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Summary. The use of particle swarm optimization (PSO) in multi-objective opti-
mization has become widespread in the last few years. However, very few researchers
have explored the use of techniques that allow to reduce the number of fitness evalu-
ations of a PSO-based approach for multi-objective optimization. This chapter pre-
cisely explores the advantages and disadvantages of using fitness inheritance and ap-
proximation techniques to reduce the number of fitness evaluations into a PSO-based
multi-objective algorithm previously proposed by the authors. Our study includes
fifteen fitness inheritance techniques and four approximation techniques which are
applied to a set of test functions taken from the specialized literature.

1 Introduction

Given the high computational cost of evaluating the fitness functions of many
real-world applications, the total number of fitness function evaluations that
an Evolutionary Algorithm (EA) may perform in such applications may be-
come severely limited. In order to improve the performance of EAs, several
enhancement techniques have been proposed in the past. In this chapter, we
will focus on two of these enhancement techniques: fitness inheritance and
approximation techniques. Fitness Inheritance is an enhancement technique
[1] in which the fitness value of an offspring is obtained from the fitness val-
ues of its parents. On the other hand, approximation techniques [2] let us
estimate the fitness of an individual using the previously calculated fitness of
its neighbors (either including its parents or not). In fact, fitness inheritance
is a particular case of fitness approximation. However, in general, the idea
of using enhancement techniques, is that we do not need to evaluate every
individual at each generation, such that the total computational cost can be
reduced. In this chapter, we perform a study of different inheritance and ap-
proximation techniques applied to a real-coded PSO-based approach that has
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been previously proposed by the authors to solve multi-objective problems
[3]. Since the main focus of our research is on fitness inheritance techniques,
we are proposing a higher number of fitness inheritance techniques (fifteen)
than approximation techniques (four). In our study, we use five well-known
multi-objective test functions in an attempt to determine the best from the
enhancement techniques analyzed.

In the final part of our study, once we have identified which were the
best enhancement techniques, we compare these techniques with respect to
other PSO-based multi-objective optimizers which are representative of the
state-of-the-art, adopting different test functions.

The remainder of this chapter is organized as follows. An introduction to
Fitness Inheritance and Fitness Approximation is given in Sections 2 and 3,
respectively. Section 4 introduces the multi-objective PSO-based algorithm in
which the proposed techniques are incorporated. The enhancement techniques
proposed in this paper are presented in Section 5. In Sections 6 and 7 we
present the obtained results and their discussion, respectively. A comparison
against other PSO-based algorithms is presented in Section 8. Finally, our
conclusions and some of the possible paths for future research are described
in Section 9.

2 Fitness Inheritance

The use of fitness inheritance to improve the performance of Genetic Algo-
rithms (GAs) was originally proposed by Smith et al. [1]. The authors pro-
posed two possible ways of inheriting fitness: the first consists of taking the
average fitnesses of the two parents and the other consists of taking a weighted
(proportional) average of the fitnesses of the two parents. The second approach
is related to how similar the offspring is with respect to its parents (this is
done using a similarity measure). They applied inheritance to a very simple
problem (the OneMax problem) [1] and found that the weighted fitness aver-
age resulted in a better performance and indicated that fitness inheritance was
a viable alternative to reduce the computational cost of a genetic algorithm.

Zheng et al. [4] performed the first application of fitness inheritance on a
GA for the problem of codebook design in data compression techniques. They
concluded that the use of fitness inheritance didn’t degrade the performance
of the GA.

Sastry et al. [5] provided some theoretical foundations for fitness inheri-
tance. They investigated convergence times, population sizing and the optimal
proportion of inheritance for the OneMax problem. Chen et al. [6] investigated
fitness inheritance as a way to speed up multi-objective GAs and EAs. They
extended the analytical model proposed by Sastry et al. to multi-objective
problems. Convergence and population-sizing models are derived and com-
pared with respect to experimental results. The authors concluded that the
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number of function evaluations can be reduced with the use of fitness inheri-
tance.

Salami et al. [7] proposed a “Fast Evolutionary Algorithm” in which a
fitness and associated reliability value are assigned to each new individual
that is only evaluated using the true fitness function if the reliability value
is below a certain threshold. Also, they incorporated random evaluation and
error compensation strategies. The authors obtained an average reduction
of 40% in the number of evaluations while obtaining similar solutions. In
the same work, they presented an application of fitness inheritance to image
compression obtaining reductions between 35% and 42% of the number of
evaluations.

Ducheyne et al. [8] tested the performance of average and weighted average
fitness inheritance on a well-known test suite of multi-objective optimization
problems [9], using a binary GA. They concluded that the fitness inheritance
efficiency enhancement techniques can be used in order to reduce the number
of fitness evaluations provided that the Pareto front is convex and continu-
ous. They also concluded that if the Pareto surface is not convex or if it is
discontinuous, the fitness inheritance strategies fail to reach the true Pareto
front.

Pelikan et al. [10] used fitness inheritance to estimate fitness for a pro-
portion of solutions in the Bayesian Optimization Algorithm (BOA). They
concluded that fitness inheritance is a promising concept in BOA, because
population-sizing requirements for building appropriate models of promising
solutions lead to good fitness estimates even if only a small proportion of
candidate solutions is evaluated using the true fitness function.

Bui et al. [11] performed a comparison of the performance of anti-
noise methods, particularly probabilistic and re-sampling methods, using the
NSGA-II [12]. They applied the concept of fitness inheritance to both types
of methods in order to reduce computational time. The authors obtained a
substantial amount of savings in the number of computations, reaching a peak
of 30% of savings without deteriorating the performance.

In a previous work [13], we proposed the first attempt to incorporate the
concept of fitness inheritance to a real-coded Multi-Objective PSO (MOPSO)
previously proposed by us [3]. In [13], we tested the performance of weighted
average fitness inheritance on a well-known test suite of multi-objective opti-
mization problems [9]. Based on the obtained results, we concluded that fitness
inheritance reduces the computational cost without decreasing the quality of
the results in a significant way. Also, the fitness inheritance technique used
was able to generate non-convex and discontinuous Pareto fronts. These con-
clusions were somewhat surprising given the conclusions (pointing in the exact
opposite direction) previously obtained by Ducheyne et al. in [8].
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3 Fitness Approximation

A promising possibility when an evaluation is very time-consuming or expen-
sive is not to evaluate every individual, but just estimate the quality of some
of the individuals based on an approximate model of the fitness landscape.

Approximation techniques estimate individual fitness on the basis of pre-
viously observed objective function values of neighboring individuals. There
are many possible approximation models. In the simplest case, the fitness of
a new individual is derived from its parents’ fitnesses (fitness inheritance).
However, some other more complicated methods have been used. A survey
of approximation methods in evolutionary computation can be found in [2].
Here, we briefly mention a few examples of different approximation techniques
commonly used.

Ratle [14] presented a new approach based on a classical real-encoded
genetic algorithm for accelerating convergence of evolutionary optimization
methods. With this aim, a reduction in the number of fitness function calls
is obtained by means of an approximate model of the fitness landscape us-
ing kriging interpolation. The author builds a statistical model from a small
number of data points obtained during one or more generations of the evolu-
tionary method using the true fitness landscape. The model is updated every
time a convergence criteria is reached.

Jin et al. [15] investigated the convergence property of an evolution strat-
egy with neural network based fitness evaluations. In this work, the authors
introduce the concept of controlled evolution, in which, the evolution pro-
ceeds using not only the approximate fitness function, but also the true fitness
function. They also introduce two possibilities to combine the true with the
approximate fitness function: the controlled individuals approach and the con-
trolled generation approach. The authors define controlled as true evaluated.
Both approaches are studied and some interesting conclusions/recommenda-
tions about the correct use of such techniques are provided.

Sano et al. [16] proposed a genetic algorithm for optimization of continuous
noisy fitness functions. In this approach, the authors utilize the history of the
search to reduce the number of fitness evaluations. The fitness of a novel
individual is estimated using the fitness values of the other individuals as
well as the sampled fitness values for it. So, as to increase the number of
individuals adopted for evaluation, they use not only the current generation
but also the whole history of the search. To utilize the history of the search,
a stochastic model of the fitness function is introduced, and the maximum
likelihood technique is used for estimation of the fitness function. The authors
concluded that the proposed method outperforms a conventional GA in noisy
environments.

