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Abstract. When implementing software for programmable digital signal proces-
sors (PDSPs), the design space is defined by a complex range of constraints and
optimization objectives. Three implementation metrics that are crucial in many
PDSP applications are the program memory requirement (code size), data memory
requirement, and ezecution time. This paper addresses the problem of exploring the
3-dimensional space of trade-offs that is defined by these crucial metrics. Given a
software library for a target PDSP, and a dataflow-based block diagram specification
of a DSP application in terms of this library, our objective in this paper is to compute
a full range of Pareto-optimal solutions. For solving this multi-objective optimization
problem, an evolutionary algorithm based approach is applied. We illustrate our
techniques by analyzing the trade-off fronts of a practical application for a number
of well-known, commercial PDSPs.

1. Introduction

Starting with a data flow graph specification to be implemented on
a digital signal processor, we study the effects between instantiating
code by inlining or subroutine calls as well as the effect of loop nest-
ing and context switching on a target processor (PDSP) that is used
as a component in a memory and cost-critical environment, e.g., a
single-chip solution. For such applications, a careful exploration of the
possible spectrum of implementations is of utmost importance because
the market of these products is driven by tight cost and performance
constraints. Frequently, these systems are once programmed to run
forever. Optimization and exploration times in the order of hours are
therefore tolerable.

* S. S. Bhattacharyya was supported in this work by the US National Science
Foundation (CAREER, MIP9734275) and Northrop Grumman Corp.

';:‘ © 1999 Kluwer Academic Publishers. Printed in the Netherlands.

jvlsi.tex; 18/10/1999; 17:02; p.1



We present the first systematic optimization framework for exploring
trade-offs in the space of possible software implementations with regard
to the following three objectives: execution time, program memory, and
data memory.

The methodology begins with a given synchronous dataflow graph
[12], a restricted form of dataflow in which the nodes, called actors
have a simple firing rule: The number of data values (tokens, samples)
produced and consumed by each actor is fixed and known at compile-
time.

EXAMPLE 1. A practical example is a sample-rate conversion system.
In Figure 1, a digital audio tape (DAT), operating at a sample rate of 48
kHz is interfaced to a compact disk (CD) player operating at a sampling
rate of 44.1 kHz, e.g., for recording purposes, see [15] for details on
multistage sample rate conversion.

1 1 2 3 2 7 8 7 5 1
A |

CD DAT

Figure 1. CDtoDAT conversion benchmark

The major reason why the SDF model is widely used as the un-
derlying specification model are the abilities to express multirate sys-
tems, parallelism, and that many important aspects such as deadlock
detection and scheduling can be determined at compile-time.

As a matter of fact, there exist rapid prototyping environments that
use SDF graphs or related models as input for code generators for
programmable digital signal processors (PDSPs) [5, 11, 13].

As reported by DSP analysts (e.g., the DSPStone benchmarking
group [18]), today’s DSP compilers still produce several 100%s of over-
head with respect to assembly code written and optimized by hand.
Hence, the hardware capabilities such as zero-loop overhead, execution
of multiple instructions (e.g., memory write and execute), and special-
ized instruction sets (e.g., multiply-add operations) as well as special
addressing modes (e.g., indexed versus pointer addressing) cannot be
sufficiently exploited at this point in time.

A commonly used approach in SDF-based design environments that
avoids the limitations of current compiler technology is to store op-
timized assembly code for each actor (.e.g., filter components) in a
target-specific library and to generate code from a given schedule by
instantiating actor code in the final program. By doing this, the in-
fluence of the compiler technology may be taken out as one unknown
factor of efficiency.
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Figure 2. Trade-off between the three performance criteria

Prior work on code size minimization of SDF schedules has focused
on an inline code generation model [4]. The total memory requirement
may then be approximated by a linear combination of the (weighted)
number of actor appearances in a schedule. Evidently, so called single
appearance schedules (SASs), where each actor appears only once in
a schedule, are program memory optimal under this model. However,
they may not be data memory minimal, and in general, it may be
desirable to trade-off some of the run-time efficiency of code inlining
with further reduction in code size by using subroutine calls, especially
with system-on-a-chip implementations.

Figure 2 depicts the trade-off that has to be made. The buffer
memory is mainly influenced by the schedule and the chosen buffer
model. Software loops increase the execution time, however, decrease
the program memory. Since it depends on the schedule to which extent
looping can be applied, there is a trade-off between program memory
and data memory. The use of subroutine calls causes a higher execution
time, but decreases again the program memory requirements. With
inlining, the target code gets faster, but larger.

Because of this trade-off, the software synthesis based on a SDF spec-
ification is a typical multi-objective optimization problem. Three con-
flicting goals have to be optimized, which are all of equal importance.
This means, that many “best” solutions coexist. The optimization
process should find the set of this “best” solutions.

One approach to perform this exploration are evolutionary algo-
rithms (EAs). These are optimization methods based on nature’s evolu-
tion process. Solutions in the search space are considered as individuals
of a population. A selection mechanism will give preference to strong in-
dividuals and disfavor weaker ones similar to the survival-of-the-fittest
principle. Figure 3 shows the basic mechanisms of an EA. The iterations
represent the sequence of generations of the population.

This paper is organized as follows. First, the optimization problem
and metrics are formally defined (Section 2 and 3). A code-size dy-
namic programming post-optimization algorithm called CDPPO which
is implemented in the evolutionary framework for computing optimally
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Figure 3. Outline of an evolutionary algorithm

nested loops for a given schedule, is described in Section 4. Afterwards,
basic principles of multi-objective optimization are briefly discussed
in Section 6, and Section 7 deals with implementation aspects of the
EA. Finally, Section 8 presents the experimental results concerning the
CDtoDAT application (cf. Example 1), and the last section is devoted
to concluding remarks and future perspectives.

2. SDF Scheduling Framework

DEFINITION 1. (SDF graph). An SDF graph G denotes a 5-tuple
G = (V, A, produced, consumed,delay) where

—V s the set of nodes (actors) (V = {vi,ve, -, vy |}).

