
Comparison of Multiobje
tive Evolutionary Algorithms:Empiri
al Results(Revised Version)E
kart Zitzler1, Kalyanmoy Deb2, and Lothar Thiele11Computer Engineering and Networks Laboratory (TIK)Department of Ele
tri
al EngineeringSwiss Federal Institute of Te
hnology (ETH) Zuri
hCH-8092 Z�uri
h, SwitzerlandE-mail: fzitzler,thieleg�tik.ee.ethz.
h2Kanpur Geneti
 Algorithms Laboratory (KanGAL)Department of Me
hani
al EngineeringIndian Institute of Te
hnology KanpurKanpur, PIN 208 016, IndiaE-mail: deb�iitk.a
.inTIK-Report No. 70Institut f�ur Te
hnis
he Informatik und Kommunikationsnetze, ETH Z�uri
hGloriastrasse 35, ETH-Zentrum, CH{8092 Z�uri
h, SwitzerlandDe
ember 22, 1999Abstra
tIn this paper, we provide a systemati
 
omparison of various evolutionary approa
hesto multiobje
tive optimization using six 
arefully 
hosen test fun
tions. Ea
h test fun
tioninvolves a parti
ular feature that is known to 
ause diÆ
ulty in the evolutionary optimiza-tion pro
ess, mainly in 
onverging to the Pareto-optimal front (e.g., multimodality andde
eption). By investigating these di�erent problem features separately, it is possible topredi
t the kind of problems to whi
h a 
ertain te
hnique is well suited or not. However, in
ontrast to what was suspe
ted beforehand, the experimental results indi
ate a hierar
hyof the algorithms under 
onsideration. Furthermore, the emerging e�e
ts give eviden
ethat the suggested test fun
tions provide suÆ
ient 
omplexity to 
ompare multiobje
tiveoptimizers. Finally, elitism is shown to be an important fa
tor for improving evolutionarymultiobje
tive sear
h.



ForewordThis paper is the revised version of TIK-Report No. 70 whi
h was �rst issued on February12, 1999. The major modi�
ations are:� Se
tion 2: The de�nition of lo
al Pareto optimality was slighty 
hanged.� Se
tion 3: The entire se
tion was restru
tured and reworked.� Se
tion 4: There was a fa
tor missing in the de�nitions of the �rst three and the sixthtest fun
tions.� Se
tion 5: An error in the de�nition of the two metri
s M2 and M�2 was removed.Furthermore, the simulation results have been made available on the internet (
f. Se
tion 9).



1 MotivationEvolutionary algorithms (EAs) have be
ome established as the method at hand to explorethe Pareto-optimal front in multiobje
tive optimization problems that are too 
omplex to besolved by exa
t methods su
h as linear programming and gradient sear
h. This is not onlybe
ause there are hardly any alternatives for sear
hing intra
tably large spa
es for multiplePareto-optimal solutions; due to their inherent parallelism and their 
apability to exploitsimilarities of solutions by re
ombination, they are able to approximate the Pareto-optimalfront in a single optimization run. The numerous appli
ations and the rapidly growing interestin the area of multiobje
tive EAs take this fa
t into a

ount.After the �rst pioneering studies on evolutionary multiobje
tive optimization appearedin the mid-eighties (S
ha�er 1984; S
ha�er 1985; Fourman 1985), a 
ouple of di�erent EAimplementations were proposed in the years 1991{1994 (Kursawe 1991; Hajela and Lin 1992;Fonse
a and Fleming 1993; Horn, Nafpliotis, and Goldberg 1994; Srinivas and Deb 1994).Later, these approa
hes (and variations of them) were su

essfully applied to various mul-tiobje
tive optimization problems (Ishibu
hi and Murata 1996; Cunha, Oliviera, and Covas1997; Valenzuela-Rend�on and Uresti-Charre 1997; Fonse
a and Fleming 1998; Parks andMiller 1998). In re
ent years, some resear
hers have investigated parti
ular topi
s of evolu-tionary multiobje
tive sear
h, su
h as 
onvergen
e to the Pareto-optimal front (Veldhuizenand Lamont 1998a; Rudolph 1998), ni
hing (Obayashi, Takahashi, and Takegu
hi 1998), andelitism (Parks and Miller 1998; Obayashi, Takahashi, and Takegu
hi 1998), while others have
on
entrated on developing new evolutionary te
hniques (Laumanns, Rudolph, and S
hwe-fel 1998; Zitzler and Thiele 1999). For a thorough dis
ussion of evolutionary algorithms formultiobje
tive optimization, the interested reader is referred to (Fonse
a and Fleming 1995;Horn 1997; Veldhuizen and Lamont 1998b; Coello 1999).In spite of this variety, there is a la
k of studies whi
h 
ompare the performan
e anddi�erent aspe
ts of the several approa
hes. Consequently, the question arises, whi
h imple-mentations are suited to whi
h sort of problem and what are the spe
i�
 advantages anddrawba
ks, respe
tively, of di�erent te
hniques.First steps in this dire
tion have been made in both theory and pra
ti
e. On the theoret-i
al side, Fonse
a and Fleming (1995) dis
ussed the in
uen
e of di�erent �tness assignmentstrategies on the sele
tion pro
ess. On the pra
ti
al side, Zitzler and Thiele (1998, 1999) useda NP-hard 0/1 knapsa
k problem to 
ompare several multiobje
tive EAs.In this paper, we provide a systemati
 
