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IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION (PREPRINT) 1Multiobjective Evolutionary Algorithms:A Comparative Case Study andthe Strength Pareto ApproachEckart Zitzler and Lothar ThieleAbstract| Evolutionary algorithms (EAs) are often well-suited for optimization problems involving several, oftencon
icting objectives. Since 1985, various evolutionary ap-proaches to multiobjective optimization have been devel-oped that are capable of searching for multiple solutionsconcurrently in a single run. However, the few compara-tive studies of di�erent methods presented up to now re-main mostly qualitative and are often restricted to a fewapproaches. In this paper, four multiobjective EAs arecompared quantitatively where an extended 0/1 knapsackproblem is taken as a basis. Furthermore, we introducea new evolutionary approach to multicriteria optimization,the Strength Pareto EA (SPEA), that combines several fea-tures of previous multiobjective EAs in a unique manner. Itis characterized by (a) storing nondominated solutions ex-ternally in a second, continuously updated population, (b)evaluating an individual's �tness dependent on the num-ber of external nondominated points that dominate it, (c)preserving population diversity using the Pareto dominancerelationship, and (d) incorporating a clustering procedurein order to reduce the nondominated set without destroyingits characteristics. The proof-of-principle results obtainedon two arti�cial problems as well as a larger problem, thesynthesis of a digital hardware-software multiprocessor sys-tem, suggest that SPEA can be very e�ective in samplingfrom along the entire Pareto-optimal front and distributingthe generated solutions over the trade-o� surface. More-over, SPEA clearly outperforms the other four multiobjec-tive EAs on the 0/1 knapsack problem.Keywords| Multiobjective optimization, Pareto optima-lity, evolutionary algorithm, knapsack problem, niching,clustering. I. IntroductionMANY real-world problems involve simultaneous opti-mization of several incommensurable and often com-peting objectives. Often, there is no single optimal solu-tion, but rather a set of alternative solutions. These solu-tions are optimal in the wider sense that no other solutionsin the search space are superior to them when all objec-tives are considered. They are known as Pareto-optimalsolutions.Consider, for example, the design of a complex hard-ware/software system. An optimal design might be anarchitecture that minimizes cost and power consump-tion while maximizing the overall performance. How-ever, these goals are generally con
icting: one architec-ture may achieve high performance at high cost, an al-ternative low-cost architecture might considerably increasepower consumption|none of these solutions can be saidThis work was supported by the Swiss National Science Foundation.The authors are with the Computer Engineering and Networks Lab-oratory (TIK), Swiss Federal Institute of Technology (ETH), Zurich,Switzerland. (e-mail: fzitzler, thieleg@tik.ee.ethz.ch).

to be superior if we do not include preference information(e.g., a ranking of the objectives). Thus, if no such informa-tion is available, it may be useful to have knowledge aboutthose alternative architectures. A tool exploring the designspace for Pareto-optimal solutions in reasonable time canessentially aid the decision maker to arrive at a �nal design.Evolutionary algorithms (EAs) seem to be particularlysuited for this task because they process a set of solutionsin parallel, possibly exploiting similarities of solutions byrecombination. Some researchers suggest that multiobjec-tive search and optimization might be a problem area whereEAs do better than other blind search strategies [1][2]. Al-though this statement must be quali�ed with regard to the\no free lunch" theorems [3], up to now there are few if anyalternatives to EA-based multiobjective optimization [4].Since the mid-1980s, there has been a growing interestin solving multicriteria optimization problems using evo-lutionary approaches. In the meantime, several multiob-jective EAs are available that are capable of searching formultiple Pareto-optimal solutions concurrently in a singlerun. They di�er mainly in the �tness assignment, but thequestion of which of these methods is better on what type ofproblem is mostly unsettled. The few comparative studiesthat have been published up to now remain mostly qualita-tive and are often restricted to a few algorithms. Therefore,extensive quantitative comparisons are needed in order toassess the performance of the EAs in a greater context.Previous e�ort in this direction has been reported in [5].In the present study, we provide a comparison of �vemulticriteria EAs, four previously existing and one new, bysolving a multiobjective 0/1 knapsack problem. Thereby,two complementary quantitative measures are consideredin order to assess the performance of the algorithms con-cerning the trade-o� surfaces produced. A random searchstrategy as well as a single-objective EA serve as addi-tional points of reference. The Strength Pareto Evolution-ary Algorithm (SPEA), the new multiobjective approachproposed in this paper, has been developed on the basisof a comparative study previously carried out [5]; it in-tegrates established techniques used in existing EAs in asingle unique algorithm. We show that SPEA can have ad-vantages over the other algorithms under consideration inconvergence to the Pareto-optimal front.The paper is organized as follows. Section II introduceskey concepts used in the �eld of evolutionary multicriteriaoptimization and gives an overview of the multiobjectiveEAs considered in this investigation. The comparison of
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IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION (PREPRINT)the four multiobjective EAs on the 0/1 knapsack problemis the subject of Section III, which itself is divided intothree parts: description of the test problem, methodologyof the comparison, and experimental results. Section IV isdevoted to SPEA and describes both underlying principlesand the application to three problems (Scha�er's f2, knap-sack problem, and system-level synthesis). The last sectiono�ers concluding remarks and future perspectives.II. Multiobjective Optimization UsingEvolutionary AlgorithmsA. De�nitionsA general multiobjective optimization problem can bedescribed as a vector function f that maps a tuple of mparameters (decision variables) to a tuple of n objectives.Formally:min./max. y = f(x) = (f1(x); f2(x); : : : ; fn(x))subject to x = (x1; x2; : : : ; xm) 2 Xy = (y1; y2; : : : ; yn) 2 Y (1)where x is called the decision vector, X is the parame-ter space, y is the objective vector, and Y is the objectivespace.1The set of solutions of a multiobjective optimizationproblem consists of all decision vectors for which the cor-responding objective vectors cannot be improved in anydimension without degradation in another|these vectorsare known as Pareto optimal. Mathematically, the conceptof Pareto optimality is as follows: Assume, without loss ofgenerality, a maximization problem and consider two deci-sion vectors a; b 2 X . Then, a is said to dominate b (alsowritten as a � b) i�8i 2 f1; 2; : : : ; ng : fi(a) � fi(b) ^9j 2 f1; 2; : : : ; ng : fj(a) > fj(b) (2)Additionally, in this study a is said to cover b (a � b) i�a � b or f(a) = f(b). All decision vectors which are notdominated by any other decision vector of a given set arecalled nondominated regarding this set. If it is clear fromthe context which set is meant, we simply leave it out. Thedecision vectors that are nondominated within the entiresearch space are denoted as Pareto optimal and constitutethe so-called Pareto-optimal set or Pareto-optimal front.B. Fitness Assignment StrategiesIn their excellent review of evolutionary approaches tomultiobjective optimization, Fonseca and Fleming [1] cat-egorize several multicriteria EAs and compare di�erent �t-ness assignment strategies. In particular, they distinguishplain aggregating approaches, population-based nonParetoapproaches, and Pareto-based approaches.Aggregation methods combine the objectives into ahigher scalar function that is used for �tness calculation.1The de�nitions and terms presented in this section correspond tothe mathematical formulations most widespread in multiobjective EAliterature (e.g., [6][1]). For more detailed information, we refer to[7][8].

