
Multidimensional Exploration of SoftwareImplementations for DSP Algorithms �Eckart Zitzler (zitzler@tik.ee.ethz.ch)Computer Engineering and Networks Laboratory (TIK), ETH Zurich, SwitzerlandJ�urgen Teich (teich@date.uni-paderborn.de)Computer Engineering (DATE), University of Paderborn, GermanyShuvra S. Bhattacharyya (ssb@eng.umd.edu)Institute for Advanced Computer Studies (UMIACS), University of Maryland,College Park, USAJuly 1, 1999Abstract. When implementing software for programmable digital signal proces-sors (PDSPs), the design space is de�ned by a complex range of constraints andoptimization objectives. Three implementation metrics that are crucial in manyPDSP applications are the program memory requirement (code size), data memoryrequirement, and execution time. This paper addresses the problem of exploring the3-dimensional space of trade-o�s that is de�ned by these crucial metrics. Given asoftware library for a target PDSP, and a data
ow-based block diagram speci�cationof a DSP application in terms of this library, our objective in this paper is to computea full range of Pareto-optimal solutions. For solving this multi-objective optimizationproblem, an evolutionary algorithm based approach is applied. We illustrate ourtechniques by analyzing the trade-o� fronts of a practical application for a numberof well-known, commercial PDSPs.1. IntroductionStarting with a data 
ow graph speci�cation to be implemented ona digital signal processor, we study the e�ects between instantiatingcode by inlining or subroutine calls as well as the e�ect of loop nest-ing and context switching on a target processor (PDSP) that is usedas a component in a memory and cost-critical environment, e.g., asingle-chip solution. For such applications, a careful exploration of thepossible spectrum of implementations is of utmost importance becausethe market of these products is driven by tight cost and performanceconstraints. Frequently, these systems are once programmed to runforever. Optimization and exploration times in the order of hours aretherefore tolerable.� S. S. Bhattacharyya was supported in this work by the US National ScienceFoundation (CAREER, MIP9734275) and Northrop Grumman Corp.c
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2 We present the �rst systematic optimization framework for exploringtrade-o�s in the space of possible software implementations with regardto the following three objectives: execution time, program memory, anddata memory.The methodology begins with a given synchronous data
ow graph[12], a restricted form of data
ow in which the nodes, called actorshave a simple �ring rule: The number of data values (tokens, samples)produced and consumed by each actor is �xed and known at compile-time.EXAMPLE 1. A practical example is a sample-rate conversion system.In Figure 1, a digital audio tape (DAT), operating at a sample rate of 48kHz is interfaced to a compact disk (CD) player operating at a samplingrate of 44.1 kHz, e.g., for recording purposes, see [15] for details onmultistage sample rate conversion.3A B C D E FCD DAT1 1 2 2 7 8 7 5 1Figure 1. CDtoDAT conversion benchmarkThe major reason why the SDF model is widely used as the un-derlying speci�cation model are the abilities to express multirate sys-tems, parallelism, and that many important aspects such as deadlockdetection and scheduling can be determined at compile-time.As a matter of fact, there exist rapid prototyping environments thatuse SDF graphs or related models as input for code generators forprogrammable digital signal processors (PDSPs) [5, 11, 13].As reported by DSP analysts (e.g., the DSPStone benchmarkinggroup [18]), today's DSP compilers still produce several 100%s of over-head with respect to assembly code written and optimized by hand.Hence, the hardware capabilities such as zero-loop overhead, executionof multiple instructions (e.g., memory write and execute), and special-ized instruction sets (e.g., multiply-add operations) as well as specialaddressing modes (e.g., indexed versus pointer addressing) cannot besu�ciently exploited at this point in time.A commonly used approach in SDF-based design environments thatavoids the limitations of current compiler technology is to store op-timized assembly code for each actor (.e.g., �lter components) in atarget-speci�c library and to generate code from a given schedule byinstantiating actor code in the �nal program. By doing this, the in-
uence of the compiler technology may be taken out as one unknownfactor of e�ciency.
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Figure 2. Trade-o� between the three performance criteriaPrior work on code size minimization of SDF schedules has focusedon an inline code generation model [4]. The total memory requirementmay then be approximated by a linear combination of the (weighted)number of actor appearances in a schedule. Evidently, so called singleappearance schedules (SASs), where each actor appears only once ina schedule, are program memory optimal under this model. However,they may not be data memory minimal, and in general, it may bedesirable to trade-o� some of the run-time e�ciency of code inliningwith further reduction in code size by using subroutine calls, especiallywith system-on-a-chip implementations.Figure 2 depicts the trade-o� that has to be made. The bu�ermemory is mainly in
uenced by the schedule and the chosen bu�ermodel. Software loops increase the execution time, however, decreasethe program memory. Since it depends on the schedule to which extentlooping can be applied, there is a trade-o� between program memoryand data memory. The use of subroutine calls causes a higher executiontime, but decreases again the program memory requirements. Withinlining, the target code gets faster, but larger.Because of this trade-o�, the software synthesis based on a SDF spec-i�cation is a typical multi-objective optimization problem. Three con-
icting goals have to be optimized, which are all of equal importance.This means, that many \best" solutions coexist. The optimizationprocess should �nd the set of this \best" solutions.One approach to perform this exploration are evolutionary algo-rithms (EAs). These are optimization methods based on nature's evolu-tion process. Solutions in the search space are considered as individualsof a population. A selection mechanism will give preference to strong in-dividuals and disfavor weaker ones similar to the survival-of-the-�ttestprinciple. Figure 3 shows the basic mechanisms of an EA. The iterationsrepresent the sequence of generations of the population.This paper is organized as follows. First, the optimization problemand metrics are formally de�ned (Section 2 and 3). A code-size dy-namic programming post-optimization algorithm called CDPPO whichis implemented in the evolutionary framework for computing optimally
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Figure 3. Outline of an evolutionary algorithmnested loops for a given schedule, is described in Section 4. Afterwards,basic principles of multi-objective optimization are brie
y discussedin Section 6, and Section 7 deals with implementation aspects of theEA. Finally, Section 8 presents the experimental results concerning theCDtoDAT application (cf. Example 1), and the last section is devotedto concluding remarks and future perspectives.2. SDF Scheduling FrameworkDEFINITION 1. (SDF graph). An SDF graph G denotes a 5-tupleG = (V;A; produced; consumed; delay) where�V is the set of nodes (actors) (V = fv1; v2; � � � ; vjVjg).�A is the set of directed arcs. With source(�) (sink(�)), we de-note the source node (target node) of an arc � 2 A.�produced : A ! N denotes a function that assigns to each di-rected arc � 2 A the number of produced tokens produced(�) perinvocation of actor source(�).�consumed : A ! N denotes a function that assigns to eachdirected arc � 2 A the number of consumed tokens per invocationof actor sink(�).