omparison of six multiobje
tive EAs, in
luding arandom sear
h strategy as well as a single-obje
tive EA using obje
tive aggregation. The basisof this empiri
al study is formed by a set of well-de�ned, domain-independent test fun
tionswhi
h allow the investigation of independent problem features. We thereby draw upon resultspresented in (Deb 1999), where problem features that may make 
onvergen
e of EAs tothe Pareto-optimal front diÆ
ult are identi�ed and, furthermore, methods of 
onstru
tingappropriate test fun
tions are suggested. The fun
tions 
onsidered here 
over the range of
onvexity, non-
onvexity, dis
rete Pareto fronts, multimodality, de
eption, and biased sear
hspa
es. Hen
e, we are able to systemati
ally 
ompare the approa
hes based on di�erent kindsof diÆ
ulty and to determine more exa
tly where 
ertain te
hniques are advantageous or havetrouble. In this 
ontext, we also examine further fa
tors su
h as population size and elitism.The paper is stru
tured as follows: Se
tion 2 introdu
es key 
on
epts of multiobje
tiveoptimization and de�nes the terminology used in this paper mathemati
ally. We then givea brief overview of the multiobje
tive EAs under 
onsideration with spe
ial emphasis on1



the di�eren
es between them. The test fun
tions, their 
onstru
tion and their 
hoi
e, are thesubje
t of Se
tion 4, whi
h is followed by a dis
ussion about performan
e metri
s to assess thequality of trade-o� fronts. Afterwards, we present the experimental results in Se
tion 6 andinvestigate further aspe
ts like elitism (Se
tion 7) and population size (Se
tion 8) separately.A dis
ussion of the results as well as future perspe
tives are given in the last 
hapter.2 De�nitionsOptimization problems involving multiple, 
on
i
ting obje
tives are often approa
hed byaggregating the obje
tives into a s
alar fun
tion and solving the resulting single-obje
tiveoptimization problem. In 
ontrast, in this study we are 
on
erned with �nding a set of optimaltrade-o�s, the so-
alled Pareto-optimal set. In the following, we formalize this well-known
on
ept and also de�ne the di�eren
e between lo
al and global Pareto-optimal sets.A multiobje
tive sear
h spa
e is partially ordered in the sense that two arbitrary solutionsare related to ea
h other in two possible ways: either one dominates the other or neitherdominates.De�nition 1 Let us 
onsider, without loss of generality, a multiobje
tive minimization prob-lem with m de
ision variables (parameters) and n obje
tives:Minimize y = f(x) = (f1(x); : : : ; fn(x))where x = (x1; : : : ; xm) 2 Xy = (y1; : : : ; yn) 2 Y (1)and where x is 
alled de
ision ve
tor, X parameter spa
e, y obje
tive ve
tor, and Y obje
tivespa
e. A de
ision ve
tor a 2 X is said to dominate a de
ision ve
tor b 2 X (also written asa � b) if and only if 8i 2 f1; : : : ; ng : fi(a) � fi(b) ^9j 2 f1; : : : ; ng : fj(a) < fj(b) (2)Additionally, in this study we say a 
overs b (a � b) if and only if a � b or f(a) = f(b).Based on the above relation, we 
an de�ne nondominated and Pareto-optimal solutions:De�nition 2 Let a 2 X be an arbitrary de
ision ve
tor.1. The de
ision ve
tor a is said to be nondominated regarding a set X 0 � X if and only ifthere is no ve
tor in X 0 whi
h dominates a; formally6 9a0 2 X 0 : a0 � a (3)If it is 
lear within the 
ontext whi
h set X 0 is meant, we simply leave it out.2. The de
ision ve
tor a is Pareto-optimal if and only if a is nondominated regarding X.
2



Pareto-optimal de
ision ve
tors 
annot by improved in any obje
tive without 
ausinga degradation in at least one other obje
tive; they represent, in our terminology, globallyoptimal solutions. However, analogous to single-obje
tive optimization problems there mayalso be lo
al optima whi
h 
onstitute a nondominated set within a 
ertain neighborhood.This 
orresponds to the 
on
epts of global and lo
al Pareto-optimal sets introdu
ed by Deb(1999)1:De�nition 3 Consider a set of de
ision ve
tors X 0 � X.1. The set X 0 is denoted as a lo
al Pareto-optimal set if and only if8a0 2 X 0 :6 9a 2 X : a � a0 ^ jja� a0jj < � ^ jjf(a)� f(a0)jj < Æ (4)where jj � jj is a 
orresponding distan
e metri
 and � > 0, Æ > 0.2. The set X 0 is 
alled a global Pareto-optimal set if and only if8a0 2 X 0 :6 9a 2 X : a � a0 (5)Note that a global Pareto-optimal set does not ne
essarily 
ontain all Pareto-optimal solutions.If we refer to the entirety of the Pareto-optimal solutions, we simply write Pareto-optimalset; the 
orresponding set of obje
tive ve
tors is denoted as Pareto-optimal front.3 Evolutionary Multiobje
tive OptimizationTwo major problems must be addressed when an evolutionary algorithm is applied to multi-obje
tive optimization:1. How to a

omplish �tness assignment and sele
tion, respe
tively, in order to guide thesear
h towards the Pareto-optimal set.2. How to maintain a diverse population in order to prevent premature 
onvergen
e anda
hieve a well distributed trade-o� front.Often, di�erent approa
hes are 
lassi�ed with regard to the �rst issue, where one 
an dis-tinguish between 
riterion sele
tion, aggregation sele
tion, and Pareto sele
tion (Horn 1997).Methods performing 
riterion sele
tion swit
h between the obje
tives during the sele
tionphase. Ea
h time an individual is 
hosen for reprodu
tion, potentially a di�erent obje
tivewill de
ide whi
h member of the population will be 
opied into the mating pool. Aggregationsele
tion is based on the traditional approa
hes to multiobje
tive optimization where the mul-tiple obje
tives are 
ombined into a parameterized single obje
tive fun
tion. The parametersof the resulting fun
tion are systemati
ally varied during the same run in order to �nd a set ofPareto-optimal solutions. Finally, Pareto sele
tion makes dire
t use of the dominan
e relationfrom De�nition 1; Goldberg (1989) was the �rst to suggest a Pareto-based �tness assignmentstrategy.In this study, six of the most salient multiobje
tive EAs are 
onsidered, where for ea
hof the above 
ategories at least one representative was 
hosen. Nevertheless, there are manyother methods that may be under 
onsideration for the 
omparison (
f. (Veldhuizen andLamont 1998b; Coello 1999) for an overview of di�erent evolutionary te
hniques):1A slightly modi�ed de�nition of lo
al Pareto optimality is given here.3