Scalarization is mandatory when applying an EA, but ag-gregation approaches have the advantage of producing onesingle solution. On the other hand, de�ning the goal func-tion in this way requires profound domain knowledge that isoften not available. Popular aggregation methods are theweighted-sum approach, target vector optimization, andthe method of goal attainment [1][6]. Nevertheless, pureaggregation methods are not considered here because theyare not designed for �nding a family of solutions.Population-based nonPareto approaches, however, areable to evolve multiple nondominated solutions concur-rently in a single simulation run. By changing the selec-tion criterion during the reproduction phase, the search isguided in several directions at the same time. Often, frac-tions of the mating pool are selected according to one of then objectives [9][10]. Other nonPareto algorithms use multi-ple linear combinations of the objectives in parallel [11][12].Pareto-based �tness assignment was �rst proposedin [13]. All approaches of this type explicitly use Paretodominance in order to determine the reproduction proba-bility of each individual. While nonPareto EAs are oftensensitive to the nonconvexity of Pareto-optimal sets, thisis not the case for Pareto-based EAs [1].Finally, some multiobjective EAs also make use of combi-nations of the presented �tness assignment strategies (e.g.,[14][15]).C. Multimodal Optimization and Preservation of DiversityWhen we consider the case of �nding a set of nondomi-nated solutions rather than a single-point solution, multi-objective EAs have to perform a multimodal search thatsamples the Pareto-optimal set uniformly. Unfortunately,a simple (elitist) EA tends to converge towards a singlesolution and often loses solutions due to three e�ects [16]:selection pressure, selection noise, and operator disruption.To overcome this problem, several methods have been de-veloped that can be divided into niching techniques andnon-niching techniques [16]. Both types aim at preservingdiversity in the population (and therefore try to preventfrom premature convergence), but in addition niching tech-niques are characterized by their capability of promotingthe formulation and maintenance of stable subpopulations(niches).Fitness sharing [17] is used most frequently, which is aniching technique based on the idea that individuals in aparticular niche have to share the available resources. Themore individuals are located in the neighborhood of a cer-tain individual, the more its �tness value is degraded. Theneighborhood is de�ned in terms of a distance measured(i; j) and speci�ed by the so-called niche radius �share.Depending on whether the distance function d(i; j) oper-ates on the genotypes or the phenotypes, one distinguishesbetween genotypic sharing and phenotypic sharing; pheno-typic sharing can be performed on the decision vectors orthe objective vectors. Currently, most multiobjective EAsimplement �tness sharing (e.g., [11][14][18][6][15][19][20]).Among the non-niching techniques, restricted mating isthe most common in multicriteria function optimization.



ZITZLER AND THIELE: MULTIOBJECTIVE EVOLUTIONARY ALGORITHMS|COMPARISON AND STRENGTH PARETO APPROACH 3Basically, two individuals are allowed to mate only if theyare within a certain distance (given by the parameter�mate) to each other. This mechanismmay avoid the forma-tion of lethal individuals and therefore improve the onlineperformance. Nevertheless, as mentioned in [1], it does notappear to be widespread in the �eld of multiobjective EAs(e.g., [11][14][21]).To our knowledge, other niching methods like crowd-ing [22] and its derivatives as well as non-niching techniquesas isolation by distance [23] have never been applied to EAswith multiple objectives (an exception is o�ered in [24],cf. Section IV-D `Application to System-level Synthesis').D. Four Population-based ApproachesIn the following we present the multiobjective EAs ap-plied to the knapsack problem in our comparison. For athorough discussion of other evolutionary approaches, werefer to [1][25][4].D.1 Vector Evaluated Genetic AlgorithmScha�er [9] presented a multimodal EA called vectorevaluated genetic algorithm (VEGA) that carries out se-lection for each objective separately. In detail, the mat-ing pool is divided into n parts of equal size; part i is�lled with individuals that are chosen at random from thecurrent population according to objective i. Afterwards,the mating pool is shu�ed and crossover and mutation areperformed as usual. Scha�er implemented this method incombination with �tness proportionate selection.Although some serious drawbacks are known, this al-gorithm has been a strong point of reference up to now.Therefore, it was included in this investigation.D.2 Aggregation by Variable Objective WeightingAnother nonPareto approach was introduced in [11] (inthe following referred to as HLGA|Hajela's and Lin's ge-netic algorithm), that used the weighted-sum method for�tness assignment. Thereby, each objective is assigned aweight wi 2 ]0; 1[, such that Pwi = 1, and the scalar�tness value is calculated by summing up the weighted ob-jective values wi � fi(x): To search for multiple solutions inparallel, the weights are not �xed but instead encoded inthe genotype. The diversity of the weight combinations ispromoted by phenotypic �tness sharing. As a consequence,the EA evolves solutions and weight combinations simul-taneously. Finally, [11, p.102] emphasized mating restric-tions to be necessary in order to `both speed convergenceand impart stability to the genetic search'.Several other multiobjective EAs make use of weighted-sum aggregation (e.g. [12]). We have chosen HLGA to rep-resent this class of multiobjective EAs.D.3 Niched Pareto Genetic AlgorithmThe niched Pareto genetic algorithm (NPGA) proposedin [18][26] combines tournament selection and the conceptof Pareto dominance. Two competing individuals and acomparison set of other individuals are picked at randomfrom the population; the size of the comparison set is given