—A is the set of directed arcs. With source(a) (sink(«)), we de-
note the source node (target node) of an arc a € A.

—produced : A — N denotes a function that assigns to each di-
rected arc o € A the number of produced tokens produced(c) per
invocation of actor source(«).

—consumed : A — N denotes a function that assigns to each
directed arc o € A the number of consumed tokens per invocation
of actor sink(«).
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—delay : A — Ny denotes the function that assigns to each arc
a € A the number of initial tokens delay(c) that reside on «.

EXAMPLE 2. The graph in Figure 1 has |V| = 6 nodes (or actors).
Each presents a function that may be executed as soon as its input con-
tains at least consumed(a) data tokens on each ingoing arc «, see the
numbers annotated with the arc heads. E.g., actor B requires one input
token on its input arc, and produces 2 output tokens on its outgoing arc
when firing. In the shown graph, delay(a) = 0 Vo € A. Hence, initially,
only actor A, the source node, may fire. Afterwards, B may fire for the
first time. After that, however, node C still cannot yet fire, because it
requires consumed(a) = 3 tokens on its ingoing arc, however, there are
only two produced by the firing of B. In general, many firing sequences
of actors may evolve.

A schedule is a sequence of actor firings. A properly-constructed SDF
graph is compiled by first constructing a finite schedule S that fires each
actor at least once, does not deadlock, and produces no net change in
the number of tokens queues associated with each arc. When such a
schedule is repeated infinitely, we call the resulting infinite sequence of
actor firings a walid periodic schedule, or simply valid schedule.

SDF graphs for which valid schedules exist are called consistent
graphs. Systematic techniques exist to efficiently determine whether
or not a given SDF graph is consistent and to compute the minimum
number of times that each actor must execute in the body of a valid
schedule [12]. We represent these minimum numbers of firings by a
function ¢g or simply ¢ in case G is known from the context with
q:V — N.

EXAMPLE 3. The CDtoDAT graph in Figure 1 is consistent because
there exists a (non-zero) finite actor firing sequence such that the initial
token configuration is obtained again. The minimal number of actor fir-
ings is obtained as q(A) = q(B) = 147, q(C) =98, q(D) = 28,¢(E) =
32,q(F) = 160. The schedule (co(7(7(3AB) (2C))(4D))(32E(5F)))
represents a valid schedule.

Each parenthesized term (n S; S2 --- Si) is referred to as schedule
loop having iteration count n and iterands S1,S2, ---,S;. We say that
a schedule for an SDF graph is a looped schedule if it contains zero or
more schedule loops. A schedule is called single appearance schedule, or
simply SAS in the following, if it contains only one appearance of each
actor.

EXAMPLE 4. The following schedule is a wvalid SAS for the graph
shown in Figure 1: (00(147A)(147B)(98C)(28D)(32E)(160F)).
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Although SAS offer minimal code size, they are not necessarily opti-
mal in terms of data-memory consumption [2]. In general, a schedule of
the form (oo (q(N1)N1) (¢(N2)N2) --- (q(Nyv))Njv))) where N; denotes
the (label of the) ith node of a given SDF graph, and |V| denotes the
number of nodes of the given graph, is called flat single appearance
schedule.

EXAMPLE 5. Consider the simple SDF graph G in Figure 5a). With
produced(a) = 2 and consumed(a) = 3, we obtain q(A) =3, q¢(B) =2
as the minimal actor repetition numbers. The schedule (0o(3A)(2B)) is
a valid (flat) SAS, requiring 6 units of memory to store the mazimal
amount of data that accumulates on the arc « (after the firing of the
first schedule loop). The schedule (0o(2A)BAB) requires only 4 units
(after the first two firings of actor A).

The above example shows us that SASs, though compact, are not
necessarily data-memory minimal. In order to exploit also multiple-
appearance schedules (called MAS in the following), we must be able
to look at the unfolding of the SDF graph that represents the causal
properties of each single actor invocation in a periodic schedule.

DEFINITION 2. (Unfolding). Given a consistent SDF' graph G = (V,
A, consumed, produced, delay) and the minimal repetition vector q =
(¢(N1),q(N2),-..,q(Nyyy). The marked graph G' = (V', A',delay’)
obtained as follows is called its unfolding:

—|V' = ZLZ'I q(N;) and for each node N; € V there exists a set
N; . 14

V! =Nk, ..., NSOy i v v = g v,
—The arc set A" and the initial data delay’ are obtained as follows
(we consider each arc o = (N;, Nj) € A separately and instantiate
corresponding arcs in A'). Thereby, 0;, with 1 < 6; < q(N;),denotes
the counting index for the q(N;) instances Ni‘si.
For each arc o« = (N;, Nj) € A, there exist q(N;)-produced(c) arcs
o = (Nfi,N;-sj) € A', where the kth arc with k = 1,...,q(N;) -
produced(v;,v;)) is directed from node Nfi with

6; = ((k — 1) div produced(N;, Nj)) + 1
to node ij with

d; = (((delay(cer) + k — 1) mod (g(Nj)consumed(c))) div
consumed(a)) + 1.
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Figure 4. Unfolding of the SDF graph as introduced in Example 5.

Furthermore, the lth initial token with | = 1,...,delay(«) is situ-
ated on the kth arc between nodes N; and Nj in A" with

k = q(N;)produced(a) — (I — 1) mod (q(N;)produced(c))
Obviously, the unfolding G' = (V', A’, delay’) contains
- V' = Zlg q(N;) nodes, and
|A"| = Z‘jﬂl produced(c;) - consumned(c) arcs.

EXAMPLE 6. Consider again the simple SDF graph G as introduced
in Example 5. The unfolding of this graph is shown in Figure 4. There
are three actor instantiations of actor A and two instances of actor B.
It can be shown that single-appearance schedules of this graph represent
all valid schedules of the corresponding SDF graph. For example, the
schedule (00 AABAB) is a valid schedule, whereas (c0 ABABA) is not.
Vice versa, if a schedule of the unfolding is not valid, then the schedule
of actor names is also invalid in the original SDF graph. In this sense,
both of them are equivalent.