� Among the 
lass of 
riterion sele
tion approa
hes, the Ve
tor Evaluated Geneti
 Algo-rithm (S
ha�er 1984; S
ha�er 1985) has been 
hosen. Although some serious drawba
ksare known (S
ha�er 1985; Fonse
a and Fleming 1995; Horn 1997), this algorithm hasbeen a strong point of referen
e up to now. Therefore, it has been in
luded in thisinvestigation.� The EA proposed by Hajela and Lin (1992) is based on aggregation sele
tion in 
om-bination with �tness sharing (Goldberg and Ri
hardson 1987), where an individual isassessed by summing up the weighted obje
tive values. As weighted-sum aggregationappears still to be widespread due to its simpli
ity, Hajela and Lin's te
hnique has beensele
ted to represent this 
lass of multiobje
tive EAs.� Pareto-based te
hniques seem to be most popular in the �eld of evolutionary multiob-je
tive optimization (Veldhuizen and Lamont 1998b). In parti
ular, the algorithm pre-sented by Fonse
a and Fleming (1993), the Ni
hed Pareto Geneti
 Algorithm (Horn andNafpliotis 1993; Horn, Nafpliotis, and Goldberg 1994), and the Nondominated SortingGeneti
 Algorithm (Srinivas and Deb 1994) appear to have a
hieved the most attentionin the EA literature and have been used in various studies. Thus, they are also 
on-sidered here. Furthermore, a re
ent elitist Pareto-based strategy, the Strength ParetoEvolutionary Algorithm (Zitzler and Thiele 1999), whi
h outperformed four other mul-tiobje
tive EAs on an extended 0/1 knapsa
k problem, is in
luded in the 
omparison.4 Test Fun
tions for Multiobje
tive OptimizersDeb (1999) has identi�ed several features whi
h may 
ause diÆ
ulties for multiobje
tiveEAs in i) 
onverging to the Pareto-optimal front and ii) maintaining diversity within thepopulation. Con
erning the �rst issue, multimodality, de
eption, and isolated optima arewell-known problem areas in single-obje
tive evolutionary optimization. The se
ond issueis important in order to a
hieve a well distributed nondominated front. However, 
ertain
hara
teristi
s of the Pareto-optimal front may prevent an EA from �nding diverse Pareto-optimal solutions: 
onvexity or non-
onvexity, dis
reteness, and non-uniformity. For ea
hof the six problem features mentioned a 
orresponding test fun
tion is 
onstru
ted followingthe guidelines in (Deb 1999). We thereby restri
t ourselves to only two obje
tives, in orderto investigate the simplest 
ase �rst. In our opinion, two obje
tives are suÆ
ient to re
e
tessential aspe
ts of multiobje
tive optimization. Moreover, we do not 
onsider maximizationor mixed minimization/maximization problems.Ea
h of the test fun
tions de�ned below is stru
tured in the same manner and 
onsistsitself of three fun
tions f1; g; h (Deb 1999, p.216):Minimize T (x) = (f1(x1); f2(x))subje
t to f2(x) = g(x2; : : : ; xm)h(f1(x1); g(x2; : : : ; xm))where x = (x1; : : : ; xm) (6)The fun
tion f1 is a fun
tion of the �rst de
ision variable only, g is a fun
tion of the remainingm�1 variables, and the parameters of h are the fun
tion values of f1 and g. The test fun
tionsdi�er in these three fun
tions as well as in the number of variables m and in the values thevariables may take. 4



De�nition 4 We introdu
e six test fun
tions T1; : : : ;T6 that follow the s
heme given in Equa-tion 6:� The test fun
tion T1 has a 
onvex Pareto-optimal front:f1(x1) = x1g(x2; : : : ; xm) = 1 + 9 �Pmi=2 xi=(m� 1)h(f1; g) = 1�pf1=g (7)where m = 30 and xi 2 [0; 1℄. The Pareto-optimal front is formed with g(x) = 1.� The test fun
tion T2 is the non-
onvex 
ounterpart to T1:f1(x1) = x1g(x2; : : : ; xm) = 1 + 9 �Pmi=2 xi=(m� 1)h(f1; g) = 1� (f1=g)2 (8)where m = 30 and xi 2 [0; 1℄. The Pareto-optimal front is formed with g(x) = 1.� The test fun
tion T3 represents the dis
reteness feature; its Pareto-optimal front 
onsistsof several non-
ontiguous 
onvex parts:f1(x1) = x1g(x2; : : : ; xm) = 1 + 9 �Pmi=2 xi=(m� 1)h(f1; g) = 1�pf1=g � (f1=g) sin(10�f1) (9)where m = 30 and xi 2 [0; 1℄. The Pareto-optimal front is formed with g(x) = 1. Theintrodu
tion of the sine fun
tion in h 
auses dis
ontinuity in the Pareto-optimal front.However, there is no dis
ontinuity in the parameter spa
e.� The test fun
tion T4 
ontains 219 lo
al Pareto-optimal fronts and therefore tests for theEA's ability to deal with multimodality:f1(x1) = x1g(x2; : : : ; xm) = 1 + 10(m� 1) +Pmi=2(x2i � 10 
os(4�xi))h(f1; g) = 1�pf1=g (10)where m = 10, x1 2 [0; 1℄ and x2; : : : ; xm 2 [�5; 5℄. The global Pareto-optimal front isformed with g(x) = 1 , the best lo
al Pareto-optimal front with g(x) = 1:25. Note thatnot all lo
al Pareto-optimal sets are distinguishable in the obje
tive spa
e.� The test fun
tion T5 des
ribes a de
eptive problem and distinguishes itself from the othertest fun
tions in that xi represents a binary string:f1(x1) = 1 + u(x1)g(x2; : : : ; xm) = Pmi=2 v(u(xi))h(f1; g) = 1=f1 (11)where u(xi) gives the number of ones in the bit ve
tor xi (unitation),v(u(xi)) = ( 2 + u(xi) if u(xi) < 51 if u(xi) = 5 ) :5