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5�delay : A ! N0 denotes the function that assigns to each arc� 2 A the number of initial tokens delay(�) that reside on �.EXAMPLE 2. The graph in Figure 1 has jV j = 6 nodes (or actors).Each presents a function that may be executed as soon as its input con-tains at least consumed(�) data tokens on each ingoing arc �, see thenumbers annotated with the arc heads. E.g., actor B requires one inputtoken on its input arc, and produces 2 output tokens on its outgoing arcwhen �ring. In the shown graph, delay(�) = 0 8� 2 A. Hence, initially,only actor A, the source node, may �re. Afterwards, B may �re for the�rst time. After that, however, node C still cannot yet �re, because itrequires consumed(�) = 3 tokens on its ingoing arc, however, there areonly two produced by the �ring of B. In general, many �ring sequencesof actors may evolve.A schedule is a sequence of actor �rings. A properly-constructed SDFgraph is compiled by �rst constructing a �nite schedule S that �res eachactor at least once, does not deadlock, and produces no net change inthe number of tokens queues associated with each arc. When such aschedule is repeated in�nitely, we call the resulting in�nite sequence ofactor �rings a valid periodic schedule, or simply valid schedule.SDF graphs for which valid schedules exist are called consistentgraphs. Systematic techniques exist to e�ciently determine whetheror not a given SDF graph is consistent and to compute the minimumnumber of times that each actor must execute in the body of a validschedule [12]. We represent these minimum numbers of �rings by afunction qG or simply q in case G is known from the context withq : V ! N.EXAMPLE 3. The CDtoDAT graph in Figure 1 is consistent becausethere exists a (non-zero) �nite actor �ring sequence such that the initialtoken con�guration is obtained again. The minimal number of actor �r-ings is obtained as q(A) = q(B) = 147, q(C) = 98, q(D) = 28; q(E) =32; q(F ) = 160. The schedule (1(7(7(3AB) (2C))(4D))(32E(5F )))represents a valid schedule.Each parenthesized term (n S1 S2 � � � Sk) is referred to as scheduleloop having iteration count n and iterands S1; S2; � � � ; Sk. We say thata schedule for an SDF graph is a looped schedule if it contains zero ormore schedule loops. A schedule is called single appearance schedule, orsimply SAS in the following, if it contains only one appearance of eachactor.EXAMPLE 4. The following schedule is a valid SAS for the graphshown in Figure 1: (1(147A)(147B)(98C)(28D)(32E)(160F )).
jvlsi.tex; 18/10/1999; 17:02; p.5



6 Although SAS o�er minimal code size, they are not necessarily opti-mal in terms of data-memory consumption [2]. In general, a schedule ofthe form (1 (q(N1)N1) (q(N2)N2) � � � (q(NjVj)NjVj)) whereNi denotesthe (label of the) ith node of a given SDF graph, and jVj denotes thenumber of nodes of the given graph, is called 
at single appearanceschedule.EXAMPLE 5. Consider the simple SDF graph G in Figure 5a). Withproduced(�) = 2 and consumed(�) = 3, we obtain q(A) = 3, q(B) = 2as the minimal actor repetition numbers. The schedule (1(3A)(2B)) isa valid (
at) SAS, requiring 6 units of memory to store the maximalamount of data that accumulates on the arc � (after the �ring of the�rst schedule loop). The schedule (1(2A)BAB) requires only 4 units(after the �rst two �rings of actor A).The above example shows us that SASs, though compact, are notnecessarily data-memory minimal. In order to exploit also multiple-appearance schedules (called MAS in the following), we must be ableto look at the unfolding of the SDF graph that represents the causalproperties of each single actor invocation in a periodic schedule.DEFINITION 2. (Unfolding). Given a consistent SDF graph G = (V,A, consumed, produced, delay) and the minimal repetition vector q =(q(N1); q(N2); : : : ; q(NjV j)). The marked graph G0 = (V 0; A0; delay0)obtained as follows is called its unfolding:�jV 0j = PjV ji=1 q(Ni) and for each node Ni 2 V there exists a setV 0i = fN1i ; . . . , N q(Ni)i g in V 0 (V 0 = SjV ji=1 V 0i ).�The arc set A0 and the initial data delay0 are obtained as follows(we consider each arc � = (Ni; Nj) 2 A separately and instantiatecorresponding arcs in A0). Thereby, �i, with 1 � �i � q(Ni);denotesthe counting index for the q(Ni) instances N �ii .For each arc � = (Ni; Nj) 2 A, there exist q(Ni) �produced(�) arcs�0 = (N �ii ; N �jj ) 2 A0, where the kth arc with k = 1; : : : ; q(Ni) �produced(vi; vj)) is directed from node N �ii with�i = ((k � 1) div produced(Ni; Nj)) + 1to node N �jj with�j = (((delay(�) + k � 1) mod (q(Nj)consumed(�))) divconsumed(�)) + 1:
jvlsi.tex; 18/10/1999; 17:02; p.6
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Figure 4. Unfolding of the SDF graph as introduced in Example 5.Furthermore, the lth initial token with l = 1; : : : ; delay(�) is situ-ated on the kth arc between nodes Ni and Nj in A0 withk = q(Ni)produced(�) � (l � 1) mod (q(Ni)produced(�))Obviously, the unfolding G0 = (V 0; A0; delay0) contains� jV 0j =PjV ji=1 q(Ni) nodes, and� jA0j =PjAjj=1 produced(�j) � consumed(�j) arcs.EXAMPLE 6. Consider again the simple SDF graph G as introducedin Example 5. The unfolding of this graph is shown in Figure 4. Thereare three actor instantiations of actor A and two instances of actor B.It can be shown that single-appearance schedules of this graph representall valid schedules of the corresponding SDF graph. For example, theschedule (1AABAB) is a valid schedule, whereas (1ABABA) is not.Vice versa, if a schedule of the unfolding is not valid, then the scheduleof actor names is also invalid in the original SDF graph. In this sense,both of them are equivalent.2.1. Code generation modelFor each actor in a valid schedule S, we insert a code block that isobtained from a library of prede�ned actors or a simple subroutine call
jvlsi.tex; 18/10/1999; 17:02; p.7