2.1. CODE GENERATION MODEL

For each actor in a valid schedule S, we insert a code block that is
obtained from a library of predefined actors or a simple subroutine call
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Figure 5. SDF graph a), memory model for arc buffer b), and Motorola DSP56k-like
assembly code realizing the schedule S = (c0(3A4)(2B))
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Figure 6. Memory accesses for the schedule S = (c0cAABAB)

of the corresponding subroutine, and the resulting sequence of code
blocks (and subroutine calls) is encapsulated within an infinite loop
to generate a software implementation. Each schedule loop thereby is
translated into a loop in the target code.

EXAMPLE 7. For the simple SDF graph in Figure 5a), a buffer model
for realizing the data buffer on the arc a as well as a pseudo assembly
code notation (similar to the Motorola DSP56k assembly language) for
the complete code for the schedule S = (0o(3A4)(2B)) is shown in Fig-
ure 5b), c¢) respectively. There is a location loc that is the address of
the first memory cell that implements the buffer and one read (rp(«))
and write pointer (wp(a)) to store the actual read (write) location.
The notation do #N LABEL denotes a statement that specifies N
successive executions of the block of code between the do-statement and
the instruction at location LABEL. First, the read pointer rp(«) to the
buffer is loaded into register R1 and the write pointer wp(«a) is loaded
into R2. During the execution of the code, the new pointer locations
are obtained without overhead using autoincrement modulo addressing
((R1)+, (R2)+). For the above schedule, the contents of the registers
(or pointers) are shown in Figure 6.

Thus, for a valid schedule S, the code for each actor has to be
instantiated from a predefined library corresponding to the sequence
of actor firings of S. This can happen in two ways: the code can either
be inserted in line into the target code or be invoked as a subroutine
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call. The mode of code invocation should be specified for each actor
separately. We introduce a function flag(V;) € {0,1} that indicates
for each actor NV; whether it should be instantiated by a subroutine call
(flag(N;) = 0) or inlined into the final program code (flag(N;) = 1)
for all actor invocations.

Also, it can also be specified whether software loops should be im-
plemented or not. If loops are desired, each schedule loop is translated
into a software loop.

In the end, the whole resulting code block is encapsulated within
an infinite loop to obtain a software implementation of the periodic
schedule.

EXAMPLE 8. (A schedule and different implementations). Consider-
ing the schedule AAABB of the SDF graph depicted in Figure 5a),
the figure below shows some possible software implementations in as-
sembly code. The first uses code inlining only. The second invokes the
code with subroutine calls. The last implementation uses program loops
corresponding to the single appearance schedule (3A)(3B).

code bl ock A A do #3, | oopA

code block A code bl ock A
code bl ock A

C B | oopA

code bl ock A code bl ock B

do #2, loop B
code bl ock B JSR A code block B
A JSR A A
code bl ock B JSR A | oopB

A JSR B

JSR B
Inlining Subroutine calls Program loops

Figure 7. Different ways of generating code using inlining (left), subroutine calls
(middle), and loops with inlined code. Many intermediate solutions, e.g., using loops
and subroutine calls, may be imagined.

3. Optimization Metrics

3.1. PROGRAM MEMORY OVERHEAD P(S)

Assume that each actor N; in the library has a program memory re-
quirement of w(V;) € N memory words. Let flag(NV;) € {0,1} denote
the fact whether in a schedule, a subroutine call is instantiated for
all actor invocations of the schedule (flag(N;) = 0) or whether the
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actor code is inlined into the final program text for each occurrence
of N; in the code (flag(N;) = 1). Hence, given a schedule S, the
program memory overhead P(S) will be accounted for by the following
equation:!

=

P(S) = (app(Ni, S) - w(N;) - flag(N;))

=1

+ (w(Ni) + app(N;, S) * Ps) - (1 — flag(N;))

+ Pr(5) (1)

Note that in case one subroutine is instantiated (flag(N;) = 0), the
second term is non-zero adding the fixed program memory size of the
module to the cost and the subroutine call overhead Pg (code for call,
context save and restore, and return commands). In the other case, the
program memory of this actor is counted as many times as it appears
in the schedule S (inlining model). The additive term Pr(S) € N de-
notes the program overhead for looped schedules. It accounts for a) the
additional program memory needed for loop initialization, and b) loop
counter increment, loop exit testing and branching instructions. This
overhead is processor-specific, and in our computations proportional to
the number of loops in the schedules. Let P;, denote the processor spe-
cific constant that models the number of code words for an entire loop
instruction. We have to add this constant as many times as schedule
loops appear in a schedule S. Assume that njy,,(5) is the total number
of loops in the schedule S. Thus, the loop overhead PL(S) becomes:

PL(S) :nloop(s) - P, (2)

3.2. BUFFER MEMORY OVERHEAD D(S)

Note that the individual actor code blocks might need data memory
for storing local variables (e.g., filter coefficients, counter variables,
etc.). As this is a fixed amount of overhead for each actor, and as this
amount is independent from the fact whether inlining or subroutine
calls are used, we account only for overhead due to data buffering for
the communication of actors (buffer cost).

There are many different ways the buffer memory can be organized.
The memory can be allocated fixed to one actor or it can be shared
during execution of a schedule. A buffer block can be considered as ex-
isting the whole schedule period or only as long as it is used. Obviously,
sharing of buffer will in general reduce memory requirements. On the

L app(N;, S): number of times, N; appears in the schedule string S).
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other hand a more complex buffer organization will cause an additional
overhead for storing information about the structure of the memory.