and m = 11, x1 2 f0; 1g30 and x2; : : : ; xm 2 f0; 1g5. The true Pareto-optimal front isformed with g(x) = 10, while the best de
eptive Pareto-optimal front is represented bythe solutions for whi
h g(x) = 11. The global Pareto-optimal front as well as the lo
alones are 
onvex.� The test fun
tion T6 in
ludes two diÆ
ulties 
aused by the non-uniformity of the sear
hspa
e: �rstly, the Pareto-optimal solutions are non-uniformly distributed along the globalPareto front (the front is biased for solutions for whi
h f1(x) is near one); se
ondly, thedensity of the solutions is least near the Pareto-optimal front and highest away from thefront: f1(x1) = 1� exp(�4x1) sin6(6�x1)g(x2; : : : ; xm) = 1 + 9 � ((Pmi=2 xi)=(m� 1))0:25h(f1; g) = 1� (f1=g)2 (12)where m = 10, xi 2 [0; 1℄. The Pareto-optimal front is formed with g(x) = 1 and isnon-
onvex.We will dis
uss ea
h fun
tion in more detail in Se
tion 6, where the 
orresponding Pareto-optimal fronts are visualized as well (Figures 1 to 6).5 Metri
s of Performan
eComparing di�erent optimization te
hniques experimentally always involves the notion of per-forman
e. In the 
ase of multiobje
tive optimization, the de�nition of quality is substantiallymore 
omplex than for single-obje
tive optimization problems, be
ause the optimization goalitself 
onsists of multiple obje
tives:� The distan
e of the resulting nondominated set to the Pareto-optimal front should beminimized.� A good (in most 
ases uniform) distribution of the solutions found is desirable. Theassessment of this 
riterion might be based on a 
ertain distan
e metri
.� The extent of the obtained nondominated front should be maximized, i.e., for ea
hobje
tive a wide range of values should be 
overed by the nondominated solutions.In the literature, some attempts 
an be found to formalize the above de�nition (or partsof it) by means of quantitative metri
s. Performan
e assessment by means of weighted-sumaggregation was introdu
ed by Esbensen and Kuh (1996). Thereby, a setX 0 of de
ision ve
torsis evaluated regarding a given linear 
ombination by determining the minimum weighted-sum of all 
orresponding obje
tive ve
tors of X 0. Based on this 
on
ept, a sample of linear
ombinations is 
hosen at random (with respe
t to a 
ertain probability distribution) andthe minimum weighted-sums for all linear 
ombinations are summed up and averaged. Theresulting value is taken as a measure of quality. A drawba
k of this metri
 is that only the\worst" solution determines the quality value per linear 
ombination. Although several weight
ombinations are used, non-
onvex regions of the trade-o� surfa
e 
ontribute to the qualitymore than 
onvex parts and may, as a 
onsequen
e, dominate the performan
e assessment.Finally, the distribution as well as the extent of the nondominated front is not 
onsidered.6



Another interesting way of performan
e assessment was proposed by Fonse
a and Fleming(1996). Given a set X 0 � X of nondominated solutions, a boundary fun
tion divides theobje
tive spa
e into two regions: the obje
tive ve
tors for whi
h the 
orresponding solutionsare not 
overed by X 0 and the obje
tive ve
tors for whi
h the asso
iated solutions are 
overedby X 0. They 
all this parti
ular fun
tion, whi
h 
an also be seen as the lo
us of the familyof tightest goal ve
tors known to be attainable, the attainment surfa
e. Taking multipleoptimization runs into a

ount, a method is des
ribed to 
ompute a median attainmentsurfa
e by using auxiliary straight lines and sampling their interse
tions with the attainmentsurfa
es obtained. As a result, the samples represented by the median attainment surfa
e
an be assessed relatively by means of statisti
al tests and therefore allow 
omparison ofthe performan
e of two or more multiobje
tive optimizers. A drawba
k of this approa
h isthat it remains un
lear how the quality di�eren
e 
an be expressed, i.e., how mu
h betterone algorithm is than another. However, Fonse
a and Fleming des
ribe ways of meaningfulstatisti
al interpretation in 
ontrast to the other studies 
onsidered here, and furthermore,their methodology seems to be well suited for visualization of the out
omes of several runs.In the 
ontext of investigations on 
onvergen
e to the Pareto-optimal front, some authors(Rudolph 1998; Veldhuizen and Lamont 1998a) have 
onsidered the distan
e of a given set tothe Pareto-optimal set in the same way as the fun
tion M1 de�ned below. The distributionwas not taken into a