by the parameter tdom. If one of the competing individualsis dominated by any member of the set and the other isnot, then the latter is chosen as winner of the tournament.If both individuals are dominated (or not dominated), theresult of the tournament is decided by sharing: The indi-vidual that has the least individuals in its niche (de�nedby �share) is selected for reproduction. Horn and Nafplio-tis [18][26] used phenotypic sharing on the objective vec-tors.This algorithm seems to be widespread and is often takenas reference in recent publications [2][21][20], hence, it isalso examined here.D.4 Nondominated Sorting Genetic AlgorithmSrinivas and Deb [6] also developed an approach basedon [13], called nondominated sorting genetic algorithm(NSGA). Analogous to [13], the �tness assignment is car-ried out in several steps. In each, the nondominated so-lutions constituting a nondominated front are assigned thesame dummy �tness value. These solutions are shared withtheir dummy �tness values (phenotypic sharing on the de-cision vectors) and ignored in the further classi�cation pro-cess. Finally, the dummy �tness is set to a value less thanthe smallest shared �tness value in the current nondomi-nated front. Then the next front is extracted. This pro-cedure is repeated until all individuals in the populationare classi�ed. In the original study [6], this �tness assign-ment method was combined with a stochastic remainderselection.We have selected NSGA as the second Pareto-based EA,although there are also other Pareto-based approaches thatmay be under consideration for the comparison, e.g., themultiobjective EA presented in [14].III. Performance ComparisonIn the following, the case study is described that has beencarried out using the above four multiobjective EAs forsolving an extended 0/1 knapsack problem. The compari-son focuses on the e�ectiveness in �nding multiple Pareto-optimal solutions, disregarding their number. Neverthe-less, in the case that the trade-o� surface is continuousor contains many points, the distribution of the nondom-inated solutions achieved is also important. Although wedo not consider the distribution explicitly, it in
uences theperformance of the EA indirectly.A. The Multiobjective 0/1 Knapsack ProblemA test problem for a comparative investigation like thishas to be chosen carefully. The problem should be under-standable and easy to formulate so that the experiments arerepeatable and veri�able. It should also be a rather gen-eral problem and ideally represent a certain class of real-world problems. Both applies to the knapsack problem:the problem description is simple, yet the problem itself isdi�cult to solve (NP-hard). Moreover, due to its practi-cal relevance it has been subject to several investigationsin various �elds. In particular, there are some publica-tions in the domain of evolutionary computation related
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IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION (PREPRINT)to the knapsack problem [27][28][29], even in conjunctionwith multiobjective optimization [30].A.1 Formulation As Multiobjective Optimization ProblemGenerally, a 0/1 knapsack problem consists of a set ofitems, weight and pro�t associated with each item, and anupper bound for the capacity of the knapsack. The taskis to �nd a subset of items which maximizes the total ofthe pro�ts in the subset, yet all selected items �t into theknapsack, i.e., the total weight does not exceed the givencapacity [31].This single-objective problem can be extended directlyto the multiobjective case by allowing an arbitrary numberof knapsacks. Formally, the multiobjective 0/1 knapsackproblem considered here is de�ned in the following way:Given a set of m items and a set of n knapsacks, withpi;j = pro�t of item j according to knapsack i;wi;j = weight of item j according to knapsack i;ci = capacity of knapsack i;�nd a vector x = (x1; x2; : : : ; xm) 2 f0; 1gm, such that8i 2 f1; 2; : : : ; ng : mXj=1 wi;j � xj � ci (3)and for which f(x) = (f1(x); f2(x); : : : ; fn(x)) is maxi-mum, where fi(x) = mXj=1 pi;j � xj (4)and xj = 1 i� item j is selected.A.2 Test DataIn order to obtain reliable and sound results, we usednine di�erent test problems where both the number ofknapsacks and the number of items were varied.2 Two,three, and four objectives were taken under consideration,in combination with 250, 500, and 750 items.Following suggestions in [31], uncorrelated pro�ts andweights were chosen, where pi;j and wi;j are random inte-gers in the interval [10; 100]. The knapsack capacities wereset to half the total weight regarding the correspondingknapsack: ci = 0:5 mXj=1wi;j (5)As reported in [31], about half of the items are expectedto be in the optimal solution (of the single-objective prob-lem) when this type of knapsack capacity is used. We alsoexamined more restrictive capacities (ci = 200) where thesolutions contain only a few items. As this had no sig-ni�cant in
uence on the relative performance of the EAs,we only present the results concerning the former type ofknapsack capacity in the following.2The test data sets are available from the authors.