8 A B2 3G �a)b) c) move loc;R1move loc;R2code for Aoutputs y0; y1move y0; (R1)+l do #3; loop Aloc move (R2)+; x0inputs x0; x1; x2move (R2)+; x1move (R2)+; x2do #2; loop Bcode for Bloop B :move y1; (R1)+loop A :wp(�)rp(�)
Figure 5. SDF graph a), memory model for arc bu�er b), and Motorola DSP56k-likeassembly code realizing the schedule S = (1(3A)(2B))A2 B1A1 wp(�)rp(�) A3 B2Figure 6. Memory accesses for the schedule S = (1AABAB)of the corresponding subroutine, and the resulting sequence of codeblocks (and subroutine calls) is encapsulated within an in�nite loopto generate a software implementation. Each schedule loop thereby istranslated into a loop in the target code.EXAMPLE 7. For the simple SDF graph in Figure 5a), a bu�er modelfor realizing the data bu�er on the arc � as well as a pseudo assemblycode notation (similar to the Motorola DSP56k assembly language) forthe complete code for the schedule S = (1(3A)(2B)) is shown in Fig-ure 5b), c) respectively. There is a location loc that is the address ofthe �rst memory cell that implements the bu�er and one read (rp(�))and write pointer (wp(�)) to store the actual read (write) location.The notation do #N LABEL denotes a statement that speci�es Nsuccessive executions of the block of code between the do-statement andthe instruction at location LABEL. First, the read pointer rp(�) to thebu�er is loaded into register R1 and the write pointer wp(�) is loadedinto R2. During the execution of the code, the new pointer locationsare obtained without overhead using autoincrement modulo addressing((R1)+; (R2)+). For the above schedule, the contents of the registers(or pointers) are shown in Figure 6.Thus, for a valid schedule S, the code for each actor has to beinstantiated from a prede�ned library corresponding to the sequenceof actor �rings of S. This can happen in two ways: the code can eitherbe inserted in line into the target code or be invoked as a subroutine

jvlsi.tex; 18/10/1999; 17:02; p.8



9call. The mode of code invocation should be speci�ed for each actorseparately. We introduce a function flag(Ni) 2 f0; 1g that indicatesfor each actor Ni whether it should be instantiated by a subroutine call(flag(Ni) = 0) or inlined into the �nal program code (flag(Ni) = 1)for all actor invocations.Also, it can also be speci�ed whether software loops should be im-plemented or not. If loops are desired, each schedule loop is translatedinto a software loop.In the end, the whole resulting code block is encapsulated withinan in�nite loop to obtain a software implementation of the periodicschedule.EXAMPLE 8. (A schedule and di�erent implementations). Consider-ing the schedule AAABB of the SDF graph depicted in Figure 5a),the �gure below shows some possible software implementations in as-sembly code. The �rst uses code inlining only. The second invokes thecode with subroutine calls. The last implementation uses program loopscorresponding to the single appearance schedule (3A)(3B).
A
 code block A
  ...
B
 code block B
  ...
JSR A
JSR A
JSR A
JSR B
JSR B

code block A
 ...
code block A
 ...
code block A
 ...
code block B
 ...
code block B
 ...

do #3, loopA
 code block A
  ...
loopA

do #2, loop B
 code block B
  ...
loopB

Inlining Subroutine calls Program loopsFigure 7. Di�erent ways of generating code using inlining (left), subroutine calls(middle), and loops with inlined code. Many intermediate solutions, e.g., using loopsand subroutine calls, may be imagined.3. Optimization Metrics3.1. Program memory overhead P (S)Assume that each actor Ni in the library has a program memory re-quirement of w(Ni) 2 N memory words. Let flag(Ni) 2 f0; 1g denotethe fact whether in a schedule, a subroutine call is instantiated forall actor invocations of the schedule (flag(Ni) = 0) or whether the
jvlsi.tex; 18/10/1999; 17:02; p.9



10actor code is inlined into the �nal program text for each occurrenceof Ni in the code (flag(Ni) = 1). Hence, given a schedule S, theprogram memory overhead P (S) will be accounted for by the followingequation:1P (S) = jV jXi=1 (app(Ni; S) � w(Ni) � flag(Ni))+ (w(Ni) + app(Ni; S) � PS) � (1� flag(Ni))+ PL(S) (1)Note that in case one subroutine is instantiated (flag(Ni) = 0), thesecond term is non-zero adding the �xed program memory size of themodule to the cost and the subroutine call overhead PS (code for call,context save and restore, and return commands). In the other case, theprogram memory of this actor is counted as many times as it appearsin the schedule S (inlining model). The additive term PL(S) 2 N de-notes the program overhead for looped schedules. It accounts for a) theadditional program memory needed for loop initialization, and b) loopcounter increment, loop exit testing and branching instructions. Thisoverhead is processor-speci�c, and in our computations proportional tothe number of loops in the schedules. Let PL denote the processor spe-ci�c constant that models the number of code words for an entire loopinstruction. We have to add this constant as many times as scheduleloops appear in a schedule S. Assume that nloop(S) is the total numberof loops in the schedule S. Thus, the loop overhead PL(S) becomes:PL(S) = nloop(S) � PL (2)3.2. Buffer memory overhead D(S)Note that the individual actor code blocks might need data memoryfor storing local variables (e.g., �lter coe�cients, counter variables,etc.). As this is a �xed amount of overhead for each actor, and as thisamount is independent from the fact whether inlining or subroutinecalls are used, we account only for overhead due to data bu�ering forthe communication of actors (bu�er cost).There are many di�erent ways the bu�er memory can be organized.The memory can be allocated �xed to one actor or it can be sharedduring execution of a schedule. A bu�er block can be considered as ex-isting the whole schedule period or only as long as it is used. Obviously,sharing of bu�er will in general reduce memory requirements. On the1 app(Ni; S): number of times, Ni appears in the schedule string S).