Branke et al. [17] suggest the use of local regression for estimation, taking
the fitness of neighboring individuals into account. Since in local regression is
very important to determine which individuals belong to the neighborhood of
a given individual, the authors studied two different approaches for setting the
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value of the size of the local neighborhood (relative neighborhood and adaptive
neighborhood). The authors concluded that local regression provides better es-
timations than previously proposed approaches. In more recent work, Branke
et al. [18] compared two estimation methods: interpolation and regression.
They concluded that regression seems to be slightly preferable, particularly
if only a very small fraction of the individuals in the population is evaluated.
Their experiments also show that using fitness estimation, it is possible to
either reach a better fitness level in a given time, or to reach a desired fit-
ness level much faster (using roughly a half of the original number of fitness
function evaluations).

Ong et al. [19] proposed a local surrogate modeling algorithm for parallel
evolutionary optimization of computationally expensive problems. The pro-
posed algorithm combines hybrid evolutionary optimization techniques, radial
basis functions, and trust-region frameworks. The main idea of the proposed
approach is using an EA combined with a feasible sequential quadratic pro-
gramming solver. Each individual within an EA generation is used as an initial
solution for local search, based on Lamarckian learning. The authors employ a
trust-region framework to manage the interaction between the original objec-
tive and constraint functions and the computationally cheap surrogate models
(which consist of radial basis networks constructed by using data points in the
neighborhood of the initial solution), during local search. Extensive numerical
studies are presented for some benchmark test functions and an aerodynamic
wing design problem. The authors show that the proposed framework pro-
vides good designs on a limited computational budget. In more recent work,
Ong et al. [20] present a study on the effects of uncertainty in the surrogate
on Surrogate-Assisted Evolutionary Algorithms (SAEA). In particular, the
authors focus on both the “curse of uncertainty” (impairments due to errors
in the approximation) and “blessing of uncertainty” (benefits of approxima-
tion errors). The authors tested several algorithms: the Surrogated-Assisted
Memetic Algorithm (SAMA) proposed in [19], a standard genetic algorithm, a
memetic algorithm (considered as the standard hybridization of a genetic al-
gorithm and the feasible sequential quadratic programming solver used in [19])
and the SAMA-Perfect algorithm (which is the SAMA algorithm but using
the exact fitness function as surrogate model), on three multimodal bench-
mark problems (Ackley, Griewank and Rastrigin). The authors concluded that
approximation errors lead to convergence at false global optima, but prove to
be beneficial in some cases, accelerating the evolutionary search.

Gaspar-Cunha et al. [21] developed an algorithm using artificial neural net-
works to reduce the number of exact function evaluations for multi-objective
optimization problems. The proposed method can save, in some cases, more
than 50% of true function evaluations.

Regis and Shoemakes [22] developed an approach for the optimization of
continuous costly functions that uses a space-filling experimental design and
local function approximation to reduce the number of function evaluations
in an evolutionary algorithm. The proposed approach estimates the objective
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function value of an offspring by means of a function approximation model
over the k nearest previously evaluated points. The estimated values are used
to identify the most promising offspring per function evaluation. A Symmet-
ric Latin Hypercube Design (SLHD) is used to determine initial points for
function evaluation, and for the construction of the function approximation
models. The authors compared the performance of an Evolution Strategy (ES)
with local quadratic approximation, an ES with local cubic radial basis func-
tion interpolation, an ES whose initial parent population is obtained from a
SLHD, and a conventional ES (in all cases, the authors use a (u, A\)-ES with
uncorrelated mutations). The algorithms are tested on a groundwater bioreme-
diation problem and on some benchmark test functions for global optimization
(including Dixon-Szegd, Rastrigin and Ackley). The obtained results (which
include analysis of variance to provide stronger and solid claims regarding the
relative performance of the algorithms) suggest that the approach that uses
SLHDs together with local function approximations has potential for success
in enhancing EAs for computationally expensive real-world problems. Also,
the cubic radial basis function approach appears to be more promising than
the quadratic approximation approach on difficult higher-dimensional prob-
lems.

Dim et al. [23] presented a Trusted Evolutionary Algorithm (TEA) for
solving optimization problems with computationally expensive fitness func-
tions. The TEA is designed to maintain good trustworthiness of the surrogate
models in predicting fitness improvements or controlling approximation er-
rors throughout the evolutionary search. In this case, the authors are more
interested in predicting search improvement as opposed to the quality of the
approximation, which is regarded as a secondary objective. TEA begins its
search using the canonical EA, with only exact function evaluations. Dur-
ing the canonical EA search, the exact fitness values obtained are archived
in a central database together with the design vectors (to be used later for
constructing surrogate models). After some initial search generations (spec-
ified by the user), the trust region approach takes place beginning from the
best solution provided by the canonical EA. The trust region approach uses
a surrogate model (radial basis neural networks) and contracts or expands
the trust radius depending on the ability of the approximation model in pre-
dicting fitness improvements, until the termination conditions are reached.
The authors performed an empirical study on two highly multi-modal bench-
mark functions commonly used in the global optimization literature (Ackley
and Griewank). Numerical comparisons to the canonical EA and the original
trust region line search framework are also reported. From the obtained re-
sults, the authors concluded that TEA converges to near-optimum solutions
more efficiently than the canonical evolutionary algorithm.

Voutchkov and Keane [24] discussed the idea of using surrogate models
for multi-objective optimization. That is, instead of using the expensive com-
putational methods during the optimization, they used a much cheaper but
accurate replica. The authors aim to overview the usage of several methods,
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using the NSGA-IT algorithm [12] as their search engine. Several different sur-
rogate models are used, including radial basis functions, regression models
and kriging. The authors tested the surrogate models on four different test
functions taken from the specialized multi-objective optimization literature.
From the obtained results, the authors concluded that the performance of all
methods depends on the features of the objective functions being optimized.
Also, the authors discussed the weaknesses of these models on deceptive prob-
lems. In general, they concluded that the kriging method appears to perform
well in most situations, however, it is much more computationally expensive
than the rest.

Knowles [25] proposed an algorithm called ParEGO, which is a hybrid
approach with on-line landscape approximation for expensive multi-objective
optimization problems. ParEGO is an extension of the Efficient Global Op-
timization (EGQO) algorithm, which is a frequently cited algorithm from the
global optimization literature, designed for expensive functions of low dimen-
sion. The EGO algorithm makes use of kriging to model the search landscape
from solutions visited during the search. Specifically, it exploits a version of
the Design and Analysis of Computer Experiments (DACE) model, which is
based on Gaussian processes. ParEGO extends the EGO algorithm for solv-
ing multi-objective problems by converting the k different cost values (objec-
tives) of a solution into a single cost via a parameterized scalarizing weight
vector (using the augmented Tchebycheff function). By choosing a different
weight vector at each iteration of the search, an approximation to the whole
Pareto front is built up gradually. The author tested the ParEGO algorithm
on a test suite of nine difficult, but low-dimensional, multi-objective func-
tions of limited ruggedness, over just 100 and 250 function evaluations. Also,
the obtained results are compared against those obtained by the NSGA-II
algorithm [12] (performing 100 and 260 function evaluations) and a random
search approach (over 10000 function evaluations). From the obtained results,
the author concluded that both ParEGO and NSGA-II outperform the ran-
dom search, even over a very small number of function evaluations, and that
ParEGO generally outperforms NSGA-IT on the test functions adopted, at
both 100 and 250 function evaluations (especially when the worst case perfor-
mance is measured). Overall, the author concluded that ParEGO exhibits a
promising performance for multi-objective optimization problems where eval-
uations are expensive or otherwise restricted in number.

In this chapter, we adopt very simple approximation techniques, based
only on the objective values of the closest neighbors. Such techniques will be
explained in Section 5.
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4 Multi-Objective Particle Swarm Optimization

In this chapter, we incorporate several fitness inheritance and approximation
techniques into a MOPSO that was previously proposed by us in [3] and
updated in [13].

