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Summary. Although Particle Swarm Optimizers (PSO) have been successfully
used in a wide variety of continuous optimization problems, their use has not
been as widespread in discrete optimization problems, particularly when adopt-
ing non-binary encodings. In this chapter, we discuss three PSO variants (which
are applied on a specific scheduling problem: the Single Machine Total Weighted
Tardiness): a Hybrid PSO (HPSO), a Hybrid PSO with a simple neighborhood
topology (HPSOheigr) and a new version that adds problem-specific knowledge to
HPSOneigh (HPSOgy). The last approach is used to guide the blind search that
PSO usually does and reduces its computational cost (measured in terms of the
objective function evaluations performed). It is also shown that HPSQOy, obtains
good results with a lower computational cost, when comparing it against the other
PSO versions analyzed, and with respect to a classical PSO approach and to a mul-
tirecombined evolutionary algorithm (MCMP-SRI-IN), which contains specialized
operators to tackle single machine total weighted tardiness problems.

1 Introduction

Particle Swarm Optimization (PSQO) is a bio-inspired heuristic that was pro-
posed by James Kennedy and Russell Eberhart [16]. PSO is a population-
based stochastic heuristic that simulates the flight of a flock of birds. In PSO,
each particle in the swarm (i.e., the population) is a possible solution within
the multidimensional search space. Such a particle has some properties such
as a position (within the search space), a velocity of exploration which is con-
stantly updated, and a record of its past behavior. Each particle evaluates
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its relative position with respect to a goal (fitness) at every iteration and it
adjusts its own velocity using the best position that it has found so far and the
best position reached by any particle in its neighborhood (or in the swarm, if
no neighborhood topology is adopted). Then, the velocity is used to update
the position of each particle. The update is done using the following equations:

vel;j = w *velj + ¢ x 11 * (pij — part;j) + c2 * 1o * (pg; — party;) (1)

part;; = part;; + vel;; (2)

where vel;; is the velocity of the particle 4 in the dimension j, w is the inertia
factor [15] whose goal is to balance global exploration and local exploitation,
c1 and ¢z are the personal and social learning factors, r; and ry are two random
numbers in the range (0,1), p;; is the best position reached by the particle ¢
and p,; is the best position reached by any particle in the neighborhood (or
swarm).

PSO was originally designed to work in continuos search spaces, and the
specialized literature reports a significant amount of research that makes evi-
dent the great search capabilities of PSO in such type of search spaces. How-
ever, the use of PSO in discrete search spaces is relatively scarce, particularly
when non-binary encodings (e.g., permutations) are adopted (see for example
[24, 31, 12, 22]).

The authors recently proposed a hybrid PSO approach, which was called
HPSO [8]. HPSO incorporates a random keys representation [4] for the par-
ticles and a dynamic mutation operator similar to the one used in evolutionary
algorithms. The use of the random keys encoding allows to represent permu-
tations using real numbers. This, in turn, allows us to use PSO with real
numbers instead of having to rely on more complex encodings to represent
a permutation of integers. In further work by the authors, HPSOpeiqn was
introduced [7]. This approach adds to HPSO a local neighborhood (known
as circle topology [25]) to each particle.

In this chapter, we propose a new PSQ variant, which we call HPSOy,,.
This algorithm is an extended version of HPSOy.ign, which incorporates
problem-specific knowledge to guide the search.

The three previously indicated PSO approaches are used to solve a hard
combinatorial optimization problem called Total Weighted Tardiness Schedul-
ing (TWT). To the authors’ best knowledge, this chapter constitutes only the
third reported attempt to use PSO in scheduling (the two other attempts are
reported in [38] and [8]).

The main goal of this chapter is to show the performance of our proposed
HPSOy,;, using some instances of the TWT problem in single machine envi-
ronments. We also aim to compare the results produced by the new algorithm
against those obtained with the classical PSO, the HPSO, the HPSOpeigh,
and a multirecombined evolutionary algorithm (MCMP-SRI-IN) [14] that was
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specially designed for dealing with the problem of our interest. Such an ap-
proach also adopts the knowlegde insertion concept (adopted in this chapter)
that consists of incorporating in the population three seeds generated with
other traditional heuristics.

The remainder of the chapter is organized as follows. In Section 2, the
scheduling problem of our interest is properly defined. In Section 3, we briefly
review the previous related work. Section 4 describes the PSO algorithms
adopted for our experimental study, including our new proposed approach.
Section 5 contains a description of our experimental design, including the pa-
rameters settings adopted. Our results are shown and discussed in Section 6.
Finally, our conclusions and some possible paths for future research are pro-
vided in Section 7.

2 Single Machine Total Weighted Tardiness Problem

The single machine scheduling model is the simplest of all possible machine
environments and it is a special case of more complicated machine environ-
ments. This model was selected because the results obtained for it provide the
basis to develop heuristics for more complex machine environments. In this
work only the deterministic model is analyzed.