jvlsi.tex; 18/10/1999; 17:02; p.10



11other hand a more complex bu�er organization will cause an additionaloverhead for storing information about the structure of the memory.For simplicity, it is assumed here that a distinct segment of memoryis allocated for each arc of a given graph. For this unshared bu�ermodel, the amount of data needed to store the tokens that accumulateon each arc during the evolution of a schedule S is given as:D(S) = X�2Amax tokens(�; S) (3)Here, max tokens(�; S) denotes the maximum number of tokens thataccumulate on arc � during the execution of schedule S. This is theminimal size required for one bu�er and can easily be computed bysimulating the schedule execution and tracing the tokens accumulatingon the arc �.EXAMPLE 9. Consider the schedule in Example 4 of the CDtoDATbenchmark. This schedule has a bu�er memory requirement of 1471 +1472 + 982 + 288 + 325 = 1021. Similarly, for the looped schedule(1(7(7(3AB)(2C))(4D))(32E(5F ))) the bu�er memory requirement is264.3.3. Execution Time Overhead T (S)With execution time, we denote the duration of execution of one iter-ation of a SDF graph comprising q(Ni) activations of each actor Ni inclock cycles of the target processor.2In this work, we account for the e�ects of (1) loop overhead, (2)subroutine call overhead, and (3) bu�er (data) communication overheadin our characterization of a schedule. Our computation of the executiontime overhead of a given schedule S therefore consists of the followingadditive components:Subroutine call overhead: For each instance of an actor Ni for whichflag(Ni) = 0, we add a processor speci�c latency time L(Ni) 2 Nto the execution time. This number accounts for the number of cyclesneeded for storing the necessary amount of context prior to callingthe subprogram (e.g., compute and save incremented return address),and to restore the old context prior to returning from the subroutine(sometimes a simple branch).3 For a given schedule S, we de�ne the2 Note that this measure is equivalent to the inverse of the throughput rate incase it is assumed that the outermost loop repeats forever.3 Note that the exact overhead may depend also on the register allocation andbu�er strategy. Furthermore, we assume that no nesting of subroutine calls is al-
jvlsi.tex; 18/10/1999; 17:02; p.11



12subroutine overhead SO(S) as:SO(S) = jV jXi=1(1� flag(Ni)) � L(Ni) � q(Ni) (4)Communication time overhead: Due to static scheduling, the executiontime of an actor may be assumed �xed (no interrupts, no I/O-waiting)necessary), however, the time needed to communicate data (read andwrite) depends in general a) on the processor capabilities, e.g., someprocessors are capable of managing pointer operations tomodulo bu�ersin parallel with other computations.4, and b) on the chosen bu�er model(e.g., contiguous versus non-contiguous bu�er memory allocation). Ina �rst approximation, we de�ne a penalty for the read and write exe-cution cycles that is proportional to the number of data read (written)during the execution of a schedule S. For example, such a penalty maybe of the formIO(S) = 2 X�=(Ni ;Nj)2A q(Ni)produced(Ni)Tio (5)where Tio denotes the number of clock cycles that are needed betweenreading (writing) 2 successive input (output) tokens.Loop overhead: For looped schedules, there is in general the overhead ofinitializing and updating a loop counter, and of checking the loop exitcondition, and of branching, respectively. The loop overhead for oneiteration of a simple schedule loop L (no inner loops contained in L) isassumed a constant TL 2 N of processor cycles, and its initializationoverhead T initL 2N. Let x(L) 2 N denote the number of loop iterationsof loop L, then the loop execution overhead is given by O(L) = T initL +x(L) � TL. For nested loops, the total overhead of an innermost loop isgiven as above, whereas for an outer loop L, the total loop overhead isrecursively de�ned asO(L) = T initL + x(L) � TL + XL0 evoked inLO(L0)! (6)The total loop overhead O(S) of a looped schedule S is the sum of theloop overheads of the outermost loops.lowed. Also, recursive subroutines are not created and hence disallowed. Under theseconditions, the context switching overhead will be approximated by a constant L(Ni)for each module Ni or even to be a processor-speci�c constant TS, if no informationon the compiler is available. Then, TS may by chosen as an average estimate orby the worst-case estimate (e.g., all processor registers must be saved and restoredupon a subroutine invocation).4 Note that this overhead is then highly dependent on the register allocationstrategy.