A.3 ImplementationConcerning the chromosome coding as well as the con-straint handling, we drew upon results published in [28],which examined EAs with di�erent representation map-pings and constraint handling techniques on the (single-objective) 0/1 knapsack problem. Concluding from the ex-periments in [28], penalty functions achieve best resultson data sets with capacities of half the total weight; how-ever, they fail on problems with more restrictive capacities.Since the experiments should be performed on both kindsof knapsack capacities, we decided to implement a greedyrepair method that produced the best outcomes among allalgorithms under consideration when both capacity typesare regarded. This method is based on a vector represen-tation and repairs infeasible solutions according to a pre-de�ned scheme. We adopted this approach with a slightlymodi�ed repair mechanism.In particular, a binary string s of length m is used toencode the solution x 2 f0; 1gm. Since many codings leadto infeasible solutions, a simple repair method r is appliedto the genotype s: x = r(s). The repair algorithm re-moves items from the solution coded by s step by stepuntil all capacity constraints are ful�lled. The order inwhich the items are deleted is determined by the maxi-mum pro�t/weight ratio per item; for item j the maximumpro�t/weight ratio qj is given by the equation3qj = maxni=1 � pi;jwi;j � (6)The items are considered in increasing order of the qj , i.e.,those achieving the lowest pro�t per weight unit are re-moved �rst. This mechanism intends to ful�ll the capacityconstraints while diminishing the overall pro�t as little aspossible.B. MethodologyIn the context of this comparison, several questions arise:What quantitative measures should be used to express thequality of the results so that the EAs can be compared in ameaningful way? What is the outcome of a multiobjectiveEA regarding a set of runs? How can side e�ects caused bydi�erent selection schemes or mating restrictions be pre-cluded, such that the comparison is not falsi�ed? How canthe parameters of the EA, particularly the niche radius, beset appropriately? In the following, we treat these prob-lems.B.1 Performance MeasuresTwo complementary measures were used to evaluate thetrade-o� fronts produced by the various EAs:Size of the space covered: Let X 0 = (x1;x2; : : : ;xk) � Xbe a set of k decision vectors. The function S(X 0) gives thevolume enclosed by the union of the polytopes p1; p2; : : : pk,where each pi is formed by the intersections of the follow-ing hyperplanes arising out of xi, along with the axes: for3This is a straight-forward extension to the single-objective ap-proach presented in [28] where qj = p1;j=w1;j :



ZITZLER AND THIELE: MULTIOBJECTIVE EVOLUTIONARY ALGORITHMS|COMPARISON AND STRENGTH PARETO APPROACH 5each axis in the objective space, there exists a hyperplaneperpendicular to the axis and passing through the point(f1(xi); f2(xi); : : : ; fn(xi)). In the two-dimensional case,each pi represents a rectangle de�ned by the points (0; 0)and (f1(xi); f2(xi)).Coverage of two sets: Let X 0; X 00 � X be two sets of deci-sion vectors. The function C maps the ordered pair (X',X")to the interval [0,1]:C(X 0; X 00) := jfa00 2 X 00; 9 a0 2 X 0 : a0 � a00gjjX 00j (7)The value C(X 0; X 00) = 1 means that all points in X 00are dominated by or equal to points in X 0. The oppo-site, C(X 0; X 00) = 0, represents the situation when noneof the points in X 00 are covered by the set X 0. Note thatboth C(X 0; X 00) and C(X 00; X 0) have to be considered, sinceC(X 0; X 00) is not necessarily equal to C(X 00; X 0) (e.g., if X 0dominates X 00 then C(X 0; X 00) = 1 and C(X 00; X 0) = 0).The �rst measure S has the advantage that each EAcan be evaluated independently of the other EAs; however,convex regions may be preferred to concave regions, pos-sibly overrating certain solutions. The second measure Covercomes this drawback and can be used to show that theoutcomes of one algorithm dominate the outcomes of an-other algorithm, although it does not tell how much betterit is.Since in this comparison the focus is on �nding thePareto-optimal set rather than obtaining a uniform dis-tribution along the trade-o� surface, we did not considerthe online performance of the EAs but rather the o�ineperformance. Thus, the nondominated set regarding all in-dividuals generated over all generations was taken as theoutput of an optimization run. Altogether 30 independentruns were performed per EA and test problem in order torestrict the in
uence of random e�ects. Another randomlycreated initial population was taken each time, and for eachtest problem all EAs operated on the same 30 initial pop-ulations.B.2 Selection and Mating RestrictionsActually, each multiobjective EA should be combinedwith the selection scheme originally applied. But the in-
uence of the selection scheme on the outcome of an EAcannot be neglected, e.g., �tness proportionate selection,which is used in VEGA, is well known to have serious dis-advantages [32]. In order to guarantee a fair comparison,all EAs considered were implemented with the same se-lection scheme: binary tournament selection with replace-ment. This selection method turned out to be superior toboth stochastic remainder selection (used in [6]) and lin-ear ranking selection on our test problems|that has beencon�rmed experimentally.Unfortunately, a conventional combination of �tnesssharing and tournament selection may lead to chaotic be-havior of the EA [33]. Therefore, both NSGA and HLGAwere implemented using a slightly modi�ed version of shar-ing, called continuously updated sharing, which was pro-posed by the same researchers. Thereby, the partly �lled

next generation is used to calculate the niche count ratherthan the current generation. Horn and Nafpliotis [18][26]introduced this concept in NPGA as well.Another problem is the in
uence of mating restrictions.While Hajela and Lin [11] found it necessary to restrictmating, the other EAs under consideration do not explic-itly incorporate this concept. We decided not to use matingrestrictions in this study, since the e�ectiveness of the dif-ferent �tness assignment and niching methods should becompared. In addition, it was experimentally veri�ed thatno signi�cant improvement could be observed when run-ning HLGA with mating restrictions.B.3 Parameter SettingsOn all test problems, 500 generations were simulated peroptimization run, the probabilities of crossover (one-point)and mutation were �xed (0:8 and 0:01, respectively). Thepopulation size N was chosen to be dependent on the com-plexity of the test problem, as can be seen in Table I: themore knapsacks and items involved, the greater the valueforN . Following the guidelines in [34], the niche radius wascalculated based on normalized distance, assuming the for-mation of 10 (15 and 20, respectively) independent nichesin the case of 2 (3 and 4, respectively) knapsacks. In Ta-ble I, ��share relates to sharing on the parameter space,which is implemented in NSGA, while �share stands forthe niche radii used by HLGA and NPGA. Finally, thedomination pressure tdom, a parameter of NPGA, was de-termined experimentally. All NPGA simulations were car-ried out �ve times, each time using another value for tdom(5%; 10%; 15%; 20%; and 25% of the population size). Atthe end, the parameter value which achieved the best re-sults for the S measure was chosen per test problem (cf. Ta-ble I). TABLE IParameters that were adjusted to the problem complexity:population size (N), niche radius (objective space: �share,parameter space: ��share), and domination pressure (tdom).number of parameters number of itemsknapsacks 250 500 750N 150 200 2502 �share 0:4924 0:4943 0:4954��share 115 236 357tdom 7 10 12N 200 250 3003 �share 0:4933 0:4946 0:4962��share 113 233 354tdom 30 25 15N 250 300 3504 �share 0:4940 0:4950 0:4967��share 112 232 352tdom 50 75 35C. Experimental ResultsAs additional points of reference, two further meth-ods were considered in this comparison: random sampling
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Fig. 1. Trade-o� fronts for 2 knapsacks: here, the nondominated solutions regarding the �rst 5 runs are plotted. For better visualization,the points achieved by a particular method are connected by dashed lines and RAND is not included in the �gure. Note that SPEA andSP-S are described later.and multiple independent sampling. The �rst algorithm(RAND) randomly generates a certain number of individ-uals per generation, according to the rate of crossover andmutation (though neither crossover, mutation nor selectionare performed). Hence the number of �tness evaluationswas the same as for the EAs. The second algorithm is anelitist single-objective EA using weighted-sum aggregation.In contrast to the other algorithms under consideration,100 independent runs were performed per test problem,each run optimizing towards another randomly chosen lin-ear combination of the objectives. The nondominated so-lutions among all solutions generated in the 100 runs formthe trade-o� front achieved on a particular test problem.Furthermore, two versions of the single-objective EA wereinvestigated: one with 100 generations per linear combi-nation (SO-1) and another one that terminated after 500generations in every single optimization run (SO-5).