The PSO algorithm is a population-based search algorithm based on the
simulation of the social behavior of birds within a flock [26]. In PSO, in-
dividuals, referred to as particles, are “flown” through a hyperdimensional
search space. Changes to the position of the particles within the search space
are based on the social-psychological tendency of individuals to emulate the
success of other individuals.

A swarm consists of a set of particles, where each particle represents a
potential solution. The position of each particle is changed according to its
own experience and that of its neighbors. Let x;(¢) denote the position of
particle i, at time step ¢. The position of particle i is then changed by adding
a velocity v;(t) to the current position, i.e.:

Xz(t) = Xi(t - 1) + Vz(t) (1)

The velocity vector drives the optimization process and reflects the socially
exchanged information. In the global best version (used here) of PSO, each
particle uses its history of experiences in terms of its own best solution thus far
(pbest) but, in addition, the particle uses the position of the best particle from
the entire swarm (gbest). Thus, the velocity vector changes in the following
way':

Vi(t) = in(t — 1) +Cir1 (Xpbest,- - X,’(t — 1)) + C2T2(xgbest,- - X,’(t — 1)) (2)

where W is the inertia weight, C; and C2 are the learning factors (usually
defined as constants), and 71,72 € [0,1] are random values. In this work, we
use W = random(0.1,0.5) and C1,Cs = random(1.5,2.0).

The MOPSO proposed in [3, 13] is based on Pareto dominance, since
it considers every nondominated solution as a new leader.! Additionally, the
approach uses a crowding factor [12] as a second discrimination criterion which
is also adopted to filter out the list of available leaders. For each particle, we
select the leader in the following way: 97% of the time a leader is randomly
selected, if and only if that leader dominates the current particle, and, the
remaining 3% of the time, we select a leader by means of a binary tournament
based on the crowding value of the available set of leaders. If the size of the set
of leaders is greater than the maximum allowable size, only the best leaders are
retained based on their crowding value. We also proposed the use of different
mutation (or turbulence) operators which act on different subdivisions of the
swarm. We proposed a scheme by which the swarm is subdivided in three parts
(of equal size): the first sub-part has no mutation at all, the second sub-part

1 A leader is used as the gbest solution in Equation 2.
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uses uniform mutation and the third sub-part uses non-uniform mutation.
The available set of leaders is the same for each of these sub-parts. Finally,
the proposed approach also incorporates the e-dominance concept [27] to fix
the size of the set of final solutions produced by the algorithm. Figure 1 shows
the pseudo-code of our proposed approach.

Begin
Initialize swarm. Initialize leaders.
Send leaders to e-archive
crowding(leaders), g =0
While g < gmazx
For each particle
Select leader. Flight. Mutation.
= If(p;) Inherit Else Evaluation.
Update pbest.
EndFor
Update leaders, Send leaders to e-archive
crowding(leaders), g++
EndWhile
Report results in e-archive
End

Fig. 1. Pseudocode of our algorithm.

In Figure 1, the symbol (=) indicates the line in which the concept of
fitness inheritance (or approximation) is incorporated. The inheritance or ap-
prozimation proportion, p;, is the proportion of individuals in the population
whose fitness is inherited or approximated. It is very important to note that
a particle that has inherited its objective values can not enter into the final
Pareto front, since a final solution must have true objective values.

5 Proposed Techniques

5.1 Fitness Inheritance

Since PSO has no recombination operator, we adopted as “parents” of a par-
ticle the previous position of the particle, its pbest and its leader.

Linear Combination Based on Distances (LCBD)

We propose to calculate the new position in the objective space of a particle
by means of a linear combination of the positions of the particles that were
considered to calculate the new position in the search space. We consider the
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position of the leader as the most important. Thus, the leader will be always
considered.

Given a particle zq, its personal best zppest, its assigned leader x;4 and
the new particle x,..,, we proceed to calculate the distance from x,.,, to its
“parents” (as defined before): di = d(Znew; Toid),d2 = A(Tnew, Tppest), ds =
d(Znew,x1q), where d is an Euclidean distance. We propose variants of the
same idea, based on the individuals that can be considered:

d1
d1+dz’

fi(xnew) = Tfi(-z'ld) + (]— - T)f'i(mold);i =1,..,n.

FI2 pbest and leader. r = dz‘i—zds,

FI1 Previous position and leader: r =

fi(wnew) = rfz'(xld) + (]- - r)fi(wpbest)ai = 17 ey T
FI3 Previous position, pbest and leader.

— d1 — da — ds — — —
;1/ = TFdetds’ "2 T TiFdetds’ "3 T ditdetdsr 1T 1/7.1’7.2 - 1/7’2,7’3 -
T3

fi(@new) = 11 fi(®o1a) + r2 fi(Tppest) + 3 fi(w1a),

i = 1,...,n. Where f; is the value of the objective function ¢ and n is
the number of objective functions. See Figure 2 for an illustration of these
techniques.

particle particle particle
° [ 2N
® pest pbest S e pbest
new new K v -

particle par:"te:’(\:ll . particle ' @ .~
° ® ¢
leader leader leader

Fl1 Fl2 FI3

Fig. 2. Illustration of techniques FI1, FI2 and FI3.

The technique FI1 is the one proposed in [13]. As in [13], in all the inheri-
tance techniques, if the leader selected does not dominate the current particle,
we will proceed to calculate the inherited position and to assign the objective
values of the closest leader to that position. This procedure is used to avoid
the generation of invalid particles in the case of non-convex Pareto fronts. See
Figure 3.
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particle particle

new
particle

el

leader

Fig. 3. Case in which “invalid” particles can be obtained and the method used to
repair them.

Flight Formula on Objective Space (FFOS)

As we mentioned before, in PSO, the position of each particle in the search
space is updated using the formula:

xi(t) = xi(t — 1) + vi(t)

Vi(t) = WVz'(t — 1) + Ciry (Xpbest,- - X,’(t — 1)) + Cars (ngest,- - Xi(t - 1))

In this case, we propose an analogous formula to update the position of
each particle in objective function space:

fi(t) = fi(t — 1) + vfi(t)

Vfi(t) = WVfi(t - ].) +Cir (fpbesti - fi(t — 1)) + Cary (fgbesti —f; (t - ].))

where fi, fobest; and fgpest; are the values of the objective function
for the current particle, its pbest and gbest, respectively. We adopt the same
values of W, Cy, r1, C2 and 12 previously used for the flight in the decision
variable space. We will consider the following variants based on the vectors
considered:

FT14 Considering the whole formula:
vfi(t) = Wvfi(t — 1) 4+ Cir1 (fppest; — fi(t — 1)) + Cora(fgbest; — fi(t — 1))
FI5 Ignoring the previous direction:
vfi(t) = Cim1 (fpbest; — fi(t — 1)) + Cora(fgbest; — fi(t — 1))
F16 Ignoring the direction to the pbest:

Vfi(t) = vai(t — 1) + Cars (fgbesti — fi(t — 1))
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Combination Using Flight Factors

Non-linear Combination (NLC)
In this case, we propose to calculate the new objective position of a particle
using the elements of the flight formula:

fi(t) = Wii(t — 1) + Cirifpbest; + Corafghest;
As in the previous cases, the variants considered are:
FI7 Considering the whole formula:
fi(t) = Wit — 1) + Cirifpbest; + Corafgbest;

F1I8 Ignoring the previous position:

fi(t) = Cirifpbest; + Corafgbest;
F19 Ignoring the position of the pbest:

fi(t) = Wit — 1) + Coraof ghest;

On the other hand, since W € (0.1,0.5) and C;ir1, Cory € (0.0,2.0), we
propose to modify the previous formula in the following way:

Cirm Cars

fl(t) fl(t - 1) + 2.0 fpbesti + 2—-0fgbesti

05
As a result, we obtain the following variants:

FT10 Considering the whole formula:

Ciry Cars

w
fi(t) = —fi(t — 1) + ——fpbest; + ——fgbest;
() = g0t =D+ 5 5 fobests + 5 - Egbes
FI11 Ignoring the previous position:
_ Cir Cary

fi (t) 2.0 fpbesti + Tofgbesti

FT12 Ignoring the position of the pbest:

_ w CQTQ
=osht-1+ 55

Linear Combination (LC)
We propose to use the previous formula but in such a way that the result
is a linear combination of the elements considered:
w Cl’f'l 027'2

fi(t) = Tfl (t - 1) + fpbesti + ngbesti

fi(t)

fgbesti

where r = W 4 Cir; + Cara. The corresponding variants are the following
(note the changes in r):
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FT13 Considering the whole formula, r = W + Ciry + Cars:

w C C
fl(t) = Tfl(t - 1) + L7 fpbesti + 2Tmfgbesti

F1I14 Ignoring the previous position, r = Cyr; + Cara:
_ Ciry Cory

fi (t) fpbesti + r fgbesti

FI15 Ignoring the position of the pbest, r = W + Cars:

fi(t) = hi(e 1)+ 2

fgbesti

5.2 Fitness Approximation (FA)

As we could see in the previous section, fitness inheritance techniques assign
the fitness value (objective values, in our case) of an individual using the fitness
values of its parents. However, in the case of fitness approximation techniques,
it is possible to use any set of neighboring particles to estimate the fitness of a
particle, based on an approximate model of the fitness landscape. We propose
four simple approximation techniques. In each case, the particle will take the
objective values of the particle indicated:

FA1 The closest particle. Since we have the available set of leaders stored
in an external list (archive), in this case we will search for the closest
leader, either member of the swarm itself or member of the available set
of leaders.

FA2 The closest leader. In this case, we will search for the closest particle
member of the available set of leaders.

FA3 The closest particle member of the swarm. In this case, we will not
consider the available set of leaders.

FA4 The average of the 10 closest particles. In this case, we will consider
both the particles members of the swarm and the particles members of the
available set of leaders.

We use the Euclidean distance in the decision variable space. In technique
FA4, there are cases in which an invalid particle may be created. In this way,
if among the 10 closest particles there are two or more leaders, or there is
just one leader but this leader does not dominate the current particle, we will
proceed as it was explained before. See Figure 3.

6 Comparison of Results

In order to compare the proposed techniques, we performed a study using five
well-known test functions taken from the specialized literature on evolutionary
multi-objective optimization:
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Test Function ZDT1 [9]:

Minimize  (f1(x), f2(x)) (3)
fl(X) =T
f2(x) = g(x ) (f1,9)

_1+92xz/ h(fl,9)=1-+/fi/g
where m = 30, and z; €[0,1].

Test Function ZDT2 [9]:

Minimize  (f1(x), f2(x)) (4)
fix) =2
fa(x) = g(x ) (f1,9)
—1+9Zmz/ h(f1,9) =1-(f1/9)?

where m = 30, and z; €[0,1].
Test Function ZDT3 [9]:
Minimize  (f1(x), f2(x)) (5)

H(x) =
f2(x) = g(x)h(f1,9)

x)=1+9Y z;/(m—1) , h(fl,9) =1—/fi/g— (f/g)sin(107 f1)
=2
where m = 30, and z; €[0,1].
Test Function ZDT4 [9]:
Minimize  (f1(x), f2(x)) (6)

fi(x) =z
Ja(x )—9( Yh(f1,9)

g(x) =1+ 10(m — 1) +fo—1ocos drz;)), h(f1,9) =1—+/fi/g

where m = 10, z; €[0,1] and z; €[-5,5], ¢ = 2,...,m.
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e Test Function DTLZ2 [28]:

Minimize  (f1(x), f2(x), f3(x)) (7
fi(x) = (1 + g(x))cos(z1m/2)cos(zam/2)
f2(x) = (1 + g(x))cos(z1m/2)sin(zam/2)
f3(x) = (1 + g(x))sin(z17/2)
9(x) = 3 (i — 0.5
=3

where m = 12 and z; €[0,1].

Functions ZDT1 and ZDT4 have convex Pareto fronts, ZDT2 and DTLZ2
have non-convex Pareto fronts and ZDT3 has a non-convex and discontinuous
Pareto front.

We performed experiments with different values of inheritance (approxi-
mation) proportion p;. We experimented with: p;= 0.1, 0.2, 0.3, 0.4. Note that
this proportion of individuals indicates also the percentage by which the num-
ber of evaluations is reduced (e.g., p; = 0.1 means that 10% less evaluations
are performed). We performed 20 runs for each function and each technique.
The parameters adopted for our MOPSO were: 100 particles, 200 generations
and 100 particles in the external archive.

Next, we show the results corresponding to the following measure:

Success Counting (SCC): We define this measure based on the idea of the
measure called Error Ratio proposed by Van Veldhuizen [29] which indicates
the percentage of solutions (from the nondominated vectors found so far) that
are not members of the true Pareto optimal set. In this case, we count the
number of vectors (in the current set of nondominated vectors available) that
are members of the Pareto optimal set:

SCC = X”: iy
i=1

where n is the number of vectors in the current set of nondominated vec-
tors available; s; = 1 if vector 4 is a member of the Pareto optimal set, and
s; = 0 otherwise. It should then be clear that SCC = n indicates an ideal
behavior, since it would mean that all the vectors generated by our algorithm
belong to the true Pareto optimal set of the problem. Note that SCC avoids
the bias introduced by the Error Ratio measure, which normalizes the num-
ber of solutions found (which belong to the true Pareto front) and, therefore,
provides only a percentage of solutions that reached the true Pareto front.
This percentage does not provide any idea regarding the actual number of
nondominated solutions that each algorithm produced.
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Tables 1, 2, 3, 4, 5 and 6 present a summary of the results obtained.
In each case, we present the average of the SCC measure over the 20 runs,
and the percentage of decrement or increment on the quality of the results.
Also, we present the average of the percentages for each value of inheritance
proportion, for each technique.

Table 1. Obtained results for different values of inheritance proportion, for tech-
niques FI1, FI2 and FI3.

FI1 Inheritance proportion p;
function (0.0} 0.1 (-10%) | 0.2 (-20%) | 0.3 (-30%) | 0.4 (-40%)
ZDT1 |71|77|(+8.5%)|64| (-9.9%) |62|(-12.7%)|61|(-14.1%)
ZDT2 |89|83| (-6.7%) 86| (-3.4%) |79|(-11.2%)|77|(-13.5%)
ZDT3 |68|73|(+7.4%)|65| (-4.4%) |64| (-5.9%) [59|(-13.2%)
ZDT4 |80(81|(+1.3%)|81|(+1.3%)|60|(-25.0%) |68|(-15.0%)
DTLZ2 |18 (15|(-16.7%)|16|(-11.1%)|12|(-33.3%){12{(-33.3%)
Average -1.2% -55 % | |-17.6 %| [|-17.8 %
FI2 Inheritance proportion p;
function (0.0} 0.1 (-10%) | 0.2 (-20%) | 0.3 (-30%) | 0.4 (-40%)
ZDT1 |71|74|(+4.2%)|68| (-4.2%) |68| (-4.2%) |59|(-16.9%)
ZDT2 |89|81| (-9.0%) |82 (-7.9%) |78|(-12.4%)|77|(-13.5%)
ZDT3 |68|64| (-5.9%) |67| (-1.5%) |58|(-14.7%) (63| (-7.4%)
ZDT4 |80|77| (-3.8%) |83|(+3.8%)|67|(-16.3%)|69|(-13.8%)
DTLZ2 |1815((-16.7%)|18| (0.0%) (15|(-16.7%)|14|(-22.2%)
Average -6.2% 20 % | [-12.9 %| [-14.8 %
FI3 Inheritance proportion p;
function (0.0} 0.1 (-10%) | 0.2 (-20%) | 0.3 (-30%) | 0.4 (-40%)
ZDT1 |71(73|(+2.8%)|69| (-2.8%) |69| (-2.8%) [50|(-29.6%)
ZDT2 |89(87| (-2.2%) |82 (-7.9%) |71|(-20.2%)|76|(-14.6%)
ZDT3 |68(67| (-1.5%) |63| (-7.4%) |64| (-5.9%) |60|(-11.8%)
ZDT4 |80(81|(+1.3%)|79| (-1.3%) |59((-26.3%) |68|(-15.0%)
DTLZ2 |18(17| (-5.6%) [18| (0.0%) (14|(-22.2%)| 9 |(-50.0%)
Average -1.0% -39 % | [-15.5 %| |-24.2%

(_
(_
(_
(_

7 Discussion of Results

Since comparing 19 different techniques is very difficult, we decided to rep-
resent each technique with a vector. The vector used is that containing the
average of the change in the quality of results for each inheritance proportion
value. For example, to represent technique FI1, we construct the following
vector (see Table 1):

Inheritance proportion p;| 0.1|0.2| 0.3 | 0.4
Average vector -1.2|-5.5|-17.6/-17.8
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Table 2. Obtained results for different values of inheritance proportion, for tech-
niques FI4, FI5 and FI6.

