesyithout loss of generality assume a maximization problem

them attractive is their Capablllty of aSSigning quallty val- in the fo”owing_ We will argue by induction.
ues to an approximation set independent of other sets under

consideration. We will classify and discuss existing unaryn = 2: Let a,b € (u,v) with @ < b and consider the

indicator with regard to compatibility and completenessin  incomparable objective vectofa, b) and (b, a). If

Sections 4 and 5; first, however, we will investigate what & = 1, then eithed; ({(a,b)}) > I1({(b,a)}) or vice

we must not expect from them. versa, this leads to a contradiction (@, b) ¥ (b, a)
and(b,a) % (a,b).

3 Limitations n — 1 —n: Supposer > 2, k < n and that the statement

holds forn — 1. Choosea,b € (u,v) with a < b,
and consider the — 1 dimensional open hypercube
Se = {(z1,22,. ., 2n-1,¢) € (L, V)" ; a < z <

b, 1 <i<n—1}foran arbitraryc € (u,v).

Naturally, many studies have attempted to capture the mul-
tiobjective nature of approximation sets by deriving distinct

indicators for the distance to the Pareto-optimal front and
the diversity within the approximated front. Therefore, the i )
question arises whether we can define a minimal combina- ~ First, we will_show that I;({(a,...,a,¢)}) <

tion of unary indicatord = (I, I, . . ., I;) such that bet- I,-({(b,...,b, c)}) forall 1 < i < k. Assume
ter quality goes hand in hand with greater indicator values, ~ fi({(a, 0)}) = Li({(b,...,b,c)}) for any .
e.. L[ me))) > L0 b)), then
. b,c) # (a,...,a,c), which yields a contradic-
(V1<i<k:L(4)>L(B)) »A> B fon. |f1(%(af. })>_I({(b ,b,¢)}), then
for any approximation setd, B. Such a combination of IL,({z}) = L({(a,.. c)})forall z € SC, because
indicators, applicable to any type problem, would be ideal, (b,...,b,c) = zif z e S Then for anyz!, 2% € S.

because then any approximation set could be characterized it holds

by, e.g., two real numbers that reflect the different aspects . L 1 2 1 2
of the overall quality. The variety among the indicators Visjskj#i:L{z}) =2 L{z7) o2 =2
proposed, however, suggests that this goal is, at least, diffi-  which contradicts the assumption that for any 1 di-
cult to achieve. The following theorem shows that in gen- mensional open hypercubelR* ! at least:— 1 indi-
eral it cannot be achieved: a fixed number of indicators is  cators are necessary. Therefdig{(a,...,a,¢)}) <
not sufficient for problems of arbitrary dimensionality. The Li({(b,...,b,0)}).



Now, we consider the image of. in indica- %
tor space. The vectord({(a,...,a,c)}) and

I({(b,...,b,c)}) determine an open hyperrectangle b—
Hc = {(ylay27 s ayk) € IRk 5 IZ({(G, s ,a,c)}) <

yi < Li({(b,...,b,¢)}), 1 < i <k} wherel(z) =

(Ii(2), I(z),...,Ix(z)). H. has the following prop-

erties:

1. H. is open in allk dimensions as for all <

i < koinf{y 5 (yi,92,-.,00) € He} . A .

L{(a,...,a,0)}) < L{®,...,be)}) = _ | | |

sup{y; ; (y1,Y2,---,yx) € He}. Figure 2: lllustration of the construction used in Theo-
2. H, contains an infinite number of elements. rem 2 for a two dimensional maximization problem. We

consider an open hypercube b)" and define a — 1 di-
mensional hypercubg& within. For.S holds that any two
objective vectors contained are incomparable to each other,
and therefore any subsdtC S is an approximation set.

3. H.NHy = () foranyd € (u,v),d > c: assume
y € H.N Hy; thenI({(b,...,b,0)}) >y >
I({(a,...,a,d)}), which yields a contradiction
as(b,...,b,c) # (a,...,a,d).

Sincec was arbitrarily chosen withifw, v), there are e o
uncountably many disjoint open hypercubes of dimen- ® If @ setS has Card'”a“w ;;Oth?” the ca.rd|na|.|t3./ of
sionality & in the k dimensional indicator space. This the power seP(5) of Sis2 7, i.e., there is no injec-
contradiction implies that > n. 0 tion fromP(S) to any set of cardinalitp™°.