The results concerning the S measure (size of the spacecovered) are shown in Figure 3, the direct comparison ofthe di�erent algorithms based on the C measure (coverage)is depicted in Figure 2. For each algorithm and orderedpair of algorithms, respectively, there is a sample of 30 Srespectively C values per test problem according to the 30runs performed. Here, box plots [35] are used to visualizethe distribution of these samples. A box plot consists of abox summarizing 50% of the data. The upper and lowerends of the box are the upper and lower quartiles, whilea thick line within the box encodes the median. Dashedappendages summarize the spread and shape of the distri-bution, and dots represent outside values.Generally, the simulation results prove that all multi-objective EAs do better than the random search strategy.Figure 2 shows that the trade-o� fronts achieved by RANDare entirely dominated by the fronts evolved by HLGA,
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Fig. 2. Box plots based on the C measure. Each rectangle contains nine box plots representing the distribution of the C values for acertain ordered pair of algorithms; the three box plots to the left relate to 2 knapsacks and (from left to right) 250, 500, and 750 items;correspondingly the three middle box plots relate to 3 knapsacks and the three to the right to 4 knapsacks. The scale is 0 at the bottomand 1 at the top per rectangle. Furthermore, each rectangle refers to algorithm A associated with the corresponding row and algorithm Bassociated with the corresponding column and gives the fraction of B covered by A (C(A;B)). Note that SPEA and SP-S are introducedlater.NPGA, and NSGA (with regard to the same population).Concerning the S distributions, the RAND median is lessby more than 20 quartile deviations than the medians asso-ciated with the EAs when the maximum quartile deviationof all samples is considered.Among the multiobjective EAs, NSGA seems to providethe best performance. The median of the S values is foreach test problem greater than the corresponding mediansof the other three EAs by more than 5 quartile deviations.In addition, on eight of the nine test problems NSGA covers
more than 70% of the fronts computed by HLGA, NPGA,and VEGA in more than 75% of the runs; in 99% of theruns it covers more than 50%. In contrast, those threeEAs cover less than 10% of the NSGA outcomes in 75%of all runs and less than 25% in 99% of the runs (on eightof the nine problems). For 4 knapsacks and 250 items,the coverage rates scatter more, however, NSGA achieveshigher C values in comparison with the other multiobjectiveEAs.Comparing NPGA and VEGA, there is no clear evidence
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Fig. 3. Distribution of the S values for the nine test problems. Notethat RAND, SO-1, and SO-5 are not considered in this �gure,since the focus is on the four multiobjective EAs and otherwisethe di�erences between those algorithms would be blurred.that one algorithm outperforms the other, although VEGAseems to be slightly superior to NPGA. Only on two of thetest problems (2 knapsack, 500 and 750 items) do the me-dians of the S distributions of the two EAs deviate by morethan 3 quartile deviations (in favor of VEGA). In the di-rect comparison based on the C measure, VEGA coversmore than 50% of the NPGA outcomes on average, whileNPGA achieves less than 25% coverage regarding VEGAon average. Furthermore, both algorithms generate betterassessments in comparison with HLGA. With 3 and 4 knap-sacks, the fronts produced by HLGA are dominated by theNPGA and VEGA fronts by 99% (cf. Figure 2), and themedians of the S values associated with HLGA are morethan 10 quartile deviations less than the S medians relatedto NPGA and VEGA. For 2 knapsacks, the S distributionsare closer together; however, the C measure indicates clearadvantages of NPGA and VEGA over HLGA.Finally, the fact that SO-5 covers on average morethan 90% of the nondominated solutions computed byHLGA, NPGA, VEGA, and NSGA and achieves signi�-cantly greater S values (the median is greater by morethan 21 quartile deviations than the other medians pertest problem) suggests that none of the multiobjective EAsconverge to the Pareto-optimal front using the chosen pa-rameter settings. This can also be observed in Figure 1,where the trade-o� fronts obtained in 5 runs are plottedfor the two-dimensional problems. Note that the computa-tional e�ort needed by SO-5 to produce the depicted frontsis 20 times higher than the one for the multiobjective EAs.