ount, be
ause the fo
us was not on this matter. However, in 
omparativestudies distan
e alone is not suÆ
ient for performan
e evaluation, sin
e extremely di�erentlydistributed fronts may have the same distan
e to the Pareto-optimal front.Two 
omplementary metri
s of performan
e were presented in (Zitzler and Thiele 1998;Zitzler and Thiele 1999). On the one hand, the size of the dominated area in the obje
tivespa
e is taken under 
onsideration; on the other hand, a pair of nondominated sets is 
omparedby 
al
ulating the fra
tion of ea
h set that is 
overed by the other set. The area 
ombines allthree 
riteria (distan
e, distribution, and extent) into one, and therefore sets di�ering in morethan one 
riterion may not be distinguished. The se
ond metri
 is in some way similar to the
omparison methodology proposed in (Fonse
a and Fleming 1996). It 
an be used to showthat the out
omes of an algorithm dominate the out
omes of another algorithm, although,it does not tell how mu
h better it is.2 We give its de�nition here, be
ause it is used in theremainder of this paper.De�nition 5 Let X 0;X 00 � X be two sets of de
ision ve
tors. The fun
tion C maps theordered pair (X 0;X 00) to the interval [0; 1℄:C(X 0;X 00) := jfa00 2 X 00;9a0 2 X 0 : a0 � a00gjjX 00j (13)The value C(X 0;X 00) = 1 means that all solutions inX 00 are dominated by or equal to solutionsin X 0. The opposite, C(X 0;X 00) = 0, represents the situation when none of the solutions in X 00are 
overed by the set X 0. Note that both C(X 0;X 00) and C(X 00;X 0) have to be 
onsidered,sin
e C(X 0;X 00) is not ne
essarily equal to 1� C(X 00;X 0).In summary, it may be said that performan
e metri
s are hard to de�ne and probablyit will not be possible to de�ne a single metri
 whi
h allows for all 
riteria in a meaningfulway. Along with that problem, the statisti
al interpretation asso
iated with a performan
e
omparison is rather diÆ
ult and still needs to be answered, sin
e multiple signi�
an
e testsare involved and thus tools from analysis of varian
e may be required.2Re
ently, an alternative metri
 has been proposed in (Zitzler 1999) in order to over
ome this problem.7



In this study, we have 
hosen a visual presentation of the results together with the appli-
ation of the metri
 from De�nition 5. The reason for this is that we would like to investigatei) whether test fun
tions 
an adequately test spe
i�
 aspe
ts of ea
h multiobje
tive algorithmand ii) whether any visual hierar
hy of the 
hosen algorithms exists. However, for a deeperinvestigation of some of the algorithms (whi
h is the subje
t of future work), we suggest thefollowing metri
s whi
h allow assessment of ea
h of the 
riteria listed at the beginning of thisse
tion separately.De�nition 6 Given a set of pairwise nondominating de
ision ve
tors X 0 � X, a neighbor-hood parameter � > 0 (to be 
hosen appropriately), and a distan
e metri
 jj � jj. We introdu
ethree fun
tions to assess the quality of X 0 regarding the parameter spa
e:1. The fun
tion M1 gives the average distan
e to the Pareto-optimal set X � X:M1(X 0) := 1jX 0j Xa02X0 minfjja0 � ajj;a 2 Xg (14)2. The fun
tionM2 takes the distribution in 
ombination with the number of nondominatedsolutions found into a

ount:M2(X 0) := 1jX 0 � 1j Xa02X0 jfb0 2 X 0; jja0 � b0jj > �gj (15)3. The fun
tion M3 
onsiders the extent of the front des
ribed by X 0:M3(X 0) :=vuut mXi=1maxfjja0i � b0ijj;a0;b0 2 X 0g (16)Analogously, we de�ne three metri
s M�1, M�2, and M�3 on the obje
tive spa
e. Let Y 0; Y � Ybe the sets of obje
tive ve
tors that 
orrespond to X 0 and X respe
tively, and �� > 0 and jj � jj�as before: M�1(Y 0) := 1jY 0j Xp02Y 0 minfjjp0 � pjj�;p 2 Y g (17)M�2(Y 0) := 1jY 0 � 1j Xp02Y 0 jfq0 2 Y 0; jjp0 � q0jj� > ��gj (18)M�3(Y 0) :=vuut nXi=1maxfjjp0i � q0ijj�;p0;q0 2 Y 0g (19)While M1 and M�1 are intuitive, M2 and M3 (respe
tively M�2 and M�3) need furtherexplanation. The distribution metri
s give a value within the interval [0; jX 0j℄ ([0; jY 0j℄) whi
hre
e
ts the number of �-ni
hes (��-ni
hes) in X 0 (Y 0). Obviously, the higher the value thebetter the distribution for an appropriate neighborhood parameter (e.g., M�2(Y 0) = jY 0jmeans that for ea
h obje
tive ve
tor there is no other obje
tive ve
tor within ��-distan
e toit). The fun
tions M3 and M�3 use the maximum extent in ea
h dimension to estimate therange to whi
h the fronts spreads out. In the 
ase of two obje
tives, this equals the distan
eof the two outer solutions. 8



6 Comparison of Di�erent Evolutionary Approa
hes6.1 MethodologyWe 
ompare eight algorithms on the six proposed test fun
tions:1. RAND: A random sear
h algorithm.2. FFGA: Fonse
a's and Fleming's multiobje
tive EA (1993).3. NPGA: The Ni
hed Pareto Geneti
 Algorithm (Horn, Nafpliotis, and Goldberg 1994).4. HLGA: Hajela's and Lin's weighted-sum based approa
h (1992).5. VEGA: Ve
tor Evaluated Geneti
 Algorithm (S
ha�er 1985).6. NSGA: The Nondominated Sorting Geneti
 Algorithm (Srinivas and Deb 1994).7. SOEA: A single-obje
tive evolutionary algorithm using weighted-sum aggregation.8. SPEA: The Strength Pareto Evolutionary Algorithm (Zitzler and Thiele 1999).The multiobje
tive EAs as well as RAND were exe
uted 30 times on ea
h test problem, wherethe population was monitored for nondominated solutions and the resulting nondominatedset was taken as the out
ome of one optimization run. Here, RAND serves as an additionalpoint of referen
e and randomly generates a 
ertain number of individuals per generation,a