jvlsi.tex; 18/10/1999; 17:02; p.12



13EXAMPLE 10. Consider an SDF graph with 4 actors fA;B;C;Dg,and furthermore let (1(3(3A)(4B)) (4(3C)(2D))) be a valid schedulefor this graph. Assume that the overhead for one loop iteration TL = 2cycles in our machine model, the initialization overhead being T initL = 1.The outermost loop consists of 2 loops L1 (left) and L2 (right). WithO(S) = 1+1 �(2+O(L1)+O(L2)) and x(L1) = 3, x(L2) = 4, we obtainthe individual loop overheads as O(L1) = 1 + 3 � (2 +O(3A) +O(4B))and O(L2) = 1 + 4 � (2 +O(3C) +O(2D)). The innermost loops (3A),(4B), (3C), (2D) have the overheads 1+6; 1+8; 1+6; 1+4, respectively.Hence, O(L1) = 1 + 3 � 18 and O(L2) = 1 + 4 � 14, and O(S) becomes115 cycles.In total, T (S) of a given schedule S is de�ned asT (S) = SO(S) + IO(S) + O(S) (7)EXAMPLE 11. Consider again Example 10. Let the individual exe-cution time overheads for subroutine calls be L(A) = L(B) = 2, andL(C) = L(D) = 10 cycles. Furthermore, let code for A and C be gener-ated by inlining (flag(A) = flag(C) = 1) and by subroutine call for theother actors. Hence, T (S) = L(B) � q(B)+L(D) � q(D)+O(S)+ IO(S)results in T (S) = 2 � 12 + 10 � 8 + 115 + IO(S) = 219 + IO(S). Hence,the execution overhead is 219 cycles with respect to the same actorexecution sequence but with only inlined actors and no looping at all.3.4. Target processor modelingFor the following experiments, we will characterize the in
uence of achosen target processor by the following overhead parameters using theabove target (overhead) functions:� PS : subroutine call overhead (number of cycles) (here: for simplic-ity assuming independence of actor, and no context to be savedand restored except PC and status registers).� PL: the number of program words for a complete loop instructionincluding initialization overhead.� TS : the number of cycles required to execute a subroutine call anda return instruction and to store and recover context information.� TL; T initL : loop overhead, loop initialization overhead, respectivelyin clock cycles.
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14 Table I. The parameters of 3 well-known DSP processors. All arecapable of performing zero-overhead looping. For the TMS320C40,however, it is recommended to use a conventional counter and branchimplementation of a loop in case of nested loops.P1 is a �ctiveprocessor modeling high subroutine overheads.System Motorola DSP56k ADSP 2106x TI 320C40 P1PL 2 1 1 2PS 2 2 2 10TL; T initL 0,6 0,1 8,1 0,1TS 8 2 8 16Three real PDSPs and one �ctive processor P1 have been modeled,see Table I. One can observe that the DSP56k and TMS320C40 havehigh subroutine execution time overhead; the DSP56k, however, hasa zero-loop overhead and high loop initialization overhead; and theTMS320C40 has a high loop iteration overhead but low loop initializa-tion overhead. P1 models a processor with high subroutine overheads.4. CDPPO: Code-size dynamic programmingpost-optimizationPrior work on the construction of looped schedules for SDF graphs hasfocused on single appearance schedules. A single appearance schedulecan be uniquely represented as a parenthesization of a lexical orderingof the input SDF graph, and vice versa [4]. Here, by a lexical ordering,we simply mean a linear ordering (a1; a2; : : : ; aN ) of the actors in thegraph. Di�erent parenthesizations of a given lexical ordering lead ingeneral to di�erent schedules (sequences of actor invocations), and thus,to di�erent bu�er memory requirements.The problem of optimally parenthesizing a single appearance sched-ule to minimize the bu�er memory requirement has been shown tohave a similar structure as the matrix chain multiplication problem [6],which is the problem of determining the most e�cient order (sequenceof pairwise matrix multiplications) in which to evaluate a productM1M2 : : :Mk of matrices. It is well-known that the matrix-chain mul-tiplication problem is amenable to an e�cient dynamic programmingsolution [6]. The GDPPO algorithm presented in [4] can be viewed asan adaptation of this dynamic programming solution to the parenthe-sization problem for single appearance schedules.
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15As discussed in Section 1, our multi-objective optimization tech-niques developed in this paper go beyond the class of single appearanceschedules since multiple appearance schedules can provide signi�cantlylower bu�er memory requirements over the best single appearanceschedules: when attempting to determine the Pareto-optimal front ofan SDF design space, it is essential to consider multiple appearanceschedules. When considering arbitrary schedules (schedules that arenot necessarily single appearance schedules), a new parenthesizationproblem becomes relevant. This is the problem of parenthesizing groupsof repetitive invocation patterns that can be consolidated into loops.Formally, this is the problem of computing a minimum code size loophierarchy for a given sequence of actor invocations, and a given code sizeC(i) associated with each actor invocation i. Typically, all invocationsof an actor A that are inlined will have the same code size cost Ci(A),and all invocations that are executed with subroutine calls will havethe code size cost of the associated call Cs(A). In such cases, an actorA that has both inlined and subroutine call invocations in the giveninvocation sequence can be handled by decomposing the actor into twoseparate actors (within the invocation sequence) | one actor Ai thatrepresents the inlined invocations and has code size C(Ai) = Ci(A),and another actor As for the subroutine call invocations, which hascode size C(As) = Cs(A).Note that unlike the form of parenthesization handled by GDPPOfor single appearance schedules, the parenthesization of arbitrary in-vocation sequences into optimally-compact loop hierarchies does notchange the actor execution order, and thus, does not a�ect the bu�eringcost.EXAMPLE 12. Consider an SDF graph that consists of three actorsfX;Y;Zg, and two edges f(X;Y ); (Y;Z)g such that produced ((X;Y )) =consumed ((Y;Z)) = 3, and consumed ((X;Y )) = produced ((Y;Z)) = 2.For clarity, assume that all invocations of each actor V are implementedwith an inlined implementation having code size cost C(V ). Given theactor invocation sequence (X;Y;X; Y; Z; Y; Z), one of two parenthesiza-tions leads to an optimum looping, depending on the relative code sizesof X and Z. If C(X) > C(Z), then the optimum parenthesizationis (XY XY )ZY Z, which leads to the looped schedule (2XY )ZY Z; ifC(X) < C(Z), however, the best parenthesization is XYX(Y ZY Z),which leads to the looped schedule XY X(2Y Z).The CDPPO algorithm was �rst proposed in [3], where the algorithmwas outlined as an interesting extension of GDPPO. In this paper, weintroduce the �rst reported implementation of the CDPPO algorithm,