This theorem is a formalization of what is intuitively clear: The proof is based on the construction of a S€tf. Fig-

we cannot reduce the dimensionality of the objective spaceare 2) such that any two points contained are incomparable
without loosing information. Unfortunately, the situation to each other. The power set 8fis exactly the set of all
gets even worse when we consider approximation sets imapproximation setd C S, the cardinality of which ig2"
stead of single objective vectors. Theorem 2 states thaks any two approximation sets must be mapped to a differ-
there is no way of representing any dominance relatiorent indicator vector (shown in Lemma 1), an injection from

from Definition 3 by a finite combination of unary quality 3 set of cardinalit2™ to R” is required, which finally
indicators—independent of the dimensionality of the ob-|eads to a contradiction.

jective space. This means the number of criteria, that de-

termine what a good approximation set is, is infinite; or inLemma 1 Let Z = {(z1,22,...,2,) € R a < 2 <
another words: the aforementioned goal to define two (0b, 1 < i < n} be an open hypercube iR" with n > 2,
more) indicators, one for distance and one for diversity, that, b ¢ R, anda < b. Furthermore, assume there exists a

uniquely characterize the quality of an approximation setyector of unary quality indicator§ = (I, I, . . ., I;,) and

cannot be attained. a relation» such that for any approximation sets, A, €
Q.

Theorem 2 If Z = IR™ withn > 2, then there is no vector I(A) » I(As) & Ay > Ay

of unary quality indicatord = (I1, s, ...,1I;) and a re-

lation » such that for any approximation setls, A, € Q:  whereI(A) = (I1(A),L(A),...,Ix(A)) for A € Q.
Then,I(A) # I(As) forall Ay, Ay € Q with Ay # As.
I(Al) PI(AQ)@Al > Ao (1)
Proof. Let Ay, A3 € Q be two arbitrary approximation
whereI(A) = (I (A), I2(A), ..., Ix(A)) for A € Q. sets withA; # A,. If Ay > Ay or Ay > Ay, then either
I(Ay)» I(As) N I(A2) ¥ I(Ay) orvice versa. Thus,
Note thate can be any relation<(, >, etc.), i.e., indepen- I(A;) # I(Az). If Ay || As, there are two cases: (1) both
dently of what relation» we choose, there is no indicator A; and A, contain only a single objective vector, or (2)

vector such that Statement 1 holds. either set consists of more than one element.
To prove this theorem, we need the following fundamental _ _
results from set theory (Hrbacek and Jech 1999): Case 1: Choosez € Zwith A, || {z}andA, || {=} (such
an objective vector exists asis an open hypercubein
e IR, R¥, and any open intervdk, b) in IR resp. hyper- R"™). ThenA; U{z} > A; andA; U {z} || A2. The

cube(a, b)* in R* have the same cardinality, denoted formerimpliesthaf (4, U{z}) » I(A1) A I(A1) ¥
as2¥, i.e., there is a bijection from any of these sets I(A; U {z}). Now supposel(A4;) = I(Ag); it
to any other; follows that I(A; U {z}) » I(A2) and therefore



A U{z} > Ao, whichisacontradictiontadl; U{z} |  Proof. As Z is finite, also} is finite. Therefore, there

As. exists an injectiord from €2 to IR. Accordingly, the relation
_ _ » can be defined ag(A4;) » I(As) & I71(I(A4))) >
Case 2: Assume, without loss of generality, thdt con- [V (I(A2)) & Ap > As. 0O

tains more than one objective vector, and choose

Ay with {z} || Ao (such an element must exist as T result is rather of theoretical than of practical use, be-
Ay || Az). Then, Ay > {z}, which implies that  ¢5,se we are mainly interested in indicators that are appli-
I(Ar) » I({z}) A I({z} ¥ I(A1). Now SUP-  cape to arbitrary problems. In general the power of unary
posel(A;) = I(Ay); itfollows thatI(Az) » I({z})  jndicators is restricted according to Theorems 1 and 2—so,
jndllt?egeforeéb > {z}, which is a contradiction 0 \yhat can we achieve using unary quality indicators?

2 Zf.

In summary, all casesd > Ay, Ay > Ay, andA; || A,) 4 Classification

imply thatT(A,) # I(As). O There are two questions on the basis of which we will cat-
egorize quality indicators:

Proof of Theorem 2. Let us suppose that such a qual- . ] o

ity indicator vectorI in combination with a relatiom ex- 1. Which conclusions can be drawn from the indicator

ists. Furthermore, assume, without loss of generality, that ~ Values with regard to the dominance relations?

the first two objectives are to be maximized (otherwise the 5 \which portion of a specific dominance relation can be

definition of the following sef' has to be modified accord- covered on the basis of the indicator values?

ingly).