IV. The Strength Pareto ApproachWe propose a new approach to multiobjective optimiza-tion, the Strength Pareto Evolutionary Algorithm (SPEA).SPEA uses a mixture of established and new techniques inorder to �nd multiple Pareto-optimal solutions in parallel.On one hand, similarly to other multiobjective EAs, it� Stores the nondominated solutions found so far exter-nally (e.g., [10][12][19]),� Uses the concept of Pareto dominance in order to assignscalar �tness values to individuals, and� Performs clustering to reduce the number of nondomi-nated solutions stored without destroying the characteris-tics of the trade-o� front [20].On the other hand, SPEA is unique in four respects:� It combines the above three techniques in a single algo-rithm.� The �tness of an individual is determined only from thesolutions stored in the external nondominated set; whethermembers of the population dominate each other is irrele-vant.� All solutions in the external nondominated set partici-pate in selection.� A new niching method is provided in order to preservediversity in the population; this method is Pareto-basedand does not require any distance parameter (like the nicheradius for sharing).A. AlgorithmThe 
ow of the algorithm is as follows.Step 1: Generate an initial population P and create theempty external nondominated set P 0.Step 2: Copy nondominated members of P to P 0.Step 3: Remove solutions within P 0 which are covered byany other member of P 0.Step 4: If the number of externally stored nondominatedsolutions exceeds a given maximum N 0, prune P 0by means of clustering.Step 5: Calculate the �tness of each individual in P aswell as in P 0.Step 6: Select individuals from P + P 0 (multiset union),until the mating pool is �lled. In this study,binary tournament selection with replacement isused.Step 7: Apply problem-speci�c crossover and mutationoperators as usual.Step 8: If the maximum number of generations is reached,then stop, else go to Step 2.In the next two sections, the �tness assignment as wellas the clustering procedure are described in detail.A.1 Fitness AssignmentThe �tness assignment procedure is a two-stage process.First, the individuals in the external nondominated set P 0are ranked. Afterwards, the individuals in the populationP are evaluated.



ZITZLER AND THIELE: MULTIOBJECTIVE EVOLUTIONARY ALGORITHMS|COMPARISON AND STRENGTH PARETO APPROACH 9Step 1: Each solution i 2 P 0 is assigned a real value si 2[0; 1), called strength4; si is proportional to thenumber of population members j 2 P for whichi � j. Let n denote the number of individuals inP that are covered by i and assume N is the sizeof P . Then si is de�ned as si = nN+1 . The �tnessfi of i is equal to its strength: fi = si.Step 2: The �tness of an individual j 2 P is calculated bysumming the strengths of all external nondomi-nated solutions i 2 P 0 that cover j. We add oneto the total in order to guarantee that membersof P 0 have better �tness than members of P (notethat �tness is to be minimized, i.e., small �tnessvalues correspond to high reproduction probabil-ities): fj = 1 + Xi;i�j si where fj 2 [1; N):To make the e�ect of this ranking method clear, take alook at Figure 4. The objective space which is covered bythe three nondominated solutions is divided into distinctrectangles. Each subset of P 0 de�nes one such area thatall members of the subset cover in common. For instance,the dark-shaded rectangle in the lower-left corner is cov-ered by all three nondominated points, while the upper-leftbright-shaded rectangle is only covered by one nondomi-nated point. We consider these areas as niches, and thegoal is to distribute the individuals over this `grid' suchthat(a) (brighter-shaded) areas covered by only a few non-dominated points contain more individuals than (darker-shaded) rectangles that are covered by many nondominatedpoints, and(b) an area comprises as many individuals as the other(equally-shaded) rectangles that are covered by the samenumber of nondominated points.This mechanism intuitively re
ects the idea of preferringindividuals near the Pareto-optimal front and distributingthem at the same time along the trade-o� surface. In Fig-ure 4a), the �rst aspect is illustrated: Individuals locatedin the bright areas achieve better �tness values than theremaining population members. Figure 4b) provides anexample for the second aspect and directly visualizes thestrength principle: Individuals having many neighbors intheir niche are penalized due to the high strength value ofthe associated nondominated point; the `stronger' a non-dominated solution, the less `�tter' are the covered individ-uals.The main di�erence to �tness sharing is that niches arenot de�ned in terms of distance but Pareto dominance.This renders the setting of a distance parameter super-
uous, although the parameter N 0 in
uences the nichingcapability as we will discuss in the next section. Further-4This term is adopted from [36] where it was introduced in thecontext of classi�er systems; it stands for a quantity summarizing theusefulness of a rule. Here, it re
ects the usefulness of a nondominatedpoint.
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Fig. 4. Two scenarios for a maximization problem with two objec-tives. The number associated with each solution gives the �tness(and strength in case of nondominated points).more, it has to be mentioned that this kind of �tness assign-ment using two interacting populations has been inspiredby [37][38][39][40][41]. Paredis [41] studied the use of coop-erating populations in EAs and showed that symbiotic evo-lution can speed up the search process. In [37][38][39][40],a similar concept was applied to immune system modelswhere two cooperative populations were used to maintainpopulation diversity; [39] reported that this method hasemergent properties that are similar to �tness sharing.A.2 Reducing the Pareto Set by ClusteringIn certain problems, the Pareto-optimal set can be ex-tremely large or even contain an in�nite number of so-lutions. However, from the decision maker's point ofview, presenting all nondominated solutions found is use-less when their number exceeds reasonable bounds. More-over, the size of the external nondominated set in
uencesthe behavior of SPEA. On the one hand, since P 0 partici-pates in selection, too many nondominated solutions mightreduce selection pressure and slow down the search [20].On the other hand, the strength niching mechanism relieson a uniform granularity of the `grid' de�ned by the non-dominated solutions (cf. Figure 4); if the points in P 0 arenot distributed uniformly, the �tness assignment methodis possibly biased towards certain regions of the searchspace, leading to an unbalanced distribution in the popu-lation. Thus, pruning the external nondominated set whilemaintaining its characteristics might be necessary or evenmandatory.A method that has been applied to this problem success-fully and studied extensively in the same context is clusteranalysis [42][43]. In general, cluster analysis partitions acollection of m elements into n groups of relatively ho-mogeneous elements, where n < m. The average linkagemethod [42], a clustering approach that has proven to per-form well on this problem (cf. [42]), has been chosen in thispaper.Step 1: Initialize cluster set C; each external nondomi-nated point i 2 P 0 constitutes a distinct cluster:C = Siffigg:Step 2: If jCj � N 0, go to Step 5, else go to Step 3.Step 3: Calculate the distance of all possible pairs of clus-