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16and the application of the algorithm to a practical design space ex-ploration problem. CDPPO computes an optimal parenthesization ina bottom-up fashion. Given, an SDF graph G = (V;E) and an actorinvocation sequence f1; f2; : : : ; fn, where each fi 2 V , CDPPO �rstexamines all 2-invocation sub-chains (f1; f2); (f2; f3); : : : ; (fn�1; fn) todetermine an optimally-compact looping structure (subschedule) foreach of these sub-chains. For a 2-invocation sub-chain (fi; fi+1), themost compact subschedule is easily determined: if fi = fi+1, then (2fi)is the most compact subschedule, otherwise the original (unmodi�ed)subschedule fifi+ 1 is the most compact. After the optimal 2-nodesubschedules are computed in this manner, these subschedules are usedto determine optimal 3-node subschedules (optimal looping structuresfor subschedules of the form fi; fi+1; fi+2); the 2- and 3-node subsched-ules are then used to determine optimal 4-node subschedules, and soon until the n-node optimal subschedule is computed, which gives aminimum code size implementation of the input invocation sequencef1; f2; : : : ; fn.To understand the general approach for computing optimal sub-schedules given optimal subschedules for all \lower-order sub-chains,"suppose that � = (fi; fi+1; : : : ; fi+k) is an arbitrary sub-chain of theinput schedule f1; f2; : : : ; fn (1 � k � (n � i)), and suppose that op-timal subschedules for all k-node sub-chains are available. An optimalsubschedule for � can be determined by �rst computing Cj � Zi;i+j +Z(i+j+1);(i+k), where Zx;y denotes the minimum code size cost for thesub-chain (fx; fx+1; : : : ; fy. Any value of j that minimizes Cj gives anoptimum point at which to "split" the sub-chain � if fi; fi+1; : : : ; fi+kare not to be executed through a single loop.Thus, it remains only to compute the minimum cost attainablefor � if the entire sub-chain is to be executed through a single loop.This minimum cost can be computed by determining those values ofm 2 divides(k + 1), where divides(k + 1) denotes the set of integersthat divide the integer (k + 1) (with zero remainder), for which � isequivalent to the invocation sequence generated by a loop of the form(mf1f2 : : : f(k + 1)=m). For each suchm, the code size of the associatedsingle-loop implementation can be expressed as CL+Z1;(k+1)=m, whereCL is the code size overhead of looping. If one or more values of m existthat give single-loop structures for implementing �, then the associatedcode sizes are compared to determine an optimal single-loop structure,and this optimal single-loop structure is compared to the minimumvalue of Cj to determine an optimal looping structure for �. Otherwise,the optimal looping structure for sigma is simply taken to be thatcorresponding to the minimum value of Cj.
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17The time-complexity of the overall CDPPO algorithm is O(n4),where n is the total number of actor invocations in the input schedule.Our initial experiments with CDPPO indicated that the run time ofthe algorithm can be high when the algorithm is applied to complexmultirate systems. For example, when we applied our implementationof CDPPO to a minimum bu�er schedule for a sample-rate conversionapplication, we observed a run time of 30 seconds. While such run timesare acceptable for deterministic scheduling strategies in which CDPPOis applied only once, they are not acceptable in probabilistic algorithms,such as our evolutionary algorithm, that evaluate numerous candidateimplementations, and invoke CDPPO for each candidate.Thus, in our implementation of CDPPO, we have introduced twopairs of parameters �1; �2 and �1; �2 in the CDPPO algorithm to trade-o� the accuracy of the optimization with the required run-time. Theseparameters are to be set experimentally | based on the speci�c SDFapplication under consideration | to yield the desired trade-o�. Theparameters �1 and �2 (1 � �1 � �2) specify the minimum and max-imum sub-chain sizes for which optimal single-loop implementations(loop structures of the form (mf1f2 : : : f(k + 1)=m)) will be considered.Similarly, the algorithm parameters �1 and �2 specify the minimum andmaximum sub-chain sizes for which alternative split positions will beevaluated. For sub-chain lengths less than �1 or greater than �2, thesplit will be taken to be halfway in the middle. We have found that theparameters �1; �2; �1; �2 provide an e�ective means for systematicallytrading-o� between the run-time of CDPPO, and the code size cost ofthe resulting looping structures.5. Basic Principles of Multi-objective OptimizationThe problem under consideration involves three di�erent objectives:program memory, bu�er memory, and execution time. These cannot beminimized simultaneously, since they are con
icting { a typical multi-objective optimization problem. In this case, one is not interested in asingle solution but rather in a set of optimal trade-o�s which consistsof all solutions that cannot be improved in one criterion without degra-dation in another. The corresponding set is denoted as Pareto-optimalset. Mathematically, the concept of Pareto optimality can be de�nedas follows.DEFINITION 3. Let us consider, without loss of generality, a multi-objective minimization problem with m decision variables and n objec-
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18tives: Minimize ~y = f(~x) = (f1(~x); : : : ; fn(~x))subject to ~x = (x1; x2; : : : ; xm) 2 X~y = (y1; y2; : : : ; yn) 2 Y (8)where ~x is called the decision vector, X is the parameter space, ~y is theobjective vector, and Y is the objective space. A decision vector ~a 2 Xis said to dominate a decision vector ~b 2 X (also written as ~a � ~b) i�8i 2 f1; : : : ; ng : fi(~a) � fi(~b) ^9j 2 f1; : : : ; ng : fj(~a) < fj(~b) (9)Additionally, in this study ~a is said to cover ~b (~a � ~b) i� ~a � ~b orf(~a) = f(~b). All decision vectors which are not dominated by any otherdecision vector of a given set are called nondominated regarding thisset. The decision vectors that are nondominated within the entire searchspace are denoted as Pareto optimal and constitute the so-called Pareto-optimal set. The set of objective vectors that corresponds to the Pareto-optimal set forms the Pareto-optimal front.Evolutionary algorithms (EAs) seem to be especially suited to multi-objective optimization because they are able to capture several Pareto-optimal solutions in a single simulation run and may exploit similari-ties of solutions by recombination. Some researchers even suggest thatmulti-objective search and optimization might be a problem area whereEAs do better than other blind search strategies [8]. The numerous ap-plications and the rapidly growing interest in the area of multi-objectiveEAs supports this assumption. Moreover, up to now there are few ifany alternatives to EA-based multi-objective optimization [10].Several multi-objective EAs have been proposed since 1985, whichmainly di�er in �tness assignment scheme and the way of maintainingdiversity in the population5. In this study, the Strength Pareto Evo-lutionary Algorithm (SPEA), a recent technique proposed in [17], isused. This algorithm has been shown to outperform other evolutionaryapproaches on di�erent test problems [16, 17].6. Evolutionary AlgorithmSPEA maintains besides the regular population an external set of in-dividuals that represents the nondominated solutions of all solutions5 For reviews of multi-objective evolutionary algorithms, the interested reader isreferred to [8, 10, 14]