The term machine is used to specify any resource that will process an
assignment. In the single machine system just one resource is available; thus,
only one job can be processed by the machine at any time. Each job or task
consists of one or more operations (sub-tasks).

The objective function or criterion selected to evaluate the quality of the
schedule was the Total Weighted Tardiness (TWT) because it is important in
a wide range of production activities. In this problem, the jobs or assignments
that have to be processed are characterized by several elements:

e Processing time (p), the amount of time the job needs the resource to
complete its task. It includes a setup and a knock-down time;

e  Weight (w), a value indicating the importance of the job with respect to
the other jobs in the system. It represents a factor of priority, that is, what
job should be chosen (among all the available jobs) to be processed next;

e Due date (d), in which the job should finish and free the resource. It
denotes the date the job is promised to be delivered to the customer.

Assuming the deterministic model and that the system consists of a set of
n jobs (j = 1,...,n) to be processed without preemption in a single machine,
each job j has its own p; (processing time), w; (weight) and d; (due date).
For a given processing order of all jobs, the earliest completion time C; can
be defined like the time the job j uses from the moment in which it enters
the system and until it leaves the system. Also, for each job j the tardiness
T; is defined like the maximum value among zero and the completion time
minus the due date: T; = max{0,C; —d,}. Then, the TWT problem consists
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of finding an appropriate processing order of the jobs with the purpose of
minimizing the number of weighted tardy jobs, that is, to minimize the Total
Weighted Tardiness:
n
> wiT)
j=1

over the n jobs in the system.

3 Previous Related Work

The single machine total weighted tardiness problem is an NP-hard [27]
scheduling problem. The TWT problem has been tackled by a number of ex-
act methods such as Branch and Bound [37, 21, 33], where some schedules are
discarded because they exceed the objective function value set as a bound.
A competitive technique in this context is dynamic programming [37, 23],
which constructs all possible sets of jobs and recursively obtains a solution.
The problem with these two approaches (branch & bound and dynamic pro-
gramming) is the exponential growth and the considerable computer resources
(computational time and memory requirements) that they require as the size
of the problem grows.

Several enumerative methods have also been proposed, such as those that
use dominance rules to restrict the search for the optimal solution [23] and
those that characterize adjacent jobs in the optimal sequence [36]. An exper-
imental study of these methods might be found in [37].

Some schedule construction heuristics have also been proposed to tackle
this problem. These heuristics generate good, but not necessarily optimal so-
lutions. For example, some authors have proposed dispatching rules to build
a solution by fixing a job in a position in the sequence at each step of the pro-
cess. There are a lot of rules widely used for the TWT problem. Comparisons
between weighted shorted processing time (WSPT), earliest due date (EDD),
modified cost over time (MCOVERT) and apparent urgency (AU) might be
found in [34]. Additionally, an experimental study of this sort of heuristic
may be found in [2]. The apparent tardiness cost (ATC) was proposed and
tested in [40]. Then, in [10], the same rule was tested with other dispatching
rules in job and flow shops, showing its effectiveness in minimizing the average
tardiness.

A dominance rule for the most general case of total weighted tardiness
problem is presented in [1], showing the sufficient condition for local optimal-
ity and how it generates schedules that cannot be improved by adjacent job
interchanges.

There are other useful methods, such as the method of interchanges. Such
interchanges require an initial sequence over which the change will take place.
If the changed solution is better than the non-changed one, the method keeps
it; otherwise, the changed solution is discarded. When the solution cannot be
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improved, the interchanges stop and the process returns the sequence solution.
Comparisons among several heuristics (including interchanges) might be found
in [34]. Some results indicate that the pairwise interchange methods are very
good for this problem.

There exist several local search algorithms that propose to solve the TWT
problem using insertion and swap movements to find a good schedule. These
heuristics compute the neighborhood of a solution through movements of jobs
in the sequence. For example, an exponentially sized “dynasearch” that swaps
positions within the neighborhood in polynomial time is described in [35],
where every swap is a single movement. The authors of that paper showed
that their results were the best known so far in terms of both solution qual-
ity and computational time. In [13], the common swap neighborhood is ex-
tended with generalized pairwise interchanges, showing how effective are the
neighborhoods for some scheduling problems. An enhanced dynasearch swap
neighborhood was developed in [20], precisely by adding generalized pairwise
interchanges. A fast and efficient algorithm is presented in [17], which com-
bines the insertion, swap and twist neighborhoods; its searching process takes
O(n?) time.

Metaheuristics offer a good compromise between computational effort and
solution quality. In the case of TWT, a number of metaheuristics have been
applied to its solution, including simulated annealing, tabu search, genetic
algorithms, ant colony optimization and, more recently, particle swarm opti-
mization.