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IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION (PREPRINT)ters. The distance d of two clusters c1 and c2 2 Cis given as the average distance between pairs ofindividuals across the two clustersd = 1jc1j � jc2j � Xi12c1;i22c2 jji1 � i2jjwhere the metric jj � jj re
ects the distance be-tween two individuals i1 and i2 (in this study anEuclidean metric on the objective space is used).Step 4: Determine two clusters c1 and c2 with minimaldistance d; the chosen clusters amalgamate into alarger cluster: C = C n fc1; c2g [ fc1 [ c2g: Go toStep 2.Step 5: Compute the reduced nondominated set by select-ing a representative individual per cluster. Weconsider the centroid (the point with minimal av-erage distance to all other points in the cluster)as representative solution.Cunha et al. [20] also combined a multiobjective EA witha clustering approach in order to achieve reasonably sizedPareto sets. This algorithm, however, uses a di�erent clus-tering method which has been proposed in [43]; thereby,for each objective, a tolerance value has to be speci�ed.Moreover, it di�ers from SPEA with regard to the follow-ing two aspects: (a) The nondominated solutions are notstored externally, and (b) �tness sharing is incorporated topreserve diversity in the population.B. A Simple Test Function: Scha�er's f2A very simple test function for multiobjective optimizersis the well-known function f2 used by Scha�er [44]. It isde�ned as follows:minimize f2(x) = (g(x); h(x))where g(x) = x2h(x) = (x� 2)2 (8)Obviously, the Pareto-optimal points are located in therange x 2 [0; 2]. Outside this interval, g as well as h areincreasing, while within the interval, there is a trade-o�between the two functions (one is increasing, the other oneis decreasing).To test SPEA on f2, we used a 14-bit chromosomewhich is decoded to a real number between �6 and 6.The bit string 00000000000000 encodes x = �6 and11111111111111 stands for x = 6. Furthermore, the fol-lowing parameters were used for SPEA:Population size (N): 95=70=30Size of external nondominated set (N 0): 5=30=70Crossover probability: 1:0Mutation probability: 0:0Number of generations: 100Altogether, we tried three di�erent combinations of N andN 0, where N + N 0 equaled 100 in each case. In order toexamine the e�ectiveness of SPEA alone, no mutation op-erator was applied to the individuals. Instead, we used a
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Fig. 5. Performance of SPEA and VEGA on Scha�er's f2.crossover probability of 1:0. In addition, VEGA ran onthis problem with identical parameters (N = 100). In or-der to guarantee a fair comparison, the o�ine performanceof VEGA is considered here, i.e., the �nal trade-o� front isformed by the nondominated solutions found during a run,not only by the Pareto-optimal points in generation 100.The results produced by the algorithms using the sameinitial population are shown in Figure 5.5 It can be ob-served that SPEA is able to well approximate the Pareto-optimal front, depending on the size of the external non-dominated set. In comparison to VEGA, it evolved morePareto-optimal solutions (VEGA:20, SPEA:5/30/70) anddistributed them more uniformly along the trade-o� front.C. Performance on the 0/1 Knapsack ProblemThe same parameters as for the other multiobjective EAswere used for SPEA on the 0/1 knapsack problem. Forreasons of fairness, N was set to 4=5 and N 0 to 1=4 of thepopulation size given in Table I. In addition, a slightlymodi�ed version of SPEA was examined (SP-S) where P 0does not participate in the selection phase; there, the pop-ulation size was the same as for the other EAs, and the sizeof the external nondominated set was restricted to 1=4 �N .The results concerning the S measure (size of the spacecovered) are depicted in Figure 6, the direct comparisonof SPEA with the other algorithms based on the C mea-sure (coverage) is shown in Figure 2. Furthermore, Fig-ure 1 gives the plots of the two-dimensional trade-o� frontsachieved by SPEA and the other EAs. The main observa-tions can be summarized as follows:5Certainly, only limited weight can be given to a single run per al-gorithm. Nevertheless, the results were similar when the experimentswere repeated with di�erent initial populations.
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Fig. 6. SPEA in comparison with the other algorithms with regardto the size of the covered space. The box plots represent thedistributions of the S values achieved in the 30 optimization runs.� SPEA achieves the best assessments among the multiob-jective EAs. It covers 100% of the nondominated solutionsfound by HLGA, NPGA, VEGA, and NSGA with eight ofthe nine test problems; for 4 knapsacks and 250 items atleast 87% are covered. Vice versa, those algorithms coverless than 5% of the SPEA outcomes in all 270 runs. Con-cerning the size of the covered space, the medians of the Sdistributions related to SPEA are greater than the corre-sponding medians of the other multiobjective EAs by morethan 10 quartile deviations. Although the Pareto-optimalfronts of the test problems considered here are all convex,we have shown recently [45] that SPEA also has advan-tages over the other EAs for di�erent types of problems(e.g., non-convex functions).� As Figure 1 indicates, SPEA can �nd solutions that arecloser to the Pareto-optimal front than those produced bySO-5 in spite of less computational e�ort. This observationis supported by the fact that SO-5 covers only 48% of theSPEA front with eight of the nine test problems (SO-1less than 12%). However, the fronts found by multiplesingle-objective searches contain many more solutions andare wider in the sense that the size of the covered spaceis signi�cantly greater (cf. Figure 6). Whether SPEA canoutperform a single-objective EA with substantially lesscomputation time is the subject of future work; however,it was shown recently [45] that this is the case for two-dimensional problems of di�erent characteristics.� Elitism seems to be important for the e�ectiveness ofthe search, as SP-S performs substantially worse thanSPEA. Nevertheless, SP-S appears to do slightly betterthan NSGA on the three- and four-dimensional problems.