Fl4 Inheritance proportion p;
function |0.0| 0.1 (-10%) | 0.2 (-20%) | 0.3 (-30%) | 0.4 (-40%)
ZDT1 |71(62|(-12.7%) 62| (-12.7%) |59|(-16.9%) |49|(-31.0%)
ZDT2 |89(85| (-4.5%) [84| (-5.6%) |78((-12.4%)|79|(-11.2%)
ZDT3 |68|73| (+7.4%) |69| (+1.5%) |60|(-11.8%)|58|(-14.7%)
ZDT4 |80(88|(+10.0%)|88|(+10.0%)|85|(+6.3%) [82|(+2.5%)
DTLZ2 |18|18| (0.0%) |11|(-38.9%) [11|(-38.9%)|12|(-33.3%)
Average 0.0% -9.1 % -14.7 %| |-17.5%
FI5 Inheritance proportion p;
function |0.0| 0.1 (-10%) | 0.2 (-20%) | 0.3 (-30%) | 0.4 (-40%)
ZDT1 |71|74| (+4.2%) |69| (-2.8%) |61|(-14.1%)|56|(-21.1%)
ZDT2 |89(89| ( 0.0%) |79| (-11.2%) |84| (-5.6%) |77|(-13.5%)
ZDT3 |68|72| (+5.9%) |70| (+2.9%) |55|(-19.1%)|58|(-14.7%)
ZDT4 |80(87| (+8.8%) (85| (+6.3%) |85|(+6.3%)|82|(+2.5%)
DTLZ2 |18|18| (0.0%) [12|(-33.3%) |13|(-27.8%)|12|(-33.3%)
Average +3.8% -7.6 % -12.1 %| |-16.1%
FI6 Inheritance proportion p;
function |0.0| 0.1 (-10%) | 0.2 (-20%) | 0.3 (-30%) | 0.4 (-40%)
ZDT1 |71|70| (-1.4%) |61| (-14.1%) |62|(-12.7%) |47|(-33.8%)
ZDT2 |89(83| (-6.7%) |82| (-7.9%) |76|(-14.6%)|70|(-21.3%)
ZDT3 |68|72| (+5.9%) |72| (+5.9%) |59|(-13.2%)|61|(-10.3%)
ZDT4 |80(83| (+3.8%) |84| (+5.0%) 80| (0.0%) |79| (-1.3%)
DTLZ2 |18|16| (-11.1%) |14| (-22.2%) [14|(-22.2%)|11|(-38.9%)
Average -1.9% -6.7 % -12.5 %| |-21.1%

o

o

In this way, in Table 7 we present the vectors of all techniques. Since every
entry in each vector is a change in the quality of the obtained results given
a value of inheritance proportion, the bigger the values of the vector, the
better the corresponding technique is. Thus, we are interested on the vector
or vectors that represent the solution to the problem of maximizing all the
entries (i.e., each entry is considered as an objective).

The nondominated vectors among all the 19 techniques are the vectors
corresponding to techniques FI2, FI3, FI5, FI9, FI11, FI14, FA1, FA3 and
FA4. That is, these nine techniques are the best overall performers. For this
reason, all these techniques are marked with a level of 1 in Table 7. As we
can see, among the best techniques, 6 are inheritance techniques and 3 are
approximation techniques. In fact, it is very interesting to note that four of the
six best inheritance techniques ignore the previous position of the particle, in
order to update the position in objective function space. On the other hand,
the only approximation technique that doesn’t figure as one of the best is
the one that only considers the set of leaders to assign the objective function
values of a particle.
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Table 3. Obtained results for different values of inheritance proportion, for tech-
niques FI7, FI8 and FI9.

FI7 Inheritance proportion p;
function |0.0] 0.1 (-10%) | 0.2 (-20%) | 0.3 (-30%) | 0.4 (-40%)
ZDT1 |71|64| (-9.9%) |58((-18.3%)|57|(-19.7%)|47|(
ZDT2 |89|83| (-6.7%) |74((-16.9%) |68 (-23.6%) |66 |(
ZDT3 |68(66| (-2.9%) |69|(+1.5%) |64| (-5.9%) |57|(-16.2%)
(
(

ZDT4 |80(80| (0.0%) |74| (-7.5%) [57|(-28.8%)|44
DTLZ2 |18|13|(-27.8%)|14/(-22.2%) |13|(-27.8%)| 9
Average -9.5% -12.7 %) [-21.2 %] |-34.2%
FI8 Inheritance proportion p;
function |0.0] 0.1 (-10%) | 0.2 (-20%) | 0.3 (-30%) | 0.4 (-40%)
ZDT1 |71(69| (-2.8%) |62((-12.7%) |53|(-25.4%) |47 |(
ZDT2 |89|85| (-4.5%) |84| (-5.6%) |66|(-25.8%)|65|(
ZDT3 |68|71|(+4.4%)|67| (-1.5%) |61|(-10.3%)|52|(-23.5%)
( (
( (

ZDT4 [80(80| (0.0%) |72|(-10.0%)|63|(-21.3%) |52
DTLZ2 |18|16|(-11.1%)|14|(-22.2%) 13| (-27.8%) |12
Average -2.8% -10.4 %| [-22.1 %| [-30.5%
FI9 Inheritance proportion p;
function (0.0 0.1 (-10%) | 0.2 (-20%) | 0.3 (-30%) | 0.4 (-40%)
ZDT1 |71(67] (-5.6%) |58](-18.3%) 54| (-23.9%) | 44| (-38.0%)
ZDT2 |8990|(+1.1%)|85| (-4.5%) |69|(-22.5%)|68](-23.6%)
ZDT3 |68(68| (0.0%) (67| (-1.5%) |61|(-10.3%)|51|(-25.0%)
ZDT4 |80(83|(+3.8%)|76| (-5.0%) |72|(-10.0%)|58|(-27.5%)
DTLZ2 |18|19|(+5.6%)[18| (0.0%) |19|(+5.6%) 18| (0.0%)
Average +1.0% -5.9 % -12.2 %| |-22.8%

(_
(_
(- (-
(- (-

8 Comparison with other PSO approaches

In the previous section, we found nine techniques to be the best from the
set proposed. In this section, some of those nine techniques will be compared
against two other PSO-based multi-objective approaches representative of the
state-of-the-art: the Sigma-MOPSO [30] and the Cluster-MOPSO [31].

For our comparison, we chose only five from the nine best techniques to be
compared. With this aim, we calculated the norm (distance to the origin) of
the vector of each technique and we selected the five vectors with the lowest
values. In this way, we selected the techniques from the knee of the Pareto
front, that is, the compromise solutions from the central portion of the front.
In Table 7, we show the norm values of the nine best techniques and their
corresponding rank according to this value. As we can see, the five techniques
with the lowest value of the norm are: FI2, FI5, FI11, FA1 and FA3.

For this comparative analysis, we will use the two following test functions:

e Test Function DTLZ4 [28]:
Minimize  (fi(x), f2(x), f3(x)) (8)
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Table 4. Obtained results for different values of inheritance proportion, for tech-
niques FI10, FI11 and FI12.