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19generated so far. This set is updated every generation and afterwardsincluded in the selection process. Therefore, nondominated solutionscannot get lost, which in turn also promotes diversity in the population.The 
ow of the evolutionary algorithm used here is as follows.Step 1: Generate an initial population P and create the empty exter-nal set P 0.Step 2: Copy nondominated members of P to P 0.Step 3: Remove solutions within P 0 which are covered by any othermember of P 0.Step 4: Calculate the �tness of each individual in P as well as in P 0.Step 5: Select individuals from P + P 0 (multiset union), until themating pool Pmate is �lled. In this study, binary tournamentselection with replacement is used.Step 6: Create the empty set Pcross. While the mating pool is notempty do� Select two arbitrary individuals from Pmate without re-placement.� Create two children by recombining the two chosen par-ents.� With probability pc add the children to Pcross, otherwiseadd the parents to Pcross.Step 7: Create the empty set Pmut. For each individual in Pcross domutate it with mutation rate pm and add it to Pmut.Step 8: Set P = Pmut. If the maximum number of generations isreached then stop else go to Step 2.Note that this presentation where selection, recombination, and mu-tation are considered as separate processes follows the one given in[1] and slightly di�ers from other formulations [9]. Nevertheless, bothdescriptions are mathematically equivalent.6.1. Problem CodingEach genotype consists of four parts which are encoded in separatechromosomes: i) schedule, ii) code model, iii) actor implementationvector, and iv) loop 
ag. This is illustrated in Figure 8.
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Figure 8. Example of an individual for the graph depicted in Figure 5a)The schedule represents the order of actor �rings and is �xed inlength because the number of �rings of each actor is known a priori.Since arbitrary actor �ring sequences may contain deadlocks, etc., arepair mechanism is applied in order to map every schedule chromosomeunambiguously to a valid schedule. It is based on a topological sortalgorithm and simulates the execution of the actors:Step 1: Create the empty topological sort T and initialize each arc �with delay(�) tokens.Step 2: Choose the leftmost actor instance in the encoded actor se-quence S which is �reable.Step 3: Remove the selected actor instance at the corresponding po-sition within S and append it to T .Step 4: Simulate the �ring of the chosen actor, i.e., from each ingoingarc � remove consumed(�) tokens and to each outgoing arc� add produced(�) tokens.Step 5: If S is not empty then go to Step 2 else T is the repairedschedule.In contrast to a common topological sort procedure, the tie betweenseveral �reable actors is not broken at random but always the actor in-stance at the leftmost position within the encoded actor �ring sequenceis selected.The code model chromosome determines the way how the actors areimplemented and contains one gene with three possible alleles: all actorsare implemented as subroutines, only inlining is used, or subroutinesand inlining are mixed. For the last case, the actor implementation vec-tor, a bit vector, encodes for each actor separately whether it appearsas inlined or subroutine code in the implementation.Finally, a fourth chromosome, the loop 
ag, determines whether touse loops as a mean to reduce program memory. If the loop 
ag is set,
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21the CDPPO algorithm (cf. Section 4) is applied to the 
at scheduleencoded in the individual, otherwise the schedule is not looped. Asmentioned in Section 4, CDPPO has four parameters by which therun-time as well as the accuracy can be adjusted. These parametersare set by the user and �xed per optimization run.6.2. Fitness AssignmentThe �tness assignment procedure is a two-stage process. First, the in-dividuals in the external set P 0 are ranked. Afterwards, the individualsin the population P are evaluated. In detail, the following three stepsare performed:Step 1: For each individual in the population and in the external setdetermine execution time, program memory, and data mem-ory required by the encoded implementation.Step 2: Each individual i 2 P 0 is assigned a real �tness value fi 2 [0; 1)which is proportional to the number of population membersj 2 P for which i � j. Let n denote the number of individualsin P that are covered by i and assume N is the size of P .Then fi is de�ned as fi = nN + 1 :Step 3: The �tness of an individual j 2 P is calculated by summingthe �tness values of all externally stored individuals i 2 P 0that cover j. We add one to the total in order to guaranteethat members of P 0 have better �tness than members of P(note that �tness is to be minimized, i.e., small �tness valuescorrespond to high reproduction probabilities):fj = 1 + Xi;i�j fi where fj 2 [1; N):6.3. Genetic OperatorsDue to the heterogeneous chromosomes, a mixture of di�erent crossoverand mutation operators accomplishes the generation of new individuals.For the schedule, order-based uniform crossover and scramble sublistmutation are used [7], which do not destroy the permutation property;a short description of these operators is given below. Concerning the
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Figure 9. Order-based uniform crossoverother chromosomes, we work with one-point crossover and bit 
ip mu-tation [9] (as the code model gene is represented by an integer, mutationis done by choosing one of the three alleles at random).6.3.1. Order-based Uniform CrossoverHow this operator recombines two given permutations is illustrated inFigure 9. First, a bit string is randomly generated that is the samelength as the parents. The bit positions correspond to the positionswithin the permutations de�ned by the parents. Then the �rst childis partially �lled up. The node annotations of the �rst parent arecopied to this child at the positions where the bit string contains a"1". Analogously, the second child inherits the node annotations of thesecond parent wherever a "0" occurs. Now, both children have gaps atcomplementary positions. In a third step, for each child a list is builtup which contains all nodes not yet speci�ed in the child. Afterwards,the list of the �rst child is sorted according to the node order in thesecond parent. Again, the same is done with the list of the second child.The relative order of the nodes in the list is identical to their relativeorder in the �rst parent. Finally, step by step and from left to right,the list elements are inserted at the gaps of the corresponding child.EXAMPLE 13. Let the �rst parent be the sequence ABCDEFGHI andthe second parent the same sequence in reverse order. The intermediateresults of the crossover phase are shown in Figure 9. At the end, twochildren, GBCFEDAHIJ and JABGCEDFHI, have been created.