ording to the rate of 
rossover and mutation (but neither 
rossover and mutation norsele
tion are performed). Hen
e, the number of �tness evaluations was the same as for theEAs. In 
ontrast, 100 simulation runs were 
onsidered in 
ase of SOEA, ea
h run optimizingtowards another randomly 
hosen linear 
ombination of the obje
tives. The nondominatedsolutions among all solutions generated in the 100 runs form the trade-o� front a
hieved bySOEA on a parti
ular test fun
tion.Independent of the algorithm and the test fun
tion, ea
h simulation run was 
arried outusing the following parameters:Number of generations : 250Population size : 100Crossover rate : 0.8Mutation rate : 0.01Ni
hing parameter �share : 0.48862Domination pressure tdom : 10The ni
hing parameter was 
al
ulated using the guidelines given in (Deb and Goldberg 1989)assuming the formation of ten independent ni
hes. Sin
e NSGA uses genotypi
 �tness sharingon T5, a di�erent value �share = 34 was 
hosen for this parti
ular 
ase. Con
erning NPGA,the re
ommended value for tdom = 10% of the population size was taken (Horn and Nafpliotis1993). Furthermore, for reasons of fairness SPEA ran with a population size of 80 where theexternal nondominated set was restri
ted to 20.Regarding the implementations of the algorithms, one 
hromosome was used to en
ode them parameters of the 
orresponding test problem. Ea
h parameter is represented by 30 bits;the parameters x2; : : : ; xm only 
omprise 5 bits for the de
eptive fun
tion T5. Moreover, all9



approa
hes ex
ept FFGA were realized using binary tournament sele
tion with repla
ement,in order to avoid e�e
ts 
aused by di�erent sele
tion s
hemes. Furthermore, sin
e �tnesssharing may produ
e 
haoti
 behavior in 
ombination with tournament sele
tion, a slightlymodi�ed method is in
orporated here, named 
ontinuously updated sharing (Oei, Goldberg,and Chang 1991). As FFGA requires a generational sele
tion me
hanism, sto
hasti
 universalsampling was used in the FFGA implementation.6.2 Simulation ResultsIn Figures 1 to 6, the nondominated fronts a
hieved by the di�erent algorithms are visualized.Per algorithm and test fun
tion, the out
omes of the �rst �ve runs were uni�ed, and then thedominated solutions were removed from the union set; the remaining points are plotted in the�gures. Also shown are the Pareto-optimal fronts (lower 
urves) as well as additional referen
e
urves (upper 
urves). The latter 
urves allow a more pre
ise evaluation of the obtained trade-o� fronts and were 
al
ulated by adding 0:1 � jmaxff2(x)g �minff2(x)gj to the f2 values ofthe Pareto-optimal points. The spa
e between Pareto-optimal and referen
e fronts representsabout 10% of the 
orresponding obje
tive spa
e. However, the 
urve resulting for the de
eptivefun
tion T5 is not appropriate for our purposes, sin
e it lies above the fronts produ
ed by therandom sear
h algorithm. Instead, we 
onsider all solutions with g(x) = 10 � 2, i.e., for whi
hthe parameters are set to the de
eptive attra
tors (v(u(xi)) = 2 for x2; : : : ; x11).In addition to the graphi
al presentation, the di�erent algorithms were assessed in pairsusing the C metri
 from De�nition 5. For an ordered algorithm pair (A1; A2), there is a sampleof 30 C values a

ording to the 30 runs performed. Ea
h value is 
omputed on the basis ofthe nondominated sets a
hieved by A1 and A2 with the same initial population. Here, boxplots are used to visualize the distribution of these samples (Figure 7). A box plot 
onsists ofa box summarizing 50% of the data. The upper and lower ends of the box are the upper andlower quartiles, while a thi
k line within the box en
odes the median. Dashed appendagessummarize the spread and shape of the distribution.3 Furthermore, the short
ut REFS inFigure 7 stands for referen
e set and represents for ea
h test fun
tion a set of 100 equidistantpoints whi
h are uniformly distributed on the 
orresponding referen
e 
urve.Generally, the simulation results prove that all multiobje
tive EAs do better than therandom sear
h algorithm. However, the box plots reveal that HLGA, NPGA, and FFGA donot always 
over the randomly 
reated trade-o� front 
ompletely. Furthermore, it 
an beobserved that NSGA 
learly outperforms the other non-elitist multiobje
tive EAs regardingboth distan
e to the Pareto-optimal front and distribution of the nondominated solutions.This 
on�rms the results presented in (Zitzler and Thiele 1998). Furthermore, it is remarkablethat VEGA performs well 
ompared to NPGA and FFGA, although some serious drawba
ks ofthis approa
h are known (Fonse
a and Fleming 1995). The reason for this might be that we
onsider the o�-line performan
e here in 
ontrast to other studies whi
h examine the on-lineperforman
e (Horn and Nafpliotis 1993; Srinivas and Deb 1994). On-line performan
e meansthat only the nondominated solutions in the �nal population are 
onsidered as the out
ome,while o�-line performan
e takes the solutions nondominated among all solutions generatedduring the entire optimization run into a

ount. Finally, the best performan
e is provided bySPEA, whi
h makes expli
it use of the 
on
ept of elitism. Apart from T5, it even outperformsSOEA, in spite of substantially lower 
omputational e�ort and although SOEA uses an elitist3Note that outside values are not plotted in Figure 7 in order to prevent overloading of the presentation.10
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Figure 7: Box plots based on the C metri
. Ea
h re
tangle 
ontains six box plots representingthe distribution of the C values for a 
ertain ordered pair of algorithms; the leftmost box plotrelates to T1, the rightmost to T6. The s
ale is 0 at the bottom and 1 at the top per re
tangle.Furthermore, ea
h re
tangle refers to algorithm A asso
iated with the 
orresponding row andalgorithm B asso
iated with the 
orresponding 
olumn and gives the fra
tion of B 
overedby A (C(A;B)). Consider, for instan
e, the top right box, whi
h represents the fra
tion ofsolutions in the referen
e sets 
overed by the nondominated sets produ
ed by the randomsear
h algorithm. For ea
h test fun
tion and ea
h optimization run, RAND 
overed 0% of the
orresponding referen
e set.
14