Choosea,b € IR with a < b, and considerS =

{(z1,22,...,2n) €E Z3a < 2z, < b1 <i<n A 2z =

b+ a — z1}; obviously, for anyz!, 22 € Z eitherz! = 2?2

or z' || 22, becauseq > - impliesz3 < z3. Further-  Definition 5 (Unary e-Indicator) Without loss of general-

more, letQs C  denote the set of approximations setsity assume a maximization problem and fete 2 be the

AeQwithACS. Pareto-optimal front. The unargindicator I. is defined as

As S € Q and any subset of an approximation set is again I(A) =inf{fee R; A=, P}

an approximation sef)s is identical to the power s@(S) for A € Q ‘ e

of S. In addition, there is an injectiofi from the open '

interval(a, b) to S with f(r) = (r,b4+a—r,(b+a)/2,(b+  For the three algorithms we gét(O;) = 2, I.(03) = 2,
a)/2,...,(b+ a)/2), it follows that the cardinality of is  andI.(O3) = 2.5. How does the order of the indicator
at least2™ . As a consequence, the cardinalitysd§ is at  values reflect the dominance relations?

N
least2”". In general, for any paifA, B) € Q2 it holds
Now, we will use Lemma 1; it shows that for amy, A5 €
Qs with A, # A, the quality indicator values differ, i.e., - A B L(A) < I(B)
I(A)) # I(As). Therefore, there must be an injection and (which follows from this)
frqm QS toIR”, the codomqln QI'QIOh'S means there is an I(A) <I(B)= AAAB=A#B
injection from a set of cardinality* = (or greater) to a set o
of cardinality2®. From this absurdity, it follows that such A Smaller . value tells us that an approximation is

a vector of unary quality indicators in combination with a Nt worse than another; we say the pa, <) is
relation» cannot exist. 0 #-compatible?  Furthermore, if an approximation set

strongly dominates another, also ifs value is smaller;

Note that Theorem 2 also holds (i) if we only assume that here, we say thatl,, <) is »->--complete. Taken together
contains an open hypercubelitf* for which I has the de- that means: when_ever strongly dominate#s, we will be
sired property, and (ii) if we consider any other dominance?Pl€ to infer thatd is not worse thari3. In our example, by
relation from Definition 3. However, i/ is finite, we can  100King at the/. values we can conclude tha and O,
easily construct an appropriate unary indicator. are not worse tha@;.

The terms compatibility and completeness address the two
Corollary 1 If Z isfinite, there is a unary quality indicator questions at the beginning of this section and will be used
I and a relation» such that for any approximations sets in the following to characterize and compare indicator-
Ay, Ay € Q1 relation pairs.

2We use the same term as Hansen and Jaszkiewicz (1998)
I(A1) » I(A2) & Ay > Ay here, however, with a slightly different meaning.

Let us go back to the example depicted in Figure 1 and
consider the following unary indicatdg, which is inspired
by concepts presented in (Laumanns et al. 2001).



compatibility completeness

none >> > D> Y ¥ ¥

==+ - - - -
— + ? - - - Z Z
> + ? ? | - - - | -
o + + + + - ? ?
i + + + | + - ?
% + + + + - - -

4.1 >-Compatibility

In order to achieve--compatibility, at least two indicators
are needed as the following theorem shows.

Theorem 3 ConsiderZ = R™ withn > 2 and a unary
quality indicator!. If forall A;, Ay € Q

[(Al) > I(AQ) = A > A

Table 1: Overview of possible compatibility/completeness

combinations. A minus means there is no gdir») that

then[ is a constant function, i.el(Q) = cwith ¢ € R.

is compatible regarding the row-relation and complete re-

garding the column-relation. A plus indicates that such a@roof. Assume there are two approximation sets
pair (I,») is known, while a question mark stands for a 41,4, € Q with I(4;) > I(A4z); consequently,
combination for which it is unclear whether a correspond-A4; > A;. Now considerds € () that is incomparable to

ing indicator-relation pair exists.