FI10 Inheritance proportion p;
function |0.0{ 0.1 (-10%) | 0.2 (-20%) | 0.3 (-30%) | 0.4 (-40%)
ZDT1 |71|71| (0.0%) |58| (-18.3%) 59| (-16.9%) (48] (-32.4%)
ZDT2 |89|78((-12.4%)|78| (-12.4%) 69| (-22.5%) (58] (-34.8%)
ZDT3 |68 |70((+2.9%)|63| (-7.4%) |61| (-10.3%) (47| (-30.9%)
(_
(_

ZDT4 |80|78 (-2.5%) |81| (+1.3%) |58| (-27.5%) |52| (-35.0%)

DTLZ2 |18 |17 (-5.6%) |13| (-27.8%) |11| (-38.9%) |11 (-38.9%)

Average -3.5% -12.9 % -23.2 % -34.4%
FI11 Inheritance proportion p;

function |0.0{ 0.1 (-10%) | 0.2 (-20%) | 0.3 (-30%) | 0.4 (-40%)

ZDT1 |71(62[(-12.7%)|63] (-11.3%) |55] (-22.5%) |37] (-48.0%)
ZDT2 (89 (84| (-5.6%) |87| (-2.2%) |81| (-9.0%) |76/ (-14.6%)
ZDT3 |68 (69|(+1.5%)|60]| (-11.8%) |57| (-16.2%) |44| (-35.3%)
ZDT4 |80 (82((+2.5%)|81| (+1.3%) |73| (-8.8%) |73| (-8.8%)
DTLZ2 |18 (17| (-5.6%) |21|(+16.7%)|23|(+27.8%) |23|(+27.8%)

Average -4.0% -1.5 % -5.7 % -15.8%
FI12 Inheritance proportion p;
function [0.0] 0.1 (-10%) | 0.2 (-20%) | 0.3 (-30%) | 0.4 (-40%)

ZDT1 |71(66] (-7.0%) |56] (-21.1%) |55] (-22.5%) 48] (-32.4%)
ZDT2 (89 (87| (-2.2%) (85| (-4.5%) |74 (-16.9%) |80| (-10.1%)
(-2.9%) (64| (-5.9%) |55| (-19.1%) |53 (-22.1%)

(_

(_

ZDT3 |68|66

ZDT4 |80(80| (0.0%) |75| (-6.3%) |71|(-11.3%) |61 (-23.8%)
DTLZ2 |1818] (0.0%) |18 (0.0%) |16](-11.1%) |16/ (-11.1%)
Average -2.4% -7.6 % -16.2 % -19.9%

fi(x) = (1 + g(x))cos(z§m/2)cos(zm/2)
f2(x) = (1 + g(x))cos(z$ 7 /2)sin(z$ T /2)
f3(x) = (1 + g(x))sin(z57/2)

g9(x) = _Z(mz- - 0.5)

where a=100, m = 12 and z; €[0,1].

e Test Function DTLZ6 [28]:

Minimize  (f1(x), f2(x), f3(x)) 9)
fi(x) =z
f2(x) = z2

fs(x) = (1 + g(x))h(f1, f2,9)

90 = 149/0m =2 S i, h(fi fas9) =3 = Y[L2 (1t sin(3nf)]
=3 =1
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Table 5. Obtained results for different values of inheritance proportion, for tech-
niques FI13, FI14 and FI15.

FI13 Inheritance proportion p;
function (0.0] 0.1 (-10%) | 0.2 (-20%) | 0.3 (-30%) | 0.4 (-40%)
ZDT1 |71(68| (-4.2%) |69| (-2.8%) |63|(-11.3%) |58|(-18.3%)
ZDT2 |89(84| (-5.6%) |81| (-9.0%) |79|(-11.2%)|80|(-10.1%)
ZDT3 |68|70((+2.9%)|68| ( 0.0%) |63| (-7.4%) |54|(-20.6%)
ZDT4 |80(79| (-1.3%) |81|(+1.3%)|64|(-20.0%) |59|(-26.3%)
DTLZ2 |18(14|(-22.2%)(16|(-11.1%)|14|(-22.2%)|12{(-33.3%)
Average -6.1% -4.3 % | [-144 %| |-21.7%
FI14 Inheritance proportion p;
function (0.0] 0.1 (-10%) | 0.2 (-20%) | 0.3 (-30%) | 0.4 (-40%)
ZDT1 |71|75|(+5.6%)|66| (-7.0%) |58|(-18.3%)|59|(-16.9%)
ZDT2 |89(88| (-1.1%) |79((-11.2%)|83| (-6.7%) |72|(-19.1%)
ZDT3 |68|74|(+8.8%)|69((+1.56%)|63| (-7.4%) |60|(-11.8%)
ZDT4 |80(81|(+1.3%)|79| (-1.3%) |73| (-8.8%) |67|(-16.3%)
DTLZ2 |1816|(-11.1%)|15|(-16.7%)|13|(-27.8%) |13|(-27.8%)
Average +0.7% -6.9 % | [-13.8 %| |-18.4%
FI15 Inheritance proportion p;
function [0.0| 0.1 (-10%) | 0.2 (-20%) | 0.3 (-30%) | 0.4 (-40%)
ZDT1 |71(69| (-2.8%) |63((-11.3%)|69| (-2.8%) |56|(-21.1%)
ZDT2 |89(86| (-3.4%) |81| (-9.0%) |72((-19.1%)|73|(-18.0%)
ZDT3 |68|72|(+5.9%)|70((+2.9%)|64| (-5.9%) |58|(-14.7%)
ZDT4 |80(81|(+1.3%)|78| (-2.5%) |63|(-21.3%)|70|(-12.5%)
DTLZ2 |1813|(-27.8%)|15|(-16.7%)|16|(-11.1%)|10|(-44.4%)
Average -5.4% 73 % | [-12.0 %| [-22.1%

where m = 22 and z; €[0,1].

As in previous experiments, we used different values of p;. We performed
20 runs for each function and each approach. The approaches without fitness
inheritance or approximation performed 20000 objective function evaluations.
The parameters adopted for our MOPSO were the same as before. Cluster-
MOPSO used 40 particles, 4 swarms, 5 iterations per swarm and a total
number of iterations of 100. In the case of Sigma-MOPSO, 200 particles were
used through 100 iterations (these values were suggested by the author of
the method). The PSO approaches will be identified with the following labels:
sMOPSO refers to [30], cMOPSO refers to [31], and oMOPSO is our MOPSO.
All the algorithms were set such that they provided Pareto fronts with 100
points. In this case, we also show the obtained results with respect to the
following measure:

Inverted Generational Distance (IGD): The concept of generational
distance was introduced by Van Veldhuizen & Lamont [32, 33] as a way of
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Table 6. Obtained results for different values of approximation proportion, for
techniques FA1, FA2, FA3 and FA4.

FA1l Approximation proportion p,
function |0.0| 0.1 (-10%) | 0.2 (-20%) | 0.3 (-30%) | 0.4 (-40%)
ZDT1 |71|74| (+4.2%) |64| (-9.9%) |63|(-11.3%)|55|(-22.5%)
ZDT2 |89(88| (-1.1%) |85| (-4.5%) |81| (-9.0%) |76|(-14.6%)
ZDT3 |68|73| (+7.4%) 61| (-10.3%) |60|(-11.8%)|55|(-19.1%)
ZDT4 |80(85| (+6.3%) |89|(+11.3%)|79| (-1.3%) |80| (0.0%)
DTLZ2 |18 (18| (0.0%) |13|(-27.8%) |14|(-22.2%)|12|(-33.3%)
Average +3.4% -82 % -11.1 %) |-17.9%
FA2 Approximation proportion p,
function |0.0| 0.1 (-10%) | 0.2 (-20%) | 0.3 (-30%) | 0.4 (-40%)
ZDT1 |71|75| (4+5.6%) |57| (-19.7%) |54|(-23.9%) |46|(-35.2%)
ZDT2 |89(83| (-6.7%) |72| (-19.1%) |63|(-29.2%)|76|(-14.6%)
ZDT3 |68(63| (-7.4%) |58| (-14.7%) |58|(-14.7%) |56|(-17.6%)
(
(

o

ZDT4 |80(86| (+7.5%) (87| (+8.8%) |81|(+1.3%)|83|(+3.8%)
DTLZ2 |18 15| (-16.7%) |13| (-27.8%) |11|(-38.9%) |10|(-44.4%)
Average -3.5% -14.5 % | [-21.1 %| [-21.6%