SA and TS are advanced local search techniques. SA uses a parameter
named temperature for changing the probability of moving from one point
within search space to another one [26]. This technique is based on a ther-
modynamic analogy: “start heating a row of materials to a fusing state for
growing a crystal. Then reduce the temperature 7" until the crystal structure
is frozen. But if the cooling is done quickly, bad things might occur (irregu-
larities in the crystal structure, for instance, and the level of energy trapped
is higher than a perfect crystal structured)”. The state can be looked as a
feasible solution, ground state as an optimal solution, temperature control
parameter 7', and the energy as the evaluation function. In the process, the
T parameter used to influence the search of a better value, is updated peri-
odically. Usually T starts with a high value (doing the procedure similar to a
purely random search) and gradually decreases its value. In each iteration the
best value is updated. The process is executed until some external condition
is reached. SA approaches for the TWT problem are stated in [29, 34, 21].

TS, instead has a memory, which forces the algorithm to explore new areas
without visiting previous ones [19]. The solutions examined recently become
“tabu” (forbidden) points to select as a new solution and are stored in a list
H. The process is structurally similar to that of SA. It returns an accepted
solution which needs not be better. The acceptance is based on the previous
history of the search H. The process makes a new movement in the search
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space only when the search is stuck in a local optimum, although SA does not
have this condition. In [21], TS was applied to solve the TWT problem.

Genetic Algorithms (GAs) are a particular type of Evolutionary Algorithm
(EA) which normally adopt a binary encoding for their individuals. GAs are
based in the “survival of the fittest” principle from Darwin’s evolutionary the-
ory. GAs choose the fittest individuals to recombine, aiming to increase the
fitness of all the population over time. GAs use operators such as selection,
mutation and crossover to create a new population. Comparisons of methods
that include GAs might be found in [14]. In that work, the authors pre-
sented a competitive GA to solve the TWT. This GA uses problem-specific
knowledge which is inserted with the aim of removing some of the “blind-
ness” at the search traditionally performed by a GA. This GA outperformed
other evolutionary algorithms in the TWT, which showed the efficacy of using
problem-specific knowledge.

The Ant Colony Optimization (ACO) is a paradigm inspired by the trail
following behavior observed in colonies of real ants. ACO was applied to TWT
in [30], in which a pheromone summation evaluation was adopted for the
probability of transition, and a specific heuristic was tailored for the TWT.
Better results were presented in [28] and [6]. The latter introduced local search
which is combined with the constructive phase obtaining an algorithm that
uses heterogeneous colonies of ants.

Particle Swarm Optimizer (PSO) is a population-based stochastic heuris-
tic which is inspired in the flight patterns of a flock of birds, in which a
group (called the “swarm”) follows a leader. As indicated before, PSO has
been scarcely applied to scheduling problems. In [38], there is a comparative
study between PSO, ACO and Iterative Local Search algorithm in the TWT
problem. In [8], the authors proposed to adopt the random keys encoding for
the individuals combined with a dynamic mutation operator. In [8], results
are compared with respect to conventional heuristics and with respect to an
evolutionary algorithm [14] that was fairly competitive at that time. In both
cases, results indicated that PSO is a promising heuristic to tackle the TWT
problem.

4 Improved Hybrid PSO Algorithms for the TWT
Problem

In this section, the three PSO variants adopted in this chapter (i.e., HPSO,
HPSOneigh, and HPSOyy,) are described. However, we first present the pseu-
docode of the classical PSO algorithm (see Figure 1), because it will serve as
the basis for all the other algorithms.

As can be seen in Figure 1, once the swarm, the velocities of each par-
ticle and the particle best memory are initialized (lines 2 to 4), the swarm
is evaluated and the leader (the best particle of the swarm or the best in
the neighboorhod, if appropriate) is selected (line 5). Then, at each iteration,
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. InitializeSwarm(Part)
. InitializeVelocities(v)
. Copy(Part, PartBests)
. EvaluateParticles(Part, Objective Function)
. Remember Leader of Swarm
do
UpdateVelocities(v)
UpdatePositionParticles(Part)
9. EvaluateParticles(Part, Objective Function)
10. UpdateParticleMemory(PartBests) if appropriate
11.  SelectNewLeader
12. while (—termination)

0N U W

Fig. 1. General outline of the classical PSO Algorithm

the velocities and positions of the particles are updated using equations (1)
and (2) defined in Section 1 (lines 7 and 8). After the update process takes
place, each particle is evaluated at its new position (line 9). If the new par-
ticle is better than its personal best position (line 10), then this last one is
accordingly updated, i.e. PartBest; is set to Part;.