strategy as well. This observation leads to the question of whether elitism would in
reasethe performan
e of the other multiobje
tive EAs. We will investigate this matter in the nextse
tion.Considering the di�erent problem features separately, 
onvexity seems to 
ause the leastamount of diÆ
ulty for the multiobje
tive EAs. All algorithms evolved reasonably distributedfronts, although there was a di�eren
e in the distan
e to the Pareto-optimal set. On thenon-
onvex test fun
tion T2, however, HLGA, VEGA, and SOEA have diÆ
ulties �nding inter-mediate solutions, as linear 
ombinations of the obje
tives tend to prefer solutions strong inat least one obje
tive (Fonse
a and Fleming 1995, p.4). Pareto-based algorithms have advan-tages here, but only NSGA and SPEA evolved a suÆ
ient number of nondominated solutions.In the 
ase of T3 (dis
reteness), HLGA and VEGA are superior to both FFGA and NPGA. Whilethe fronts a
hieved by the former 
over about 25% of the referen
e set on average, the latter
ome up with 0% 
overage. Among the 
onsidered test fun
tions, T4 and T5 seem to be thehardest problems, sin
e none of the algorithms was able to evolve a global Pareto-optimalset. The results on the multimodal problem indi
ate that elitism is helpful here; SPEA is theonly algorithm whi
h found a widely distributed front. Remarkable is also that NSGA andVEGA outperform SOEA on T4. Again, the 
omparison with the referen
e set reveals, thatHLGA and VEGA (100% 
overage) surpass NPGA (50% 
overage) and FFGA (0% 
overage).Con
erning the de
eptive fun
tion, SOEA is best, followed by SPEA and NSGA. Among theremaining EAs, VEGA appears to be preferable here, 
overing about 20% of the referen
eset, while the others 
over 0% in all runs. Finally, it 
an be observed that the biased sear
hspa
e together with the non-uniform represented Pareto-optimal front (T6) makes it diÆ
ultfor the EAs to evolve a well-distributed nondominated set. This also a�e
ts the distan
e tothe global optimum, as even the fronts produ
ed by NSGA do not 
over the points in thereferen
e set.Finally, it must be noted that the in
uen
e of the sele
tion s
heme in 
ombination withthe mutation rate has not been investigated here. This mainly 
on
erns FFGA whi
h uses adi�erent sele
tion me
hanism than the other EAs under 
onsideration and may provide betterperforman
e with lower mutation rates.7 Elitism in Multiobje
tive Sear
hSPEA showed the best performan
e among the algorithms under 
onsideration for the givenparameter settings. As it is the only method whi
h expli
itly makes use of the 
on
ept ofelitism, the question arises whether elitism is the reason for this gap in performan
e andwhether the other EAs 
an be improved by the in
orporation of elitism. We will brie
ydis
uss this issue in the following.As opposed to single-obje
tive optimization, where the best solution is always 
opied intothe next population, the in
orporation of elitism in multiobje
tive EAs is substantially more
omplex. Instead of one best solution, we have here an elite set whose size 
an be 
onsiderable
ompared to the population. This fa
t involves two questions whi
h must be answered in this
ontext:� Population =) Elite Set:Whi
h solutions are kept for how long in the elite set?� Elite Set =) Population: 15



When and how are whi
h members of the elite set re-inserted into the population?Often used is the 
on
ept of maintaining an external set of solutions whi
h are nondomi-nated among all individuals generated so far. In ea
h generation, a 
ertain per
entage of thepopulation is �lled up or repla
ed by members of the external set|these members are eithersele
ted at random (Ishibu
hi and Murata 1996) or a

ording to other 
riteria, su
h as theperiod that an individual has stayed in the set (Parks and Miller 1998). Another promisingelitism approa
h provides the so-
alled (�+�) sele
tion mainly used in the area of evolution-ary strategies (B�a
k 1996), where parents and o�spring 
ompete against ea
h other. Rudolph(1998) examines a simpli�ed version of a multiobje
tive EA originally presented in (Kursawe1991) whi
h is based on (1+1) sele
tion.In this study, the elitism me
hanism proposed in (Zitzler and Thiele 1999) was generalizedand implemented in FFGA, NPGA, HLGA, VEGA, and NSGA as follows: Let P denote the 
ur-rent population of size N and P a se
ond, external population whi
h keeps the nondominatedsolutions found so far; the size of P is restri
ted to N .Step 1: Generate the initial population P and set P = ;.Step 2: Set P 0 = P + P (multi-set union) and perform �tness assignment on the extendedpopulation P 0 of size N 0 = N +N .Step 3: Update external population by 
opying all nondominated members of P to P andafterwards removing double or dominated individuals from P .Step 4: If jP j > N then 
al
ulate redu
ed nondominated set Pr of size N by 
lustering andset P = Pr.Step 5: Sele
t N individuals out of the N 0 individuals in P 0 and perform 
rossover andmutation to 
reate the next population P 00.Step 6: Substitute P by P 00 and go to Step 2 if the maximum number of generations is notrea
hed.The elitism variants of the algorithms are marked by an asterisk in order to distinguish themfrom the te
hniques originally proposed by the 
orresponding authors. Note that the 
luster-ing pro
edure in Step 4 requires a distan
e metri
. In 
ase of NSGA�, the phenotypi
 distan
eon the parameter spa
e was 
onsidered, while the other algorithms used the phenotypi
 dis-tan
e on the obje
tive spa
e.The results for T1 and T2 are shown in Figures 8 and 9.4 Obviously, elitism is helpfulon these two fun
tions, although the visual presentation has to be interpreted with 
are asonly �ve runs are 
onsidered. For instan
e, NSGA� and SPEA seem to perform equally wellhere using those parti
ular parameter settings. Moreover, the �gures indi
ate that elitism 
aneven help multiobje
tive EAs to surpass the performan
e of a weighted-sum single-obje
tiveEA in spite of signi�
antly lower 
omputational e�ort. However, both test fun
tions andthe metri
 used are not suÆ
ient here to also 
ompare the elitist variants with ea
h other.Testing di�erent elitist strategies and di�erent elitist multiobje
tive EAs on more diÆ
ulttest fun
tions will be the subje
t of future work.4The experiments were performed as des
ribed in Se
tion 6; however, N was set to 80 and N to 20, similarto SPEA. 16
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Figure 8: Results on the test fun
tion T1 using elitism.
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C(A�; A) FFGA NPGA HLGA VEGA NSGA