Definition 6 (Compatibility and completeness)Let I be

a vector of unary quality indicator§ = (I, Iz, ..., Iy)
and » a corresponding relation in indicator space. Fur-
thermore, consider an arbitrary binary relatiop> on
approximation sets. The paffl,») is denoted as>-
compatiblef either for anyA, B €

I(A)» I(B)= A> B
orforany A, B € Q

I(A)» I(B)= B> A
The pair(I, ») is denoted as>-completef either for any
A, BeQ

A> B=I(A)» I(B)
orforanyA, B € Q

B> A= I(A)» I(B)
We have seen thatl.,<) is ¥-compatible and>-:--
complete. However, it is neithes-compatible (as will
be shown indirectly in Theorem 3 in Section 4.1) mer
complete (as in the above example > O3 butI.(O;) =
I.(09)).

Now, we can ask what combinations of compatibil-
ity and completeness are feasible. Theorem 2 proves
that there does not exist any indicator-relation pair that

is >-compatible andr>-complete at the same time.

both A; and A»; as a consequencé(A4s) < I(As) and
I(A1) < I(As). Therefore,I(A;) < I(As) < I(Ag)
which contradicts the assumption. m]

However, even if we consider two or more indicators, the
use of >>-compatible indicator-relation pairs is restricted
according to Theorem 1: in order to predict dominance
between objective vectors at least as many indicators as
objectives are required. Hence, it is not surprising that—to
our best knowledge—nae>-compatible indicators have
been proposed in the literature; their design, though, is
possible:

e Consider the lind. = {(a,a,...,a) € R"} and let

IF(A) = sup{a€R; {(a,a,...,a)} < A}
IFZ(4) = inf{beR; {(bb,...,b)} > A}

We assume a maximization problem and tiats
bounded, i.e(A) and IX(A) always exists. As
illustrated in Figure 3,/7(A) determines the point
(a,a,...,a) that is closest to and worse that,
and I*(A) gives the point(b, b, ...,b) that is clos-
est to and better thad. If we define the indica-
tor I, = (IF,1%) and the relation> asI(A) »
I,(B) & If(A) > IF(B), then the pai(I,») is
>-compatible.

e Suppose a maximization problem and let

This rules out also other combinations, Table 1 shows o
which. It reveals that the best we can achieve is ei- I; (A) =sup{a € R; V(z1,...,2,) €A : 2z; > a}

ther >>-compatibility without any completeness, -
compatibility in combination with>-completeness.

In the following, we will classify and discuss existing unary

indicators according to three categories:compatibility,
p%-compatibility, and incompatibility, i.e., no compatibility

forl <i{<mnand

70 (4) = 1 if A contains two or more elements
nl 0 else

with any dominance relation. Table 2 summarizes the re-  We see that’?, ..., I¢ describe the closest objec-

sults. In this context, we would also like to point out the

relationships between the dominance relations, e-g;
compatibility implies >-compatibility, ¥*-compatibility
implies#-compatibility, and>-completeness implies >--
completeness.

tive vector that is weakly dominated by all points
in A; I, serves to distinguish between single ob-
jective vectors and larger approximation sets. Let
Io = (IP,...,1I¢,,) and define the relatiow as
I(A) » IL(B)ifandonlyif I°(A) > I9(B) for



z z imation sets we are able to conclude that one is not worse
than the other—provided either is actually better than the
other.

Van Veldhuizen (1999) suggested an indicator, the error ra-
tio IR, thatis nott-compatible but/-compatible: the ra-

e tio of Pareto-optimal objective vectors in the approximation
a— ‘ set. Obviously, if any approximation sdtconsist of only
1 ‘ a single Pareto-optimal point, thdar(A) > Igr(B) for
‘a ‘b 7z, ‘ 2z all B > A;if B contains not only Pareto-optimal points,
= thenlgr(A) < Igpr(B). Therefore(Igg,>) is noti-

Figure 3: Twor>-compatible indicators. On the left hand compatible. However, if we consider just the total number
side, it is depicted how thé;, indicator defines a hyper- (rather than the ratio) of Pareto-optimal points in the ap-
cube around an approximation sét whereIZ(A4) = a proximation set, we obtaipt-compatibility. Nevertheless,
andIZ(A) = b. The right picture is related to thE, in- the power of these indicators is limited because neither is
dicator: for any objective vector in the shaded area we caif! combination with the> relation complete with respect
detect that it is dominated by the approximation4et to any dominance relation.