4.1 HPSO Algorithm Description

As indicated before, there is sufficient evidence of the good performance of
the PSO algorithm in continuous search spaces. The main motivation for the
development of the HPSO algorithm was to preserve such efficiency when
dealing with discrete optimization problems. Thus, we decided to adopt the
random keys encoding proposed in [4] so that we could preserve a real-numbers
encoding when dealing with permutations. The main idea of the random keys
encoding is to adopt a set of randomly generated real numbers, which are
then sorted and decoded in such a way that their position in the sequence is
interpreted as a permutation position. In the scheduling problem studied, each
particle is an n-dimensional vector and each dimension (a real number with
two digits of precision) corresponds to a job. The components are randomly
generated when the algorithm starts within the range (0, 1). Then, the particle
is transformed into a schedule by sorting those values in ascending order. Let’s
illustrate this with an example: for a nine-job problem, let’s assume that we
have the particle vector <0.23, 0.08, 0.97, 0.96, 0.32, 0.55, 0.18, 0.87, 0.99>.
If we sort this list of real numbers in ascending order, we have the following
sequence: <0.08, 0.18, 0.23, 0.32, 0.55, 0.87, 0.96, 0.97, 0.99>. Now, from
this sorted list, we extract the mapping that we need: the first value (0.08)
corresponds the the integer 1, the second value (0.18), corresponds to the
integer 2, and so on. Going back to the original (unsorted) list of real numbers,
the permutation that it encodes can be obtained by replacing the integers that



8 Leticia Cagnina', Susana Esquivel' and Carlos A. Coello Coello®

. InitializeSwarm(Part)

. InitializeVelocities(v)

. Copy(Part, PartBests)

. EvaluateParticles(Part, Objective Function)

. Remeber Best Leader of Swarm

do
CalculateProbability Mutation(pmut)
UpdateVelocities(v)

9. UpdatePositionParticle(Part)

10. EvaluateParticles(Part, Objective Function)

11. UpdateParticleMemory(PartBests) if appropriate

12. MutateSwarm(Part)

13.  EvaluateParticles(Part, Objective Function)

14. UpdateParticleMemory(PartBests) if appropriate

15.  SelectNewLeader

16. while (—termination)

00~ O oUW

Fig. 2. General outline of the HPSO Algorithm

we produced from the sorted list. So, we have the following schedule: <318 7
45 2 6 9>. This is thus the permutation evaluated to determine the objective
function value of this particle. It is worth noting, however, that due to the
redundancy of the representation, many random key vectors may result in the
same schedule. So, with the aim of maintaining diversity in the population,
we adopted a dynamic mutation operator.

The mutation operator is applied to change the value of a component of a
particle, with a probability pm varying between maz_pm and min_pm, which
depends on the total number of cycles maz_cycles and the current_cycle.

max_pm — min_pm

pm = mazx_pm — X current_cycle (3)

max_cycle

where max_pm and min_pm are the maximum and minimum values that pm
can take, max_cycle is the total number of cycles that the algorithm will
iterate, and current_cycle is the current cycle in the iterative process. In
this way, mutation is more frequently applied at the beginning of the search
process and its application decreases as the number of iterations increases. The
particle is updated only if the objective function value of the new particle is
better than the objective function value prior to applying mutation. Figure 2
displays the pseudocode for the HPSO approach.

The differences between HPSO and the PSO algorithm are described in
Figures 1 and 2, and are expressed in lines 7, 12, 13, and 14, where the HPSO
algorithm includes the mutation operator and the re-evaluation of the swarm
to see if each mutated particle is better than its ancestor; if this is the case,
then the best position memory is updated.
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4.2 HPSOpeign Algorithm Description

As was observed in [8], HPSO converges to a local optimum in some difficult
instances of the TW'T, which causes stagnation in the search. In order to avoid
this problem, HPSO was improved through the use of a neighborhood circle
topology (see Figure 3). In this topology, each particle is influenced both by
the best value found by the particle itself and by the best value found in the
neighborhood so far (neighborhood leader).

Patide {1 @ 3 45 6

"+ Neighborhood (size: 4)
QO Best particle within the neighborhood

Fig. 3. Graphical illustration of the circle topology adopted by the HPSOnpeign
algorithm.

For example, if we have a swarm with 6 particles and the neighborhood
size is 4, then the following neighborhoods are considered: 0 1 2 3,1 2 3 4,
2345,3450,4501,and 501 2 (the numbers indicating the particle
index). Then, each particle is influenced by the performance of the leader of a
smaller group instead of being influenced by the performance of the best global
leader (i.e., of the complete swarm). Figure 4 presents the pseudocode of the
HPSOpeign algorithm. In line 7 the neighborhood of any part; is composed
by the particles whose index are in the interval [i, i + neighborhood_size — 1]
if © + neighborhood_size — 1 < number_particles. Otherwise, the neighbor-
hood of any part; consisting of particles whose index are in the interval
[i, neighborhood_size — 2] (Vi = 1,..., number_particles).

Besides the inclusion of the neighborhood handler it is important to note
that HPSOneign differs from HPSO in that the former does the particle
processing asynchronously, whereas the last one does such processing syn-
chronously. In the asynchronous update, the neighbors on one side of the
particle to be adjusted have been updated, while the neighbors on the other
side have not. In the synchronous update, the leader is the same for all the
particles; therefore, they can be updated in parallel [9].