C(A;A�)Figure 10: Box plots 
omparing ea
h non-elitism algorithm A with its elitism-variant A�.Nevertheless, we have 
ompared ea
h algorithm with its elitist variant based on the Cmetri
. As 
an be seen in Figure 10, elitism appears to be an important fa
tor to improveevolutionary multiobje
tive optimization. Only in one 
ase (NSGA on the de
eptive problem)was the performan
e of the elitist variant worse than the non-elitist version. Investigation ofthis matter will also be an important part of an elitism study.8 In
uen
e of the Population SizeOn two test fun
tions (T4 and T5), none of the algorithms under 
onsideration was able to �nda global Pareto-optimal set regarding the 
hosen parameters. Therefore, several runs wereperformed in order to investigate the in
uen
e of the population size as well as the maximumnumber of generations 
onverging towards the Pareto-optimal front.In Figures 11 and 12, the out
omes of multiple NSGA runs are visualized. On the de
eptivetest fun
tion T5, NSGA found a subset of the globally optimal solutions using a population sizeof 1000. In 
ontrast, T4 seems to be a diÆ
ult test problem, sin
e even a population size of10000 was not suÆ
ient to 
onverge to the optimal trade-o� front after 250 generations. Thisdid also not 
hange when the maximum number of generations was in
reased substantially(10000). In the later 
ase, the resulting front was (using a population size of 500) almostidenti
al to the one a
hieved by NSGA� running 1000 generations. However, the in
orporationof elitism �nally enabled NSGA to �nd a global Pareto-optimal set after 10000 generations.To sum up, one may say that the 
hoi
e of the population size strongly in
uen
es the EA's
apability to 
onverge towards the Pareto-optimal front. Obviously, small populations do notprovide enough diversity among the individuals. In
reasing the population size, however, doesnot automati
ally yield an in
rease in performan
e, as 
an be observed with the multimodalfun
tion. The same holds for the number of generations to be simulated. Elitism, on theother hand, seems to be an appropriate te
hnique to prevent premature 
onvergen
e. Evenafter 1000 generations, better solutions, and �nally Pareto-optimal solutions, evolved withT4.9 Con
lusionsWe have 
arried out a systemati
 
omparison of several multiobje
tive EAs on six di�erenttest fun
tions. Major results are: 18
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Figure 11: Comparison of di�erent population sizes on the test fun
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� The suggested test fun
tions provide suÆ
ient 
omplexity to 
ompare di�erent multi-obje
tive optimizers. Multimodality and de
eption seem to 
ause the most diÆ
ultyfor evolutionary approa
hes. However, non-
onvexity is also a problem feature whi
hmainly weighted-sum based algorithms appear to have problems with.� For the 
hosen test problems and parameter settings, a 
lear hierar
hy of algorithmsemerges regarding the distan
e to the Pareto-optimal front in des
ending order of merit:1. SPEA (Zitzler and Thiele 1999).2. NSGA (Srinivas and Deb 1994).3. VEGA (S
ha�er 1985).4. HLGA (Hajela and Lin 1992)5. NPGA (Horn, Nafpliotis, and Goldberg 1994).6. FFGA (Fonse
a and Fleming 1993).While there is a 
lear performan
e gap between SPEA and NSGA as well as betweenNSGA and the remaining algorithms, the fronts a
hieved by VEGA, HLGA, NPGA, andFFGA are rather 
lose together. However, the results indi
ate that VEGA might beslightly superior to the other three EAs, while NPGA a
hieves fronts 
loser to the globaloptimum as FFGA. Moreover, it seems that VEGA and HLGA have diÆ
ulties evolvingwell-distributed trade-o� fronts on the non-
onvex fun
tion. Nevertheless, the situationmay be di�erent for other parameter settings and other test problems.� Elitism is an important fa
tor in evolutionary multiobje
tive optimization. On theone hand, this statement is supported by the fa
t that SPEA i) 
learly outperforms allalgorithms on �ve of the six test fun
tions and ii) is the only method among the onesunder 
onsideration whi
h in
orporates elitism as a 
entral part of the algorithm. Onthe other hand, the performan
e of the other algorithms improved signi�
antly whenSPEA's elitist strategy was in
luded (
f. Figure 10). Preliminary results indi
ate thatNSGA with elitism equals the performan
e of SPEA.However, it also has to be mentioned that in 
ertain situations, e.g., when preferen
einformation is in
luded in the �tness assignment pro
ess and the preferen
es 
hangeover time, elitism may have its drawba
ks. This issue has not been 
onsidered here.This study forms a good basis to 
ombine promising aspe
ts of di�erent algorithms intoa new approa
h that shows good performan
e on all test problems. The experimental resultssuggest that su
h an algorithm may be 
onstru
ted, where probably the nondominated sorting
lassi�
ation as well as elitism play a major role. Several issues must be addressed, rangingfrom the question of how elitism is implemented most e�e
tively to the problem of whetherdistan
e metri
s should operate on the parameter spa
e or the obje
tive spa
e. In this 
ontext,the suggested performan
e metri
s 
ould be useful to 
ompare te
hniques quantitatively,allowing a more a

urate assessment than the C metri
 used here.Finally, authors who are interested in 
omparing the performan
e of their own algorithmswith those 
onsidered here 
an download the simulation results from the following internetsite: http://www.tik.ee.ethz.
h/�zitzler/testdata.html.20
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