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3) permutate sublist randomlyFigure 10. Scramble sublist mutation.6.3.1.1. Scramble Sublist Mutation Mutation is done by permutingthe elements between two selected positions, where both the positionsand the subpermutation are chosen at random.EXAMPLE 14. Figure 10 shows an example for this operator. Thechromosome ABCDEFGHIJ mutates to the sequence ABCFDGEHIJ.7. ExperimentsThe CDtoDAT example was used to compare the design spaces of thedi�erent DSP processors listed in Table I. For each of the real processorstwo kinds of experiments were performed: one time the parameters ofCDPPO were set to �1 = 1; �2 = 1; �1 = 10; �2 = 40 leading tosuboptimal looping (about 5 hours run-time for one EA optimizationrun on a Sun ULTRA 30)6, another time the focus was on optimallooping, where both accuracy and run-time of the CDPPO algorithmwere maximum (the EA ran about 5 days).7 For P1 only suboptimallooping was considered.In all cases, the following EA parameters were used:generations : 250population size : 100crossover rate : 0.8mutation rate : 0.18Moreover, before every run a heuristic called APGAN (acyclic pair-wise grouping of adjacent nodes [4]) was applied to this problem. TheAPGAN solution was inserted in two ways into the initial population:6 These CDPPO parameters were chosen based on preliminary experiments.7 Note that this optimization time is still quite low for processor targets assumedto be programmed once and supposed to run an application forever.8 The bit vector was mutated with a probability of 1=L per bit, where L denotesthe length of the vector.
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24with and without looping. Finally, the set of all nondominated solutionsfound during the entire evolution process was considered as outcomeof one single optimization run.The nondominated fronts achieved by the EA in the di�erent runsare shown in Figures 11 to 14. To make the di�erences between theprocessors clearer, the plots have been cut at the top without destroyingtheir characteristics.The trade-o�s between the three objectives are very well re
ectedby the extreme points. The rightmost points in the plots representschedules that neither use looping nor subroutine calls. Therefore, theyare optimal in the execution time dimension, but need a maximum ofprogram memory because for each actor �ring there is an inlined codeblock. In contrast, the leftmost points make excessive use of loopingand subroutines which leads to minimal programmemory requirements,however at the expense of a maximum execution time overhead. An-other extreme point (not shown in the �gures) satis�es D(S) = 1021,but has only little overhead in the remaining two dimensions. It standsfor an implementation which includes the code for each actor onlyonce by using inlining and looping. The schedule associated with thisimplementation is a single appearance schedule.Furthermore, the in
uence of looping and subroutine calls is re-markable. Using subroutines does not interfere with bu�er memoryrequirements; there is only a trade-o� between program memory andexecution time. Subroutine calls may save much program memory, butat the same time they are expensive in terms of execution time. Thisfact is re
ected by "gaps" on the execution time axis in Figures 11and 13. Looping, however, depends on the schedule: schedules whichcan be looped well may have high bu�er memory requirements and viceversa. This trade-o� is responsible for the variations in bu�er memoryrequirements and is illustrated by the points that are close to each otherregarding program memory and execution time, but strongly di�er inthe bu�er memory required.Comparing the three real processors, one can observe that the ADSP2106x produces less execution time overhead than the other proces-sors which is in accordance with Table I. Subroutine calls are mostfrequently used in case of the TMS320C40 because of the high loopiteration overhead.For processor P1 (Figure 14), it can be seen that points at the frontof minimal program memory require much more program memory thanthe other processors. This is in accordance with the high penalty inprogram memory and execution time when subroutines are used. Infact, none of the 186 nondominated points found used subroutine callsfor any actor.
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Figure 14. Processor P1 (suboptimal looping)The e�ect of the looping algorithm on the obtained nondominatedfront can be clearly seen by comparing the results for suboptimal andoptimal looping in Figures 11 to 13. In general, the nondominatedsolutions found require less bu�er memory when the optimal loopingalgorithm is applied, the trade-o� surface becomes much more 
at inthis dimension. It is also remarkable that for each real processor severalsolutions were generated that need less program memory than the im-plementation with lowest code size when using the suboptimal loopingalgorithm. As a result, the optimization time spent by the loopingalgorithm has a big in
uence on the shape of the nondominated front.8. ConclusionsIn this paper, we presented a methodology for exploring the designspace of programmable digital signal processors (PDSP) implementa-tions of synchronous data
ow graphs.The design space is given here by schedule solutions that di�er eachin program memory requirements (code size), data memory require-ments, and execution time. These solutions result from the freedomof allowing not only di�erent execution orders, but also permittinglooped schedules, and deciding whether for each actor appearance asubprogram call will be instantiated in the �nal code or whether theactor code is inlined.With the above partially con
icting goals, optimal solutions arede�ned by Pareto optimality. The set of optimal solutions is exploredusing an evolutionary algorithm. For a number of well-known PDSP
jvlsi.tex; 18/10/1999; 17:02; p.26



27processors, the fronts of optimal solutions have been explored andcompared. Also, we have shown that there is a trade-o� between thequality of the found front of optimal solutions and the time spent inthe used looping algorithm CDPPO (codesize dynamic programmingpost-optimization).In the future, we'd like to investigate this trade-o� between opti-mization time spent for exploration and within local search algorithmsin more detail. Our code synthesis optimization problem seems to be agood candidate for studying these trade-o�s.References1. B�ack, T.: 1996, Evolutionary Algorithms in Theory and Practice. New York,etc.: Oxford University Press.2. Bhattacharyya, S., P. Murthy, and E. Lee: 1999, `Synthesis of Embedded Soft-ware from Synchronous Data
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