The algorithms presented in this work were implemented following these
criteria since there is prior empirical evidence of the efficiency of these types
of processing [18, 9].
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1. InitializeSwarm(Part)

2. InitializeVelocities(v)

3. Copy(Part, PartBests)

4. do

5 for ¢ = 1 to number_particles do

6. CalculateProbabilityMutation(pmut )

7. Search the leader in the neighborhood of part;

8. UpdateVelocity (v;)

9. UpdateParticle(part;)

10. EvaluateParticle(part;, Objective Function)

11. UpdateParticleMemory (part;, PartBest;) if appropriate
12. MutateParticle(part;)

13. EvaluateParticle(part;)

14. UpdateParticleMemory (part;, PartBests;) if appropriate
15. end

16. while (—termination)

Fig. 4. General outline of the HPSOpeign Algorithm

4.3 HPSOg, Algorithm Description

To improve the previous approach (HPSOnpeign), we inserted problem-specific
knowledge through three seeds generated by three good heuristics: Racha-
madagu and Morton Heuristic (R&M), Covert and Montagne Heuristic [32]
whose principal property is not only the quality of the results, but also to give
an ordering of the jobs (schedule) close to the optimal sequence.

The Rachamadagu and Morton Heuristic, provides a schedule according
to the following expression:

mj = (w;/pj)[exp{—(S;)" /kpav}] (4)

where S; = [dj — (pj +Ch)] is the slack of job j at time C'h and Ch is the total
processing time of the jobs already scheduled, & is a parameter of the method
(usually k& = 2.0) and p,, is the average processing time of the jobs competing
for top priority. In this heuristic, jobs are scheduled one at a time and every
time a machine becomes free, a ranking index is computed for the remaining
ones. The job with the hightest ranking index is selected to be processed.

The Covert Heuristic, works in a similar way to R&M in cases of a single
resource (our case), but applies instead the expression:

mj = (w;/pi){1 — (S;)* /kps} (5)

The Montagne Heuristic, for its part, uses the following equation:
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m; = (w;/p;)[1 — (d;) Zpi] (6)

This equation does not consider the slack factor, but the due date of every
job (d;) and the sum of all the processing time (p;).

Several other heuristics previously proposed for the TWT problem in the
specialized literature were also tested (using the PARSIFAL package [32]),
but we found the three above heuristics to be the most effective and therefore
our choice. Needless to say, all of these heuristics are representative of the
state-of-the-art in this problem.

As the seed values for each of these three heuristics are very close from
each other (in most cases, the Euclidean distance among them is less than
one unit in objective function value), we hypothesized that if we put them
together, they would influence each other and, slowly, they would also influ-
ence the other solutions. That was the reason why we decided to introduce
the three seeds within the initial population of particles. Note however, that
different positions of the population were adopted for the insertion in each
case (see Figure 5). The R&M seed is inserted randomly within the first third
of the population, the Montagne seed in the second third, and Covert in the
last third of the population (this was done considering the positions of the
particles within the storage structure). In that way, each particle is forced to
be influenced by some of these good permutations. In some cases, the particles
located in the limit of each range might be influenced by two seeds. However,
the final value will be the result of the influence of the best of them. Figure 6
shows the pseudocode for our HPSO _kn algorithm.

Initial population

12.0..n3n3+1 .. .Q.203 20/3+1. @ . . n

N

n/3 particles n/3 particles n/3 particles

O R&M seed
@Momagneseed

Covert seed

Fig. 5. Graphical illustration of the way in which the three types of seeds (produced
by the three heuristics adopted) are inserted in the population.

Finally, we will proceed to briefly describe the evolutionary algorithm used
to compare our results. The MCMP-SRI-IN [14] approach considers the mat-
ing of an evolved individual (the stud) with both random and seed immi-
grants. The process for creating offspring is the following. From the old pop-
ulation, the stud is selected by means of proportional selection and inserted
into the mating pool. A number of n; parents in the mating pool is completed
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. InitializeSwarm (Part)

. InitializeVelocities(v)

. Copy(Part, PartBests)

. // Seeds Insertion

. s = rnd(0, number _particles/3)

. CopySeed(seedrgm, parts)

. s = rnd(number_particles/3 + 1, 2 * number_particles/3)
. CopySeed(seedcovert, parts)

9. s = rnd(2 * number particles/3 + 1, number_particles)
10. CopySeed(seedrrontagne, parts)

O~ O O i W=

11. do

12. for ¢ = 1 to number_particles do

13. CalculateProbabilityMutation(pmut )

14. Search the leader in the neighborhood of part;

15. UpdateVelocity(v;)

16. UpdateParticle(part;)

17. EvaluateParticle(part;, Objective Function)

18. UpdateParticleMemory(part;, PartBest;) if appropriate
18. MutateParticle(part;)

19. EvaluateParticle(part;)

20. UpdateParticleMemory(part;, PartBests;) if appropriate
21. end

22. while (—termination)

Fig. 6. General outline of the HP SOy, Algorithm

both with randomly created individuals (the “random immigrants”) and with
“seed immigrants”. The stud mates every other parent. The couples undergo
crossover (partial mapped crossover) and 2 x (ny—1) offspring are created. The
best of these offspring is stored in a temporary children pool. The crossover
operation is repeated n; times, for different cut points each time, until the
children pool is full. Finally, the best offspring created from ny parents and
ny crossover operations is inserted into the new population. Figure 7 displays
this process.