FA3 Approximation proportion p,
function [0.0{ 0.1 (-10%) | 0.2 (-20%) | 0.3 (-30%) | 0.4 (-40%)

ZDT1 |71|71| (0.0%) |67 (-5.6%) |63|(-11.3%)|50|(-29.6%)

ZDT2 |89(88| (-1.1%) |87| (-2.2%) |85| (-4.5%) |76|(-14.6%)

ZDT3 |68(65| (-4.4%) |65 (-4.4%) |55((-19.1%)(57|(-16.2%)

ZDT4 |80(89|(+11.3%)|91|(+13.8%)|86|(+7.5%) |87|(+8.8%)
DTLZ2 |18 16| (-11.1%) |15| (-16.7%) |16|(-11.1%) |13|(-27.8%)
Average -1.1% -3.0 % 1.7 % -15.9%

FA4 Approximation proportion p,
function |0.0| 0.1 (-10%) | 0.2 (-20%) | 0.3 (-30%) | 0.4 (-40%)

ZDT1 |71(69| (-2.8%) |59| (-16.9%) |60|(-15.56%)|52|(-26.8%)

ZDT2 |89(87| (-2.2%) [80| (-10.1%) |76|(-14.6%)|71|(-20.2%)
ZDT3 |68(67| (-1.5%) |71| (+4.4%) |56|(-17.6%)|56|(-17.6%)

(
(

o

- E_
ZDT4 |80 (86| (+7.5%) (85| (+6.3%) |79| (-1.3%) |80| (0.0%)

DTLZ2 |18(20|(+11.1%)|16| (-11.1%) |14|(-22.2%) [12|(-33.3%)
Average +2.4% -5.5 % -14.2 %| |-19.6%

estimating how far are the elements in the Pareto front produced by our
algorithm from those in the true Pareto front of the problem. This measure
is defined as:

i1 b

n

GD =

where n is the number of nondominated vectors found by the algorithm being
analyzed and d; is the Euclidean distance (measured in objective space) be-
tween each of these and the nearest member of the true Pareto front. It should
be clear that a value of GD = 0 indicates that all the elements generated are
in the true Pareto front of the problem. Therefore, any other value will in-
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Table 7. Vectors of change in quality for each technique, for each value of inheritance
or approximation proportion.

Group 0.1 0.2 | 0.3 | 04 |levellnorm|rank
FI1|-1.2|-5.5 [-17.6|-17.8
LCBD| FI2 |-6.2| -2.0 |-12.9|-14.8] 1 [20.69| 3
FI13 |-1.0( -3.9 |-15.5|-24.2| 1 |29.62| 9
FI1410.0|-9.1 [-14.7|-17.5
FFOS| FI5 [3.8|-7.6 |-12.1|-16.1| 1 |21.86| 4
FI6 |-1.9]-6.7 [-12.5|-21.1
FI17 |-9.5(-12.7|-21.2(-34.2
FI8 |-2.8(-10.4|-22.1|-30.5
NLC [FI9 (1.0|-5.9|-12.2]-22.8] 1 [26.54| 8
FI10|-3.5|-12.9|-23.2|-34.4
FI11{-4.0|-1.5|-5.7 |-156.8| 1 (17.33| 1
FI12|-2.4| -7.6 |-16.2|-19.9
FI13(-6.1| -4.3 |-14.4|-21.7
LC |FI14(0.7|-6.9 [-13.8]-18.4| 1 |24.02| 6
FI15|-5.4| -7.3 [-12.0(-22.1
FA1|3.4|-8.2 |-11.1{-17.9| 1 |[22.86| 5
FA |FA2|-3.5|-14.5|-21.1|-21.6
FA3[-1.1|-3.0 | -7.7 |-15.9] 1 [17.95 2
FA4|2.4|-5.5 |-14.2(-19.6| 1 (24.94| 7

dicate how “far” we are from the global Pareto front of our problem. In our
case, we implemented an “inverted” generational distance measure (IGD) in
which we use as a reference the true Pareto front, and we compare each of its
elements with respect to the front produced by an algorithm. In this way, we
are calculating how far are the elements of the true Pareto front, from those
in the Pareto front produced by our algorithm. Computing this “inverted”
generational distance value reduces the bias that can arise when an algorithm
didn’t fully cover the true Pareto front.

Tables 8 and 9 present a summary of the results obtained. In each case, we
present the average and standard deviation of the Success Counting (SCC)
and Inverted Generational Distance (IGD) measures over the 20 runs.

As we can see in Table 8, in function DTLZ4 our approach (oMOPSO) is
outperformed by one of the other PSO-based approaches (sMOPSO). On the
other hand, in Table 9 we can see that in function DTLZ6 our approach is
clearly the best.

Table 8 shows that, in function DTLZ4, all the techniques have a very good
performance with respect to the IGD measure, with technique FA1 being
(marginally) the best (considering the standard deviation values). On the
other hand, although with respect to the average values of the SCC measure,
technique FI11 is the best, this technique has the highest standard deviations.
Thus, we conclude that the best technique is FA1 also in this case. In fact,
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Table 8. Obtained results for the test function DTLZ4, for sMOPSO, cMOPSO,
oMOPSO, and oMOPSO with techniques FI12, FI5, FI11, FA1 and FA3 incorporated
(pi=0.1,0.2,0.3,0.4).

FI2 sMOPSO|cMOPSO|oMOPSO| 0.1 0.2 0.3 0.4
SCC| mean 39 14 11 10 9 10 12
std. dev.| 14.8 3.3 4.4 4.7 3.0 3.8 8.1

IGD | mean | 0.0064 | 0.0223 0.0106 |0.0121|0.0129 |0.0111 | 0.0107
std. dev.| 0.0007 | 0.0074 | 0.0034 |0.0052 |0.0037 |0.0043 | 0.0050

FI5 sMOPSO|cMOPSO|[oMOPSO| 0.1 0.2 0.3 0.4
SCC| mean 39 1.4 11 10 10 9 11
std. dev. 14.8 3.3 4.4 6.8 4.9 4.7 6.9

IGD | mean | 0.0064 | 0.0223 0.0106 |0.0100|0.0119 | 0.0109 | 0.0108
std. dev.| 0.0007 | 0.0074 | 0.0034 |0.0045 | 0.0050 | 0.0050 | 0.0046

FI11 sMOPSO|cMOPSO|oMOPSO| 0.1 0.2 0.3 0.4
SCC| mean 39 1.4 11 11 13 14 12
std. dev. 14.8 3.3 4.4 4.5 11.5 14.8 16.2

IGD | mean | 0.0064 | 0.0223 0.0106 |0.0107|0.0105 |0.0111 | 0.0119
std. dev.| 0.0007 | 0.0074 | 0.0034 |0.0047 | 0.0046 | 0.0059 | 0.0065

FA1l sMOPSO|cMOPSO|oMOPSO| 0.1 0.2 0.3 0.4
SCC| mean 39 14 11 13 10 12 8
std. dev.| 14.8 3.3 4.4 6.9 3.4 6.5 4.2

IGD| mean | 0.0064 | 0.0223 0.0106 |0.0093{0.0112|0.0102|0.0122
std. dev.| 0.0007 | 0.0074 0.0034 |0.0045|0.0039|0.0042|0.0044

FA3 sMOPSO|cMOPSO|[oMOPSO| 0.1 0.2 0.3 0.4
SCC| mean 39 1.4 11 11 8 9 7
std. dev. 14.8 3.3 4.4 3.2 3.1 3.7 3.8

IGD | mean | 0.0064 | 0.0223 0.0106 |0.0120|0.0138 | 0.0113 | 0.0129
std. dev.| 0.0007 | 0.0074 | 0.0034 |0.0033 | 0.0040 | 0.0040 | 0.0042

both approximation techniques have the lowest standard deviations, in both
performance measures.