) _ 4.3 Incompatibility
alll < i < n+ 1. Then, the paiflo,») is >- . o .
compatible; it detects dominance between an approxSection 3 has revealed the difficulties when trying to sep-
imation set and those objective vectors that are domarate the overall quality of approximation sets into distinct

inated by all members of this approximation set (seegoals. Nevertheless, it would be desirable if we could look
Figure 3). at certain aspects such as diversity separately, and accord-

ingly several authors suggested formalizations of specific
Note that both indicators are evm'compatible, but nei- aspects by means of unary indicators. However, we have
ther is complete with regard to any dominance relation.  tg be aware that often these indicators gemerallynei-

_— ther >-compatible nor>-compatible in combination with

4.2 p-Compatibility the > and < relations, which on the other hand does not
As stated above, the unaryndicator isp¢-compatible,and mean that they may not be useful for specific applications.
it is >=>-complete but neither-- nor --complete. That We only have to be careful what to infer from the indicator
is wheneverA == B, we will be able to state thal  values.

is not worse thanB. On the other hand, there are casespne class of indicators that do not allow any conclusions
A - B for which this conclusion cannot be drawn, al- to pe drawn regarding the dominance relationship between
thoughA is actually not worse thaf. The same holds for - approximation sets is represented by the various diversity
the two indicators proposed by Esbensen and Kuh (199Ghdicators (Srinivas and Deb 1994; Schott 1995; Zitzler
and Czyzak and Jaskiewicz (1998). We will not discuss;9g99: peb 2001). If we consider a p&id, B) € Q2 with
these in detail and only remark that the following exam- 4 . B, the indicator value of4 can be less or greater
ple can be used to show that both indicators in combinatiofhan or even equal to the value assignedt¢for the di-

with the < relation are not--complete (nor>-complete):  yersity indicators referenced above). Therefore, these indi-
let A = {(1,3)}, B = {(1,2)}, and the Pareto-optimal ¢ators are neither compatible nor complete with respect to
frontbeP = {(4,4)}. any dominance relation or complement of it.

An indicator that isj#-compatible and>-complete is the  The same holds for the three indicators proposed in (Van
hypervolume indicatof; (Zitzler and Thiele 1998; Zitzler - veldhuizen 1999): overall nondominated vector genera-
1999). It gives the hypervolume of that portion of the ob-tjon, generational distance, and maximum Pareto front er-
jective space that is dominated by an approximatiosset o, The first just gives the number of elements in the
We notice that fromd &> B follows that/y (A) > In(B);  approximation set, and it is obvious that it does not pro-
the reason is thal must contain at least one objective vec- yjge compatibility and completeness. Why this also ap-
tor that is not weakly dominated by, thus, a certain por- pjies to the other two, both distance indicators, will only
tion of the objective space is dominated Bybut not by  he sketched here. Assume a two-dimensional maximiza-
B. This observation implies botf#-compatibility and>-  tion problem for which the Pareto-optimal froRtconsists
completeness: by comparing thg values of two approx-  of the two objective vector&l0, 0) and (0, 10). Now, con-

3Note thatZ has to be bounded, i.e., there must exist a hyper-Sider the three setd = {(5, 5)}_, B = {_(4,_1)7 (1,4)},
cube inR™ that enclose. If this requirement is not fulfilled, it and ¢ = {(0,0). For both distance indicators holds
can be easily achieved by an appropriate transformation. I(B) < I(A) < I(C), butA =~ B => C. Thus, we



[ symbol | relation | name | reference | compatibility | completeness]
Iy, I, > I, | reference line indicator Section 4.1 - -
Io > objective vector indicator Section 4.1 — -
Iy > hypervolume (Zitzler and Thiele 1998) ¥ >
Iw < average best weight combination (Esbensen and Kuh 1996) ¥ -
Ip < distance from reference set (Czyzak and Jaskiewicz 1998 ¥ -
I. < unarye-indicator Definition 5 ¥ =
Ip > number of Pareto points contained Section 4.2 A -
Ier > error ratio (Van Veldhuizen 1999) P -
Icp < chi-square like deviation (Srinivas and Deb 1994) - -
Is < spacing (Schott 1995) - -
Ionva | > overall nondominated vector generationVan Veldhuizen 1999) - -
Iep < generational distance (Van Veldhuizen 1999) - -
Ive < maximum Pareto front error (Van Veldhuizen 1999) - -
Ivs > maximum spread (zZitzler 1999) - -
Ipy < deviation from uniform distribution (Deb 2001) - -

Table 2: Overview of unary indicators discussed in this paper. With respect to compatibility and completeness, not &
relations are listed but only the strongest as, e-g-;compatibility, implies>-compatibility (cf. Section 4).
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