Both the S values (the median distance to NSGA is greaterthan 3 quartile deviations) and the C values suggest a slightadvantage for SP-S over NSGA. For 2 knapsacks, the re-sults are ambiguous and do not allow a �nal conclusion tobe made.D. Application to System-level SynthesisThe third application is a larger problem in the domainof computer engineering that is concerned with computer-based system-level synthesis. Blickle et al. [24][46][47] havepresented an evolutionary approach to this problem whichwe use as the basis for the SPEA implementation.D.1 Problem descriptionIn [47], system-level synthesis is considered as the prob-lem of optimally mapping a task-level speci�cation onto aheterogeneous hardware/software architecture. The inputconsists of three parts:1. A behavioral description of a hardware/software systemto synthesize. The behavior is de�ned in terms of func-tional objectives like algorithms, tasks, procedures, or pro-cesses together with their data interdependencies.2. A structural speci�cation of the system (= a class of pos-sible architectures) where structural objects are general- orspecial-purpose processors, ASICs, buses, and memories.With each structural object, a �xed cost is associated thatarises when the particular resource is realized.3. A Boolean function m of the set of functional objectsto the set of structural objects that de�nes the space ofpossible mappings; when m(a; b) = 1, the task a can bemapped to the resource b, otherwise not. Additionally, alatency function l gives the estimated time l(a; b) that isnecessary to execute task a on resource b.The optimization goal is to �nd an implementation whichsimultaneously minimizes cost and execution time; thereby,an implementation is described by1. The set of the selected resources and structural objects(allocation),2. The mapping of the algorithm onto the selected archi-tecture (binding), and3. The schedule that de�nes the start times of the tasks onthe selected resources.An example that visualizes the relations between inputand output is provided in Figure 7. The behavioral speci-�cation described by means of a directed graph containsseven functional objects, where shaded nodes stand forcommunication operations. The architecture, which in-cludes a RISC processor, a digital signal processor (DSP),and an application-speci�c integrated circuit (ASIC), in-terconnected by two buses, is also modeled by a directedgraph. Finally, the function m is represented by edges be-tween nodes of the two graphs. For instance, algorithm 4can be mapped to any chip while algorithm 1 has to beexecuted on the RISC processor. On the right-hand sideof Figure 7, a sample implementation is depicted. All re-sources except Bus 2 are selected, thus all communicationsare handled by Bus 1 (this is also re
ected by the binding
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β τ αFig. 8. An evolutionary algorithm for system-level synthesis (picturetaken from [24, p. 174]). Depicted is the process of �tness evalua-tion. In the �rst step, an allocation is derived from the informa-tion encoded in the individual. The binding, which is computedin the second step, depends on both the encoded information andthe allocation. Afterwards, the schedule is determined heuristi-cally and the resulting implementation is assessed concerning thedesign criteria, possibly taking user-de�ned constraints into ac-count. TABLE IIVideo Codec: Nondominated solutions found by the threedifferent methods. In each column, the pairs set in italicmark points that are inferior to any point in the other twocolumns. The outcomes of the single-objective EA are takenfrom [24, p. 203].SPEA single-objective EA RTS +Pareto ranking(180,166) (180,166) (180,166)(230,114) (230,114) (230,114)(280,78) (280,78) (280,78)(330,48) (330,54) (330,54)(340,36) (340,42) (350,23)(350,22) (350,22) (370,22)viduals in the population.D.3 Experimental ResultsThe presented EA has been implemented with theStrength Pareto approach for multiobjective optimizationand compared both to a single-objective EA and to the al-gorithm proposed in [24]. The synthesis of a video codec,based on the H.261 standard (cf. [24, Chapter 9]), was cho-sen as test problem; the search space of this problem con-tains about 1:9 � 1027 possible bindings.All algorithms ran with a population size of 30 (SPEA:20 with 10 externally stored nondominated solutions), acrossover probability of 0:5, and a mutation probabilityof 0:2. In case of the two multiobjective EAs, the o�ineperformance over 10 independent runs with 100 generationseach was considered. The single-objective EA was used tooptimize each objective separately; for the other objective,a maximum value, a constraint, was de�ned. We examined11 di�erent latency constraints when minimizing cost and11 cost constraints in the case of latency optimization. Foreach constraint, the best result out of 10 independent runs



ZITZLER AND THIELE: MULTIOBJECTIVE EVOLUTIONARY ALGORITHMS|COMPARISON AND STRENGTH PARETO APPROACH 13(100 generations each) was taken, and the nondominatedsolutions of all 22 single-objective results constituted the�nal Pareto set.SPEA covers 100% and dominates 50% of the solutionsfound by the combination of RTS and Pareto ranking asshown in Table II. Although Blickle [24] ran the algorithmwith a population size of 100 and a maximum number of200 generations, the results he reported are the same asgenerated by the single-objective EA (Table II, second col-umn). Moreover, in spite of signi�cantly lower computa-tional e�ort, SPEA covers 100% and dominates 33% of thenondominated front achieved by the single-objective EA.V. ConclusionsThis study compared four multiobjective EAs on a mul-tiobjective 0/1 knapsack problem with nine di�erent prob-lem settings. The quality of the Pareto-optimal setsachieved was measured quantitatively by the size of thecovered space. Additionally, the approaches were com-pared directly by evaluating the outcomes regarding theconcept of Pareto dominance.All multiobjective EAs clearly outperformed a pure ran-dom search strategy which randomly generates new pointsin the search space without exploiting similarities betweensolutions. Among these multicriteria EAs, the nondom-inated sorting genetic algorithm [6] achieved the best re-sults on all test problems. It is followed by VEGA [9] whichseems to have slight advantages over the niched Pareto ge-netic algorithm [18][26] on this type of problem. Comparedwith Hajela's and Lin's weighted-sum approach [11], bothVEGA and NPGA were assessed as better regarding thetwo performance measures considered here.Furthermore, a new evolutionary approach to multiob-jective optimization has been provided (SPEA) that di�ersfrom existing multicriteria EAs in the kind of �tness as-signment based on principles of coevolution and the nichingtechnique founded on the concept of Pareto dominance. Asshown on three applications, SPEA is capable of e�cientlyguiding the search towards the Pareto-optimal front. Onthe 0/1 knapsack problem, it outperformed the other fourmultiobjective EAs by a wide margin. Moreover, the exper-imental results indicate that SPEA can even �nd solutionsthat are closer to the globally optimal trade-o� surface thansolutions evolved by a single-objective EA optimizing a lin-ear combination of the objectives.With regard to future perspectives, it may be worthwhileto investigate the following issues:� If possible, other probabilistic search algorithms like sim-ulated annealing, hill climbing, tabu search, etc., as well as`exact' methods (e.g., integer linear programming, branch-and-bound) and deterministic heuristics (cf. [31]) should betested on the multiobjective 0/1 knapsack problem. Thiswould permit a more precise assessment of the performanceof the EAs.� The distribution of the obtained nondominated setsshould be included in the comparison. Although the size ofthe covered space is a performance measure that takes thisproperty into account, it does not allow separate evaluation
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