5 Experimental Design

As indicated before, the goal of the work reported here was to determine the
performance of different PSO optimizers when used to solve the total weighted
tardiness problem in single machine environments. As indicated before, even
with this relatively simple formulation, this model leads to an optimizacion
problem that is NP-hard.

The algorithms were tested on twenty instances of 40 and 50 jobs, which
were extracted from the OR-Library [5]. The numbering of the problems are
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ol Mating Pool Multreccarhination Tenporay Hewr
Population children Populaton
tud pool
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- M2 - -
- patert) amh _
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- e stud T: [ 5] ¢ child; —
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parrd; -- The best of
-= # ¢ children
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—— Thebestof 2¥(n,1) populdton
E children is inserted
n the childwen pool

Fig. 7. General outline of MCMP — SRI — IN approach

not consecutive because each one was randomly selected from different groups.
The tardiness factor, which is an instance parameter that controls the number
of tardy jobs, is harder for those with a higher identifier number. That means
that a higher identifier number of instances involves a greater number of tardy
jobs.

As it is well-known for researchers working with metaheuristics, the param-
eters setting of the technique is a very important issue that deserves special
attention. Thus, we conducted some preliminary experiments in order to de-
termine the most suitable values for the PSO approaches considered in our
study. The values of w (inertia factor), ¢; and c¢a (personal and social learn-
ing factors, respectively) were defined following the suggestions from van den
Bergh [39]. Analogously, the neighborhood size was fixed between the 8% and
10% of the total swarm size. The values adopted for these parameters in all
the experiments conducted are shown in Table 1. The swarm size was set
proportional to the permutation length, as suggested by Clerc [11]. 30 inde-
pendent runs were performed in each experiment. The maximum number of
iterations was fixed as follows: HPSO 6000 (40 jobs) and 9000 (50 jobs);
HPSOpeign and HPSOp, 50000 (40 jobs) and 65000 (50 jobs). These values
were empirically derived after an exhaustive series of experiments. Initially,
HPSO ran for the same number of cycles as the other approaches, but its
performance did not improve. Thus, as a consequence, we decided to reduce
its total number of iterations.

For HPSOyeign and HPSOy,, it was neccesary to determinate the val-
ues for the mutation probability (pm). This parameter depends of two values:
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Table 1. Parameter settings for the PSO algorithms considered.

Parameters| H PSO|HPSOneigh|[HPSOgn
Inertia 0.3 0.5 0.5
factor

Learning 1.3 1.5 1.5
factors

Neighbor- - 4 4

hood size

min_pm and max_pm which, in our case, were fixed to 0.1 and 0.4, respec-
tively.

Additionally, the parameter settings for MCMP — SRI — IN were taken
from [14] and are the following: the evolutionary algorithm ran for 200 gen-
erations with a population size of 100 individuals. The crossover probability
was 0.65 and the mutation probability was 0.05. The algorithm performed 14
crossover operations on each pair of parents and it used 16 parents to recom-
bine. The number of seed was 3 (generated with R&M, Covert, and Modified
R&M heuristics).

5.1 Performance Metrics

To compare the algorithms, the following performance metrics were chosen:

Best: It indicates the best value found by an algorithm.
pBest: It is the mean objective value obtained from the best found parti-
cles throughout all runs.

e oBest: It is the standard deviation of the objective values corresponding
to the best found particles throughout all runs with respect to uBest.

o (o/p)Best: This coefficient of variation is calculated as the oBest and
pBest ratio. It represents the desviation as a percentage of the uBest
value. The closer this value is to zero, the higher the robustness of the
results obtained by an algorithm.

¢ Mean Evaluations (ME): It is the mean number of evaluations neces-
sary to obtain the best value of the objective function found throughout
the runs performed.

e Hit Ratio (HR): It is the percentage of runs where the algorithm reaches
the best known values for each test function.

6 Analysis of Results
In this section, we present the results obtained for the algorithms compared

as well as a brief discussion of them. First, we present the results obtained
by the classical PSO, which are displayed in Tables 2 and 3 for instances of
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40 and 50 jobs, respectively, where IN denotes the problem instance number
and the Best Known Values, were taken from the OR-Library [5].