For simplicity, it is assumed here that a distinct segment of memory
is allocated for each arc of a given graph. For this unshared buffer
model, the amount of data needed to store the tokens that accumulate
on each arc during the evolution of a schedule §S' is given as:

D(S) = Z maz_tokens(a, S) (3)
a€cA

Here, max_tokens(a, S) denotes the maximum number of tokens that
accumulate on arc « during the execution of schedule S. This is the
minimal size required for one buffer and can easily be computed by
simulating the schedule execution and tracing the tokens accumulating
on the arc a.

EXAMPLE 9. Consider the schedule in Example 4 of the CDtoDAT
benchmark. This schedule has a buffer memory requirement of 1471 +
1472 4 982 + 288 + 325 = 1021. Swumilarly, for the looped schedule
(0o(7(7(3AB)(2C))(4D))(32E(5F))) the buffer memory requirement is
264.

3.3. ExXEcuTION TIME OVERHEAD T'(S)

With execution time, we denote the duration of execution of one iter-
ation of a SDF graph comprising ¢(XV;) activations of each actor Nj; in
clock cycles of the target processor.

In this work, we account for the effects of (1) loop overhead, (2)
subroutine call overhead, and (3) buffer (data) communication overhead
in our characterization of a schedule. Our computation of the execution
time overhead of a given schedule S therefore consists of the following
additive components:

Subroutine call overhead: For each instance of an actor IV; for which
flag(N;) = 0, we add a processor specific latency time L(N;) € N
to the execution time. This number accounts for the number of cycles
needed for storing the necessary amount of context prior to calling
the subprogram (e.g., compute and save incremented return address),
and to restore the old context prior to returning from the subroutine
(sometimes a simple branch).® For a given schedule S, we define the

% Note that this measure is equivalent to the inverse of the throughput rate in
case it is assumed that the outermost loop repeats forever.

3 Note that the exact overhead may depend also on the register allocation and
buffer strategy. Furthermore, we assume that no nesting of subroutine calls is al-
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subroutine overhead SO(S) as:

[V

SO(S) =Y (1 — flag(Ny)) - L(N;) - g(N;) (4)

i=1
Communication time overhead: Due to static scheduling, the execution
time of an actor may be assumed fixed (no interrupts, no I/O-waiting)
necessary), however, the time needed to communicate data (read and
write) depends in general a) on the processor capabilities, e.g., some
processors are capable of managing pointer operations to modulo buffers
in parallel with other computations.?, and b) on the chosen buffer model
(e.g., contiguous versus non-contiguous buffer memory allocation). In
a first approximation, we define a penalty for the read and write exe-
cution cycles that is proportional to the number of data read (written)
during the execution of a schedule S. For example, such a penalty may
be of the form

10(5)=2 Y q(N)produced(N;)T; (5)
a=(N;,N;)eA

where T;, denotes the number of clock cycles that are needed between
reading (writing) 2 successive input (output) tokens.

Loop overhead: For looped schedules, there is in general the overhead of
initializing and updating a loop counter, and of checking the loop exit
condition, and of branching, respectively. The loop overhead for one
iteration of a simple schedule loop L (no inner loops contained in L) is
assumed a constant 77, € N of processor cycles, and its initialization
overhead Timt € N. Let z(L) € N denote the number of loop iterations
of loop L, then the loop execution overhead is given by O(L) = T +
x(L) - Ty,. For nested loops, the total overhead of an innermost loop is
given as above, whereas for an outer loop L, the total loop overhead is
recursively defined as

0(L)=T£””+x(L)-<TL+ > 0(L’)> (6)

L’ evoked inL

The total loop overhead O(S) of a looped schedule S is the sum of the
loop overheads of the outermost loops.

lowed. Also, recursive subroutines are not created and hence disallowed. Under these
conditions, the context switching overhead will be approximated by a constant L(V;)
for each module IV; or even to be a processor-specific constant 7’s, if no information
on the compiler is available. Then, T's may by chosen as an average estimate or
by the worst-case estimate (e.g., all processor registers must be saved and restored
upon a subroutine invocation).

* Note that this overhead is then highly dependent on the register allocation
strategy.
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EXAMPLE 10. Consider an SDF graph with 4 actors {A,B,C,D},
and furthermore let (co(3(3A4)(4B)) (4(3C)(2D))) be a wvalid schedule
for this graph. Assume that the overhead for one loop iteration T = 2
cycles in our machine model, the initialization overhead being Ti”” = 1.
The outermost loop consists of 2 loops Ly (left) and Lo (right). With
O(S) =1+1-(2+0O(L1)+0(L3)) and x(L1) = 3, (L) = 4, we obtain
the individual loop overheads as O(L1) =1+3-(2+ O(3A) + O(4B))
and O(Ly) =1+4- (24 O(3C) + O(2D)). The innermost loops (3A),
(4B), (3C), (2D) have the overheads 1+6,1+8,1+6,1+4, respectively.
Hence, O(L1) =1+ 3-18 and O(Ly) =1+ 4-14, and O(S) becomes
115 cycles.

In total, T'(S) of a given schedule S is defined as
T(S)=S80(S) + 10(S) + O(S) (7)

EXAMPLE 11. Consider again Example 10. Let the individual exe-
cution time overheads for subroutine calls be L(A) = L(B) = 2, and
L(C) = L(D) = 10 cycles. Furthermore, let code for A and C be gener-
ated by inlining (flag(A) = flag(C) = 1) and by subroutine call for the
other actors. Hence, T(S) = L(B)-q(B)+ L(D)-q(D)+ O(S)+10(S)
results in T'(S) =2-124+10-8 4+ 115+ IO(S) = 219 + IO(S). Hence,
the execution overhead is 219 cycles with respect to the same actor
execution sequence but with only inlined actors and no looping at all.

3.4. TARGET PROCESSOR MODELING

For the following experiments, we will characterize the influence of a
chosen target processor by the following overhead parameters using the
above target (overhead) functions:

— Pg: subroutine call overhead (number of cycles) (here: for simplic-
ity assuming independence of actor, and no context to be saved
and restored except PC and status registers).

— Pr: the number of program words for a complete loop instruction
including initialization overhead.