From Table 9 we can conclude that, as in function DTLZ4, in function
DTLZ6 all the techniques have a very good performance with respect to the
IGD measure. However, in this case technique FI11 is the best. Also, with
respect to the SCC measure technique FI5 is the best, considering all cases.

In general, fitness inheritance techniques seem to have a better perfor-
mance in function DTLZ6 and fitness approximation techniques seem to have
a better performance in function DTLZ4. These results agree with the results
obtained before. As we can see in Table 10, the results obtained in the pre-
vious study show that technique FA3 was the best in function ZDT4. On the
other hand, in function DTLZ2 technique FA1 is one of the two technique
with the best results (the other is FI11). In fact, functions ZDT4 and DTLZ2
have the lowest number of variables. Function ZDT4 has 10 variables and
function DTLZ2 has 12 variables, while functions ZDT1, ZDT2 and ZDT3
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Table 9. Obtained results for the test function DTLZ6, for sMOPSO, cMOPSO,
oMOPSO, and oMOPSO with techniques FI12, FI5, FI11, FA1 and FA3 incorporated
(pi=0.1,0.2,0.3,0.4).

FI2 sMOPSO|cMOPSO|oMOPSO| 0.1 0.2 0.3 0.4
SCC| mean 1 0 62 60 53 50 47
std. dev. 0.0 0.0 13.0 21.4 20.9 22.0 17.3

IGD | mean | 0.0673 | 0.0373 | 0.0091 |0.0082 |0.0092|0.0101|0.0111
std. dev.| 0.0000 | 0.0172 | 0.0058 |0.0060 | 0.0062 | 0.0065 | 0.0062

FI5 sMOPSO|cMOPSO|oMOPSO| 0.1 0.2 0.3 0.4
SCC| mean 1 0 62 61 60 61 43
std. dev. 0.0 0.0 13.0 17.3 | 21.7 | 17.2 | 20.7

IGD | mean | 0.0673 | 0.0373 0.0091 |0.0074 | 0.0089 | 0.0087 | 0.0101
std. dev.| 0.0000 | 0.0172 0.0058 | 0.0060 | 0.0060 | 0.0058 | 0.0058

FI11 sMOPSO|cMOPSO|oMOPSO| 0.1 0.2 0.3 0.4
SCC| mean 1 0 62 54 62 54 50
std. dev. 0.0 0.0 13.0 23.4 20.9 26.8 20.6

IGD | mean | 0.0673 | 0.0373 0.0091 |0.0090{0.0064|0.0057|0.0058
std. dev.| 0.0000 | 0.0172 0.0058 |0.0058/0.0052|0.0053|0.0052

FA1 sMOPSO|cMOPSO|[oMOPSO| 0.1 0.2 0.3 0.4
SCC| mean 1 0 62 54 56 49 53
std. dev. 0.0 0.0 13.0 10.7 20.0 21.6 21.5

IGD| mean | 0.0673 | 0.0373 | 0.0091 |0.0123 |0.0089 |0.0108 | 0.0082
std. dev.| 0.0000 | 0.0172 | 0.0058 |0.0045 | 0.0062 | 0.0060 | 0.0068

FA3 sMOPSO|cMOPSO|oMOPSO| 0.1 0.2 0.3 0.4
SCC| mean 1 0 62 62 51 54 53
std. dev. 0.0 0.0 13.0 15.0 27.0 20.0 20

IGD | mean | 0.0673 | 0.0373 0.0091 |0.0109 | 0.0099 | 0.0100 | 0.0116
std. dev.| 0.0000 | 0.0172 0.0058 | 0.0056 | 0.0059 | 0.0061 | 0.0056

Table 10. Obtained results for test functions ZDT4 and DTLZ2, for oMOPSO with
techniques FI12, FI5, FI11, FA1 and FA3 incorporated (p;=0.1,0.2,0.3,0.4).

ZDT4 Inheritance proportion p;
technique|0.0[ 0.1 (-10%) 0.2 (-20%) 0.3 (-30%) 0.4 (-40%)
FI2 80 (77| (-3.8%) |83| (+3.8%) (67| (-16.3%) |69| (-13.8%)
FI5 80|87 (+8.8%) (85| (+6.3%) |85| (+6.3%) (82| (+2.5%)
FI11 |80(82| (+2.5%) (81| (+1.3%) |73| (-8.8%) (73| (-8.8%)
FA1 |80(85| (+6.3%) (89| (+11.3%) |79 (-1.3%) (80| (0.0%)
FA3 |80(89|(+11.3%)(91|(+13.8%) (86| (+7.5%) (87| (+8.8%)
DTLZ2 Inheritance proportion p;
technique|0.0| 0.1 (-10%) 0.2 (-20%) 0.3 (-30%) 0.4 (-40%)
FI2 18(15| (-16.7%) (18| (0.0%) |15| (-16.7%) (14| (-22.2%)
FI5 18(18| (0.0%) (12| (-33.3%) |13| (-27.8%) (12| (-33.3%)
FI11 |18(17| (-5.6%) |[21|(4+16.7%)|23|(+27.8%)(23|(+27.8%)
FA1l 18(18| (0.0%) |[13| (-27.8%) |14| (-22.2%) (12| (-33.3%)
FA3 |18(16| (-11.1%) |15| (-16.7%) (16| (-11.1%) (13| (-27.8%)
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have 30 variables each, and DTLZ6 has 22 variables. In this way, we can con-
clude that, in general, fitness approximation techniques have better results
when the test function has a low dimensional decision space and that fitness
inheritance techniques have better results when the test function has a high
dimensional decision space. This conclusion seems to agree with the results
obtained in some of our previous work [13].

Finally, we should observe the results of technique FI11. In function
DTLZ2, this technique obtained almost the best results. Also, in function
DTLZA4, technique FI11 obtained the best average results. However, in the
case of function DTLZ4, we could see that technique FI11 had the highest
standard deviation values. In this way, technique FI11 is the only inheritance
technique that had a very good performance in the test functions with a low
number of variables, specifically from the test suite DTLZ. This denotes the
importance of considering test functions from different test suites and with
different characteristics. Technique FI11 almost always improved the results
of the approach without inheritance even when a 40% of the number of eval-
uation was saved, in functions DTLZ2 and DTLZ4. Certainly, technique FI11
deserves further study, and this is already one of the priorities of our future
work.

9 Conclusions

We proposed several fitness inheritance and approximation techniques and in-
corporated them into a Multi-Objective Particle Swarm Optimizer previously
proposed by the authors. We studied the proposed techniques using several
standard test functions taken from the multi-objective optimization literature.

From the nineteen techniques proposed, nine were found to be the best.
Six of those nine techniques were inheritance techniques and the other three
were approximation techniques. From the six best inheritance techniques, four
techniques don’t consider the previous position of a particle in order to com-
pute the new objective position. On the other hand, the only approximation
technique that didn’t appear as one of the best was the one that only consid-
ers the set of leaders to assign the objective values of a particle. The results
obtained indicate that the members of the swarm must be always considered
in order to estimate the fitness value of a particle. Also, the importance of
the pbest particle constitutes a topic that deserves further analysis, since it
doesn’t provide any useful information when the fitness value of a particle is
being inherited.

Five of the nine best techniques found were selected to be tested on other
functions and compared with respect to other PSO-based multi-objective al-
gorithms. The obtained results show that the five enhancement techniques
have a good performance and are very promising. In general, fitness inheri-
tance techniques seem to be more appropriate for high-dimensional decision
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space problems and fitness approximation techniques seem more appropri-
ate for low-dimensional decision space problems. Only one of the inheritance
techniques had a very good performance when applied to functions with low
number of variables, from a specified test suite. Such inheritance technique
almost always improved the results of the approach without inheritance and
it certainly deserves further study.

As part of our future work, we plan to improve the enhancement tech-
niques that were found to be the best in this study, in order to minimize the
decrement in quality of results while obtaining major savings in the number
of evaluations performed.
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