Table 2. PSO performance for problem instances of 40 jobs

IN |Best Known Value| Best | o/p | ME HR
1 913 913 |0.4631| 320 |(0.03
6 6955 8708 |0.1363| 3220 |0.00
11 17465 20652 |0.1324(120002(0.00
19 77122 81184 |0.0501| 85233 |0.00
21 77774 81057 |0.0583(125512(0.00
26 108 108 |0.8715| 240 |0.03
31 6575 9832 |0.1789(135522|0.00
41 57640 63311 |0.0643| 2445 (0.00
46 64451 67088 |0.0570|289874|0.00
51 0 661 |0.5225| 47877 |0.00
56 2099 2779 10.2827|586588|0.00
66 65386 75419 10.0617|298854|0.00
71 90486 93072 |0.0510({147455(0.00
76 0 0 |1.8088|200954|0.70
91 47683 57484 10.0706|568852|0.00
96 126048 130657(0.0333| 75665 |0.00
101 0 0 ]0.0000| 1552 |1.00
106 0 0 ]0.0000| 2544 |1.00
116 46770 56139 |0.0872(185587(0.00
121 122266 128107(0.0581|299847|0.00

From the results shown in Tables 2 and 3, it can be seen that the classical
PSO is unable to reach the best known values in almost all the instances. This
is indicated by the zero values for the HR metric, except for instances 101 and
106 in the case of 40 jobs. This is the reason by which in the remainder of this
section, only the results for HPSO, HPSOyeigh, HPSOy, and MCMP —
SRI — IN are discussed.

Tables 4 and 5 summarize the best objective function values found by the
PSO variants and by the evolutionary algorithm for problem instances with
40 jobs and 50 jobs, repectively. Observing these values in both tables, we can
see that the HPSO algorithm has, for some instances, the worst performance
(marked with boldface). This is due to the fact that each particle in the
swarm is attracted towards the position of the global best particle, which
leads to a stagnation of the algorithm in a local optimum. In the case of 40
jobs, HPSOpeign, and HPSOy, converge to the same best values, and both
algorithms outperform to MCMP — SRI — IN in instance 21. The results for
the 50 jobs problems (Table 5) show that in instance 6, HPSOy,, obtains the
worst best value (but yet it is closer to the best known value). For instances
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Table 3. PSO performance for problem instances of 50 jobs

IM|Best Known Value| Best | o/p | ME |HR
1 2134 2259 |0.22623| 98558 |0.00
6 26276 29241 10.08538|568856|0.00
11 51785 53844 10.08870|866585|0.00
19 89299 99698 |10.06118|248898(0.00
21 214546 221119|0.03595| 25442 {0.00
26 2 10 |1.11608| 17452 |0.00
31 9934 14426 |0.16843| 34252 (0.00
41 123893 124855(0.02765| 27784 |0.00
46 157505 167009|0.46806| 89552 |0.00
51 0 0 0.7619 |131905(0.03
56 1258 1258 ]0.19776| 57884 |0.10
66 76878 76991 |10.01623| 25995 |0.00
71 150580 151322|0.02495| 69899 |0.00
76 0 0 1.0000 | 27741 |0.20
91 9298 39787 10.02778| 98778 |0.00
96 77909 187222(0.00991| 33541 |0.00
101 0 0 0.9935 | 37787 |0.50
106 0 0 0.9000 | 47785 |0.35
116 35727 38544 |0.03077| 78448 |0.00
121 8315 79884 |0.02304| 35884 |0.00

Table 4. Best metric values for TWT 40 jobs problem size

IN |Best Known Value| HPSO |HPSOpcigh | MCMP — SRI — In|HPSOgn
1 913 913 913 913 913
6 6955 6955 6955 6955 6955
11 17465 17465 17465 17465 17465
19 77122 77122 77122 77122 77122
21 77774 77774 77774 77774 77774
26 108 108 108 108 108
31 6575 6575 6575 6575 6575
41 57640 57640 57640 57876 57640
46 64451 64459 64451 64451 64451
51 0 0 0 0 0
56 2099 2099 2099 2099 2099
66 65386 65402 65386 65386 65386
71 90486 90523 90486 90486 90486
76 0 0 0 0 0
91 47683 47683 47683 47683 47683
96 126048 126048 126048 126048 126048
101 0 0 0 0 0
106 0 0 0 0 0
116 46770 46771 46770 46770 46770
121 122266 122304 122266 122266 122266
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Table 5. Best metric values for TWT 50 jobs problem size

IN |Best Known Value| HPSO |HPSOycigh | MCMP — SRI — In|HPSOgy,
1 2134 2134 2134 2134 2134
6 26276 26276 26276 26276 26281
11 51785 51785 51785 51785 51785
19 89299 89308 89308 89299 89299
21 214546 214585 214744 214555 214555
26 2 2 2 2 2
31 9934 9934 9934 9934 9934
44 123893 124261 123893 123893 123893
46 157505 157536| 157505 157505 157505
51 0 0 0 0 0
56 1258 1258 1258 1258 1258
66 76878 76948 76878 76878 76878
71 150580 150667 150580 150580 150580
76 0 0 0 0 0
91 89298 89543 89323 89448 89474
96 177909 178007 177909 177909 177909
101 0 0 0 0 0
106 0 0 0 0 0
116 35727 35830 35728 35727 35727
121 78315 78396 78315 78315 78315

19, 21, 91, and 116, HPSOy, is the algorithm with the best performance,
and specially in instance 21 where none of the algorithms reaches the best
know values, HPSOj, obtains the same value than MCMP — SRI — IN.
As a conclusion, we can say that except for some instances (marked with
boldface), all the algorithms find the best known values. In fact, even when
these values are not reached, HP SOy, and MCMP — SRI — IN converge to
very similar values.