— Tg: the number of cycles required to execute a subroutine call and
a return instruction and to store and recover context information.

— TL,TE”“: loop overhead, loop initialization overhead, respectively
in clock cycles.
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Table I. The parameters of 3 well-known DSP processors. All are
capable of performing zero-overhead looping. For the TMS320C40,
however, it is recommended to use a conventional counter and branch
implementation of a loop in case of nested loops.P1 is a fictive
processor modeling high subroutine overheads.

System  Motorola DSP56k ADSP 2106x TI 320C40 P1

Py 2 1 1 2

Ps 2 2 2 10
Ty, Tinit 0,6 0,1 8,1 0,1

Ts 8 2 8 16

Three real PDSPs and one fictive processor P1 have been modeled,
see Table I. One can observe that the DSP56k and TMS320C40 have
high subroutine execution time overhead; the DSP56k, however, has
a zero-loop overhead and high loop initialization overhead; and the
TMS320C40 has a high loop iteration overhead but low loop initializa-
tion overhead. P1 models a processor with high subroutine overheads.

4. CDPPO: Code-size dynamic programming
post-optimization

Prior work on the construction of looped schedules for SDF graphs has
focused on single appearance schedules. A single appearance schedule
can be uniquely represented as a parenthesization of a lexical ordering
of the input SDF graph, and vice versa [4]. Here, by a lexical ordering,
we simply mean a linear ordering (a1, a9, ...,ay) of the actors in the
graph. Different parenthesizations of a given lexical ordering lead in
general to different schedules (sequences of actor invocations), and thus,
to different buffer memory requirements.

The problem of optimally parenthesizing a single appearance sched-
ule to minimize the buffer memory requirement has been shown to
have a similar structure as the matriz chain multiplication problem [6],
which is the problem of determining the most efficient order (sequence
of pairwise matrix multiplications) in which to evaluate a product
MM, ... My of matrices. It is well-known that the matrix-chain mul-
tiplication problem is amenable to an efficient dynamic programming
solution [6]. The GDPPO algorithm presented in [4] can be viewed as
an adaptation of this dynamic programming solution to the parenthe-
sization problem for single appearance schedules.
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As discussed in Section 1, our multi-objective optimization tech-
niques developed in this paper go beyond the class of single appearance
schedules since multiple appearance schedules can provide significantly
lower buffer memory requirements over the best single appearance
schedules: when attempting to determine the Pareto-optimal front of
an SDF design space, it is essential to consider multiple appearance
schedules. When considering arbitrary schedules (schedules that are
not necessarily single appearance schedules), a new parenthesization
problem becomes relevant. This is the problem of parenthesizing groups
of repetitive invocation patterns that can be consolidated into loops.
Formally, this is the problem of computing a minimum code size loop
hierarchy for a given sequence of actor invocations, and a given code size
C'(i) associated with each actor invocation i. Typically, all invocations
of an actor A that are inlined will have the same code size cost Cj(A),
and all invocations that are executed with subroutine calls will have
the code size cost of the associated call Cs(A). In such cases, an actor
A that has both inlined and subroutine call invocations in the given
invocation sequence can be handled by decomposing the actor into two
separate actors (within the invocation sequence) — one actor A; that
represents the inlined invocations and has code size C(A4;) = C;(A),
and another actor A; for the subroutine call invocations, which has
code size C(A;) = Cs(A).

Note that unlike the form of parenthesization handled by GDPPO
for single appearance schedules, the parenthesization of arbitrary in-
vocation sequences into optimally-compact loop hierarchies does not
change the actor execution order, and thus, does not affect the buffering
cost.

EXAMPLE 12. Consider an SDF graph that consists of three actors
{X,Y, Z}, and two edges {(X,Y), (Y, Z)} such that produced ((X,Y)) =
consumed ((Y, Z)) = 3, and consumed((X,Y)) = produced ((Y, Z)) = 2.
For clarity, assume that all invocations of each actor V' are implemented
with an inlined implementation having code size cost C(V'). Given the
actor invocation sequence (X,Y, X,Y, Z,Y, Z), one of two parenthesiza-
tions leads to an optimum looping, depending on the relative code sizes
of X and Z. If C(X) > C(Z), then the optimum parenthesization
is (XYXY)ZY Z, which leads to the looped schedule 2XY)ZY Z; if
C(X) < C(Z), however, the best parenthesization is XY X(YZY Z),
which leads to the looped schedule XY X (2Y Z).

The CDPPO algorithm was first proposed in [3], where the algorithm
was outlined as an interesting extension of GDPPO. In this paper, we
introduce the first reported implementation of the CDPPO algorithm,
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and the application of the algorithm to a practical design space ex-
ploration problem. CDPPO computes an optimal parenthesization in
a bottom-up fashion. Given, an SDF graph G = (V, E) and an actor
invocation sequence fi, fa,..., fn, where each f; € V, CDPPO first
examines all 2-invocation sub-chains (f1, f2), (f2, f3)s--., (fn=1, fn) tO
determine an optimally-compact looping structure (subschedule) for
each of these sub-chains. For a 2-invocation sub-chain (f;, fi+1), the
most compact subschedule is easily determined: if f; = f; 11, then (2f;)
is the most compact subschedule, otherwise the original (unmodified)
subschedule f;fi+ 1 is the most compact. After the optimal 2-node
subschedules are computed in this manner, these subschedules are used
to determine optimal 3-node subschedules (optimal looping structures
for subschedules of the form f;, fi+1, fi+2); the 2- and 3-node subsched-
ules are then used to determine optimal 4-node subschedules, and so
on until the n-node optimal subschedule is computed, which gives a
minimum code size implementation of the input invocation sequence
f17f27"'7fn-

To understand the general approach for computing optimal sub-
schedules given optimal subschedules for all “lower-order sub-chains,”
suppose that o = (fj, fi+1,--., fi+k) i an arbitrary sub-chain of the
input schedule f1, fo,..., fn (1 < k < (n —1)), and suppose that op-
timal subschedules for all k-node sub-chains are available. An optimal
subschedule for o can be determined by first computing C; = Z; ;1 +
Z(itj+1),(i+k), Where Z , denotes the minimum code size cost for the
sub-chain (fz, fet1,- .-, fy- Any value of j that minimizes C; gives an
optimum point at which to ”split” the sub-chain o if f;, fi+1,-.., fi+k
are not to be executed through a single loop.

Thus, it remains only to compute the minimum cost attainable
for o if the entire sub-chain is to be executed through a single loop.
This minimum cost can be computed by determining those values of
m € divides(k 4+ 1), where divides(k 4+ 1) denotes the set of integers
that divide the integer (k + 1) (with zero remainder), for which o is
equivalent to the invocation sequence generated by a loop of the form
(mfifa... f(k+ 1)/m). For each such m, the code size of the associated
single-loop implementation can be expressed as CL, + Z} (y4.1)/m, where
C is the code size overhead of looping. If one or more values of m exist
that give single-loop structures for implementing o, then the associated
code sizes are compared to determine an optimal single-loop structure,
and this optimal single-loop structure is compared to the minimum
value of C; to determine an optimal looping structure for o. Otherwise,
the optimal looping structure for sigma is simply taken to be that
corresponding to the minimum value of Cj.
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The time-complexity of the overall CDPPO algorithm is O(n?),
where n is the total number of actor invocations in the input schedule.
Our initial experiments with CDPPO indicated that the run time of
the algorithm can be high when the algorithm is applied to complex
multirate systems. For example, when we applied our implementation
of CDPPO to a minimum buffer schedule for a sample-rate conversion
application, we observed a run time of 30 seconds. While such run times
are acceptable for deterministic scheduling strategies in which CDPPO
is applied only once, they are not acceptable in probabilistic algorithms,
such as our evolutionary algorithm, that evaluate numerous candidate
implementations, and invoke CDPPO for each candidate.

Thus, in our implementation of CDPPO, we have introduced two
pairs of parameters a1, as and 3y, B2 in the CDPPO algorithm to trade-
off the accuracy of the optimization with the required run-time. These
parameters are to be set experimentally — based on the specific SDF
application under consideration — to yield the desired trade-off. The
parameters a; and as (1 < a1 < ay) specify the minimum and max-
imum sub-chain sizes for which optimal single-loop implementations
(loop structures of the form (mfifa... f(k+ 1)/m)) will be considered.
Similarly, the algorithm parameters 3; and (3 specify the minimum and
maximum sub-chain sizes for which alternative split positions will be
evaluated. For sub-chain lengths less than (3; or greater than (s, the
split will be taken to be halfway in the middle. We have found that the
parameters a1, g, 31, B2 provide an effective means for systematically
trading-off between the run-time of CDPPO, and the code size cost of
the resulting looping structures.

5. Basic Principles of Multi-objective Optimization

The problem under consideration involves three different objectives:
program memory, buffer memory, and execution time. These cannot be
minimized simultaneously, since they are conflicting — a typical multi-
objective optimization problem. In this case, one is not interested in a
single solution but rather in a set of optimal trade-offs which consists
of all solutions that cannot be improved in one criterion without degra-
dation in another. The corresponding set is denoted as Pareto-optimal
set. Mathematically, the concept of Pareto optimality can be defined
as follows.

DEFINITION 3. Let us consider, without loss of generality, a multi-
objective minimization problem with m decision variables and n objec-
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tives:
' Minimize ¢ = f(Z) = (f1(Z),..., fn(Z))

subject to T = (z1,29,...,%y) € X (8)
'!7: (y17y27---7yn) €Y

where I is called the decision vector, X is the parameter space, ¥ is the
objective vector, and Y is the objective space. A decision vector d € X
is said to dominate a decision vector b € X (also written as @ < b) iff

Vie{l,....n}: f;(@ < fi(b) A

-,

E|j€{1,,n} f](6)<f]() (9)

Additionally, in this study @ is said to cover b (@ < b) iff @ < b or
f(@) = f(b). All decision vectors which are not dominated by any other
decision vector of a given set are called nondominated regarding this
set. The decision vectors that are nondominated within the entire search
space are denoted as Pareto optimal and constitute the so-called Pareto-
optimal set. The set of objective vectors that corresponds to the Pareto-

optimal set forms the Pareto-optimal front.

Evolutionary algorithms (EAs) seem to be especially suited to multi-
objective optimization because they are able to capture several Pareto-
optimal solutions in a single simulation run and may exploit similari-
ties of solutions by recombination. Some researchers even suggest that
multi-objective search and optimization might be a problem area where
EAs do better than other blind search strategies [8]. The numerous ap-
plications and the rapidly growing interest in the area of multi-objective
EAs supports this assumption. Moreover, up to now there are few if
any alternatives to EA-based multi-objective optimization [10].

Several multi-objective EAs have been proposed since 1985, which
mainly differ in fitness assignment scheme and the way of maintaining
diversity in the population®. In this study, the Strength Pareto Evo-
lutionary Algorithm (SPEA), a recent technique proposed in [17], is
used. This algorithm has been shown to outperform other evolutionary
approaches on different test problems [16, 17].

6. Evolutionary Algorithm

SPEA maintains besides the regular population an external set of in-
dividuals that represents the nondominated solutions of all solutions

5 For reviews of multi-objective evolutionary algorithms, the interested reader is
referred to [8, 10, 14]
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generated so far. This set is updated every generation and afterwards

included

in the selection process. Therefore, nondominated solutions

cannot get lost, which in turn also promotes diversity in the population.
The flow of the evolutionary algorithm used here is as follows.

Step 1:

Step 2:
Step 3:

Step 4:
Step 5:

Step 6:

Step 7:

Step 8:

Generate an initial population P and create the empty exter-
nal set P'.

Copy nondominated members of P to P'.

Remove solutions within P’ which are covered by any other
member of P’

Calculate the fitness of each individual in P as well as in P'.