Nevertheless, it is important to analyze these results in more details, by
using other performance metrics such as Hit Ratio and the mean number of
evaluations that each algorithm has to perform to find the best value.

Figure 8 shows the analysis of the Hit Ratio metric. In this case, we can
see that HPSOpe;gp finds the best known values approximately 70% of the
time for the case of 40 jobs and around 50% of the time for the case of 50
jobs. In contrast, H PSOy,, reaches the best known values in approximately
the 80% and 70% of the runs for the 40 and 50 jobs instances, respectively.
Also, we can observe that the results obtained with MCMP — SRI — IN are
slighly better than those found by H PSSOy, although none of the algorithms
finds the best known values for all the instances in all the runs. With the
previous observations in mind, we can conclude that HPSOy,, is superior to
HPSOpeign and its results are comparable to those obtained by MCMP —
SRI — IN (which can be seen as an evolutionary algorithm that has been
carefully tailored for the problem being solved in this study).

Figure 9 shows the cost measured as the mean number of evaluations that
an algorithm performs to reach the best known values. In this case, H PSOyy,
performs, on average, a lower number of evaluations when compared with
HPSOnpeigh and MCMP — SRI — IN, a difference that becomes even higher
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Fig. 8. Performance evaluation with respect to the Hit Ratio metric
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Fig. 9. Performance evaluation with respect to the Mean Evaluation metric

when the problem size is increased. This difference was somehow expected
(with respect to HPSOnpeigr) due to the guided search that the HPSOgy
performs. The idea of including knowledge about the problem in the algo-
rithm is not new, since it has been successfully applied in the past in several
evolutionary algorithms [3].

Table 6. (o/p)Best mean values obtained by the PSO variants compared

Problem Size| HPSO ' HPSO_neigh HPSO_kn
40 0.003825| 0.002880 0.001950
50 0.003320| 0.001565 0.000100
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In Table 6, we show the mean values over all the coefficients of variation of
the best values calculated for all the instances, for the different PSO variants
for the two instances studied (40 jobs and 50 jobs). These values are grouped
around the mean. Although not all the coefficient values were equal to zero,
they are very close, which suggests robustness of the algorithms with respect
to the results that they found.

7 Conclusions and Future Work

In this chapter, three improved PSO variants were presented to deal with per-
mutation problems. To determine the performance of the algorithms studied,
the weighted tardiness scheduling on the single machine environments problem
was selected as a case of study. HPSO is a hybridized PSO in the sense that
a suitable representation and a dynamic mutation operator were adopted to
make it more competitive in sequencing problems. However, we saw that this
approach in which the global leader is always followed, is prone to converge
to a local optimum, causing a premature convergence of the algorithm.

As a way of dealing with this drawback, we proposed an approach called
HPSOpeigh, which incorporates a simple neighborhood topology, so that each
particle is only influenced by the best local particle in its neighborhood. This
modification allowed that the algorithm could find all the best known values
for the 40 jobs problem size and increased the number of instances in which the
algorithm found the best known values for the instances of 50 jobs (instances
19, 21, 44, 46, 66 and 71). A further modification was introduced, which
consisted of the incorporation of specific domain knowledge by means of the
inclusion of seeds (generated with another heuristic) in the swarm. This new
version was named HPSOy,. All these algorithms were compared among
themselves and with respect to MCM P —SRI—IN, which is an evolutionary
algorithm specially tailored for the problem of interest and which also uses
the inclusion of knowledge through seeds. Although HPSOpeign, HPSOgy
and MCMP — SRI — IN found objective values which are similar, H PSOy,,
and MCMP — SRI — IN exceeded widely to HPSOp.ign in the number of
runs in which they reached the best known values as was shown with the Hit
Ratio values. In spite of that, the cost (measured in the number of evaluations
performed to reach the best known values) of HPSOy,, is fairly smaller than
the one required by MCM P—SRI—IN and also (as expected) is about a 50%
lower than the cost of HPSOpeign. We believe that these preliminary results
are good enough to consider HPSQO variants as a promising approach for
scheduling problems. Thus, we are convinced that this topic deserves further
study.

As part of our future work, we are considering different possibilities. The
first one is to minimize the redundancy of the encoding currently adopted
by exploring alternative encodings. Second, we aim to study the effect of
incorporating and adapting other operators which have been typically used
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with evolutionary algorithms to solve permutations problems. Finally, it is of
great relevance for us the study of the behavior of our proposed approach in
much larger instances of this problem (between 100 and 200 jobs).
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