Select individuals from P + P’ (multiset union), until the
mating pool P is filled. In this study, binary tournament
selection with replacement is used.

Create the empty set P55 While the mating pool is not
empty do

— Select two arbitrary individuals from P, without re-
placement.

— Create two children by recombining the two chosen par-
ents.

— With probability p. add the children to Pe,,ss, otherwise
add the parents to Peposs-

Create the empty set P,,,;. For each individual in P, ,ss do
mutate it with mutation rate p,, and add it to Pj,;.

Set P = Ppy. If the maximum number of generations is
reached then stop else go to Step 2.

Note that this presentation where selection, recombination, and mu-
tation are considered as separate processes follows the one given in
[1] and slightly differs from other formulations [9]. Nevertheless, both
descriptions are mathematically equivalent.

6.1. PROBLEM CODING

Each genotype consists of four parts which are encoded in separate
chromosomes: i) schedule, ii) code model, iii) actor implementation
vector, and iv) loop flag. This is illustrated in Figure 8.
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Schedule Code Model Actor Implementation Loop Flag
A B
[ATATBIATB] [0[1]
possible aleles: possible aleles: possible dleles:
0 = only subroutines 0 = subroutine 0 = looping off
1=onlyinlining 1=inlining 1 =looping on
2 = mixed

Figure 8. Example of an individual for the graph depicted in Figure 5a)

The schedule represents the order of actor firings and is fixed in
length because the number of firings of each actor is known a priori.
Since arbitrary actor firing sequences may contain deadlocks, etc., a
repair mechanism is applied in order to map every schedule chromosome
unambiguously to a valid schedule. It is based on a topological sort
algorithm and simulates the execution of the actors:

Step 1: Create the empty topological sort 7' and initialize each arc «
with delay(«) tokens.

Step 2: Choose the leftmost actor instance in the encoded actor se-
quence S which is fireable.

Step 3: Remove the selected actor instance at the corresponding po-
sition within S and append it to 7T'.

Step 4: Simulate the firing of the chosen actor, i.e., from each ingoing
arc « remove consumed(a) tokens and to each outgoing arc
B add produced(f3) tokens.

Step 5: If S is not empty then go to Step 2 else T is the repaired
schedule.

In contrast to a common topological sort procedure, the tie between
several fireable actors is not broken at random but always the actor in-
stance at the leftmost position within the encoded actor firing sequence
is selected.

The code model chromosome determines the way how the actors are
implemented and contains one gene with three possible alleles: all actors
are implemented as subroutines, only inlining is used, or subroutines
and inlining are mixed. For the last case, the actor implementation vec-
tor, a bit vector, encodes for each actor separately whether it appears
as inlined or subroutine code in the implementation.

Finally, a fourth chromosome, the loop flag, determines whether to
use loops as a mean to reduce program memory. If the loop flag is set,
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the CDPPO algorithm (cf. Section 4) is applied to the flat schedule
encoded in the individual, otherwise the schedule is not looped. As
mentioned in Section 4, CDPPO has four parameters by which the
run-time as well as the accuracy can be adjusted. These parameters
are set by the user and fixed per optimization run.

6.2. FITNESS ASSIGNMENT

The fitness assignment procedure is a two-stage process. First, the in-
dividuals in the external set P’ are ranked. Afterwards, the individuals
in the population P are evaluated. In detail, the following three steps
are performed:

Step 1: For each individual in the population and in the external set
determine execution time, program memory, and data mem-
ory required by the encoded implementation.

Step 2: Each individuali € P’ is assigned a real fitness value f; € [0,1)
which is proportional to the number of population members
j € P for which ¢ < j. Let n denote the number of individuals
in P that are covered by 7 and assume N is the size of P.
Then f; is defined as

_ n
 N+1°

fi

Step 3: The fitness of an individual 5 € P is calculated by summing
the fitness values of all externally stored individuals i € P’
that cover j. We add one to the total in order to guarantee
that members of P’ have better fitness than members of P
(note that fitness is to be minimized, i.e., small fitness values
correspond to high reproduction probabilities):

fi=1+ Zfi where f; € [1,N).

1,1X]

6.3. GENETIC OPERATORS

Due to the heterogeneous chromosomes, a mixture of different crossover
and mutation operators accomplishes the generation of new individuals.
For the schedule, order-based uniform crossover and scramble sublist
mutation are used [7], which do not destroy the permutation property;
a short description of these operators is given below. Concerning the
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parent 1
(Al[BI[CIDIEFIGIH ]

parent 2

BIMHEEE R CE]A]

1) select parents

2) generate random bit string [OJ[1)z]fo][z][o][o][2][2][2]

chilgl/ \Jﬁmz
3) fill in selected positions CIEICEHEHEMML] LIHHEHEREEE
4) collect missing dlementsinlis B~ E~E+-E | R HE F 2 CRg B Rg A
5) re-order list E-E-B-R a-g-g-@-a-m
6) fill up children [Sl(B][C][F][E][DJ[AlHI[T][I] BN EEEE R E] ]

Figure 9. Order-based uniform crossover

other chromosomes, we work with one-point crossover and bit flip mu-
tation [9] (as the code model gene is represented by an integer, mutation
is done by choosing one of the three alleles at random).

6.3.1. Order-based Uniform Crossover

How this operator recombines two given permutations is illustrated in
Figure 9. First, a bit string is randomly generated that is the same
length as the parents. The bit positions correspond to the positions
within the permutations defined by the parents. Then the first child
is partially filled up. The node annotations of the first parent are
copied to this child at the positions where the bit string contains a
”17. Analogously, the second child inherits the node annotations of the
second parent wherever a ”0” occurs. Now, both children have gaps at
complementary positions. In a third step, for each child a list is built
up which contains all nodes not yet specified in the child. Afterwards,
the list of the first child is sorted according to the node order in the
second parent. Again, the same is done with the list of the second child.
The relative order of the nodes in the list is identical to their relative
order in the first parent. Finally, step by step and from left to right,
the list elements are inserted at the gaps of the corresponding child.

EXAMPLE 13. Let the first parent be the sequence ABCDEFGHI and
the second parent the same sequence in reverse order. The intermediate
results of the crossover phase are shown in Figure 9. At the end, two

children, GBCFEDAHIJ and JABGCEDFHI, have been created.
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1) select individual (Al[B][C][D][E][F][G][HI[1][I]

2) choose two random positions ?m

3) permutate sublist randomly ABEICIEBRE™EArN][E]
4 b

Figure 10. Scramble sublist mutation.

6.3.1.1. Scramble Sublist Mutation Mutation is done by permuting
the elements between two selected positions, where both the positions
and the subpermutation are chosen at random.

EXAMPLE 14. Figure 10 shows an example for this operator. The
chromosome ABCDEFGHIJ mutates to the sequence ABCFDGEHIJ.

7. Experiments

The CDtoDAT example was used to compare the design spaces of the
different DSP processors listed in Table 1. For each of the real processors
two kinds of experiments were performed: one time the parameters of
CDPPO were set to a3 = 1,9 = 00,01 = 10,62 = 40 leading to
suboptimal looping (about 5 hours run-time for one EA optimization
run on a Sun ULTRA 30)®, another time the focus was on optimal
looping, where both accuracy and run-time of the CDPPO algorithm
were maximum (the EA ran about 5 days).” For P1 only suboptimal
looping was considered.
In all cases, the following EA parameters were used:

generations 1 250
population size : 100
crossover rate : 0.8

mutation rate ;018

Moreover, before every run a heuristic called APGAN (acyclic pair-
wise grouping of adjacent nodes [4]) was applied to this problem. The
APGAN solution was inserted in two ways into the initial population:

6 These CDPPO parameters were chosen based on preliminary experiments.

" Note that this optimization time is still quite low for processor targets assumed
to be programmed once and supposed to run an application forever.

8 The bit vector was mutated with a probability of 1/L per bit, where L denotes
the length of the vector.
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with and without looping. Finally, the set of all nondominated solutions
found during the entire evolution process was considered as outcome
of one single optimization run.

The nondominated fronts achieved by the EA in the different runs
are shown in Figures 11 to 14. To make the differences between the
processors clearer, the plots have been cut at the top without destroying
their characteristics.

The trade-offs between the three objectives are very well reflected
by the extreme points. The rightmost points in the plots represent
schedules that neither use looping nor subroutine calls. Therefore, they
are optimal in the execution time dimension, but need a maximum of
program memory because for each actor firing there is an inlined code
block. In contrast, the leftmost points make excessive use of looping
and subroutines which leads to minimal program memory requirements,
however at the expense of a maximum execution time overhead. An-
other extreme point (not shown in the figures) satisfies D(S) = 1021,
but has only little overhead in the remaining two dimensions. It stands
for an implementation which includes the code for each actor only
once by using inlining and looping. The schedule associated with this
implementation is a single appearance schedule.

Furthermore, the influence of looping and subroutine calls is re-
markable. Using subroutines does not interfere with buffer memory
requirements; there is only a trade-off between program memory and
execution time. Subroutine calls may save much program memory, but
at the same time they are expensive in terms of execution time. This
fact is reflected by ”gaps” on the execution time axis in Figures 11
and 13. Looping, however, depends on the schedule: schedules which
can be looped well may have high buffer memory requirements and vice
versa. This trade-off is responsible for the variations in buffer memory
requirements and is illustrated by the points that are close to each other
regarding program memory and execution time, but strongly differ in
the buffer memory required.

Comparing the three real processors, one can observe that the ADSP
2106x produces less execution time overhead than the other proces-
sors which is in accordance with Table I. Subroutine calls are most
frequently used in case of the TMS320C40 because of the high loop
iteration overhead.

For processor P1 (Figure 14), it can be seen that points at the front
of minimal program memory require much more program memory than
the other processors. This is in accordance with the high penalty in
program memory and execution time when subroutines are used. In
fact, none of the 186 nondominated points found used subroutine calls
for any actor.
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Figure 11. Motorola DSP56k (left: suboptimal looping, right: optimal looping)

Figure 12. ADSP 2106x (left: suboptimal looping, right: optimal looping)

Figure 13. TI TMS320C40 (left: suboptimal looping, right: optimal looping)
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Figure 14. Processor P1 (suboptimal looping)

The effect of the looping algorithm on the obtained nondominated
front can be clearly seen by comparing the results for suboptimal and
optimal looping in Figures 11 to 13. In general, the nondominated
solutions found require less buffer memory when the optimal looping
algorithm is applied, the trade-off surface becomes much more flat in
this dimension. It is also remarkable that for each real processor several
solutions were generated that need less program memory than the im-
plementation with lowest code size when using the suboptimal looping
algorithm. As a result, the optimization time spent by the looping
algorithm has a big influence on the shape of the nondominated front.

8. Conclusions

In this paper, we presented a methodology for exploring the design
space of programmable digital signal processors (PDSP) implementa-
tions of synchronous dataflow graphs.

The design space is given here by schedule solutions that differ each
in program memory requirements (code size), data memory require-
ments, and execution time. These solutions result from the freedom
of allowing not only different execution orders, but also permitting
looped schedules, and deciding whether for each actor appearance a
subprogram call will be instantiated in the final code or whether the
actor code is inlined.

With the above partially conflicting goals, optimal solutions are
defined by Pareto optimality. The set of optimal solutions is explored
using an evolutionary algorithm. For a number of well-known PDSP
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processors, the fronts of optimal solutions have been explored and
compared. Also, we have shown that there is a trade-off between the
quality of the found front of optimal solutions and the time spent in
the used looping algorithm CDPPO (codesize dynamic programming
post-optimization).

In the future, we’d like to investigate this trade-off between opti-
mization time spent for exploration and within local search algorithms
in more detail. Our code synthesis optimization problem seems to be a
good candidate for studying these trade-offs.
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