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1.1 Introduction

Multiobjective Evolutionary Algorithms (MOEAs) rely on preference relations to steer the
search towards high-potential regions of the search space in order to approximate the optimal
solution set. In particular, a preference relation is a mean to decide if a solution is preferable
over another solution in the search space.

In single-objective optimization, the determination of the optimum among a set of given
solutions is clear. However, in the absence of preference information, in multiobjective
optimization, there does not exist a unique preference relation to determine if a solution
is better than another one. The most common preference relation adopted is known as the
Pareto dominance relation (Pareto 1896), which leads to the best possible trade-offs among
the objectives. Thus, by using this relation, it is normally not possible to obtain a single
optimal solution (except when there is no conflict among the objectives), but instead, a set
of good solutions (representing the best possible trade-offs among the objectives) can be
produced. This set is called the Pareto optimal set and its image in objective space is known
as the Pareto optimal front.
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Multiobjective optimization involves three stages: model building, search, and decision
making (preference articulation). Having a good approximation of the Pareto optimal set
does not completely solve a multiobjective optimization problem. The decision maker (DM)
still has the task of choosing the most preferred solution out of the approximation set.
This task requires preference information from the DM. Following this need, there are
several methodologies available for defining how and when to incorporate preferences from
the DM into the search process. These methodologies can be classified in the following
categories (Coello Coello et al. 2007; Miettinen 1998):

1. Prior to the search (a priori approaches).

2. During the search (interactive approaches).

3. After the search (a posteriori approaches).

Although interactive approaches for incorporating preferences have been widely used for
a long time in Operations Research (see e.g., Chankong and Haimes 1983; Miettinen 1998),
it was only until very recently that the inclusion of preference information into MOEAs
started to attract a considerable amount of interest among researchers (see for example,
Branke 2008; Coello Coello et al. 2007). Regardless of the stage at which preferences are
incorporated into a MOEA, the aim is to focus on a certain portion of the Pareto front by
favoring certain objectives (or trade-offs) over others.

As noted by several researchers (Hughes 2005; Khare et al. 2003; Knowles and Corne
2007; Praditwong and Yao 2007; Purshouse and Fleming 2007; Teytaud 2007; Wagner
et al. 2007), the Pareto dominance relation has a important drawback when is applied
to multiobjective optimization problems with a high number of objectives (these are the
so-called many-objective problems, e.g., Kukkonen and Lampinen 2007). That is, the
deterioration of its ability to discern between good and bad solutions as the number of
solutions increases. A widely accepted explanation for this problem is that the proportion
of nondominated solutions (i.e., incomparable solutions according to the Pareto dominance
relation) in a population increases rapidly with the number of objectives (see e.g., Bentley
et al. 1978; Farina and Amato 2002). Since, incorporating preferences induces a finer order
on vectors of the objective space than that achieved by the Pareto dominance relation, we
believe that the use of the new preference relation is a promising approach to deal with many-
objective problems. Additionally, by using an interactive optimization technique we can
avoid the generation of millions or even billions of nondominated points in many-objective
problems.

This chapter presents a review of recent MOEAs designed to work as interactive
optimization methods. For earlier methods, the reader is referred to other specialized reviews
like those presented by Branke and Deb (2005); Coello Coello (2000); Cvetković and Parmee
(2002); Rachmawati and Srinivasan (2006). The contents of this chapter aims to complement
these previous reviews of the field instead of aiming at being comprehensive.

1.1.1 Methods Analyzed in this Chapter

By analyzing the approaches found in other reviews and the ones covered in this chapter,
we can realize that most of the approaches to incorporate preferences into MOEAs are based
on methods introduced in the field of Multicriteria Decision Making. For instance, we can
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find many approaches based on reference point methods. There are few methods originated
in the Evolutionary Multiobjective Optimization (EMO) field or coming from other areas. We
can mention, for example, a method based on the hypervolume indicator. Thus, the methods
analyzed in this chapter are classified in the following categories:

• Reference point methods.

• Utility function methods.

• Miscellaneous methods.

The survey is mainly focused on interactive MOEAs. However, some a priori techniques
can be easily set for selecting the location and size of the Region of Interest (RoI). This way,
they can serve as a basis for interactive approaches. Therefore, we also include some of these
interesting a priori techniques for incorporating preferences.

1.2 Basic Concepts and Notation
In this section, we will introduce the concepts and notation that will be used throughout the
rest of the paper. Furthermore, as many interactive MOEAs are based on classical interactive
methods proposed by the Operations Research community, some of these methods are first
described.

1.2.1 Multiobjective Optimization Problems

Definition 1.2.1 (Multiobjective optimization problem) A Multiobjective Optimization
Problem (MOP) is defined as:

Minimize f(x) = [f1(x), f2(x), . . . , fk(x)]T ,

subject to x ∈ X .
(1.1)

The vector x ∈ Rn is formed by n decision variables representing the quantities for which
values are to be chosen in the optimization problem. The feasible set X ⊆ Rn is implicitly
determined by a set of equality and inequality constraints. The vector function f : X → Rk is
composed by k ≥ 2 scalar objective functions fi : X → R (i = 1, . . . , k). In multiobjective
optimization, the setsRn andRk are known as decision variable space and objective function
space, respectively. The image of X under the function f is a subset of the objective function
space denoted byZ = f(X ) and referred to as the feasible set in the objective function space.

In order to define precisely the multiobjective optimization problem stated in
definition 1.2.1 we have to establish the meaning of minimization in Rk. That is to say,
we need to define how vectors z = f(x) ∈ Rk have to be compared for different solutions
x ∈ Rn. In single-objective optimization the relation “less than or equal” (≤) is used to
compare the scalar objective values. By using this relation there may be many different
optimal solutions x ∈ X , but only one optimal value fmin = min{f(x) |x ∈ X} since the
relation ≤ induces a total order in R (i.e., every pair of solutions is comparable, and thus, we
can sort solutions from the best to the worst one). In contrast, in multiobjective optimization
problems, there is no canonical order on Rk, and thus, we need weaker definitions of order
to compare vectors in Rk.
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In multiobjective optimization, the Pareto dominance relation is usually adopted. This
relation was originally proposed by Fracis Ysidro Edgeworth in 1881 (Edgeworth 1881), and
was generalized by the French-Italian economist Vilfredo Pareto in 1896 (Pareto 1896).

Definition 1.2.2 (Pareto dominance relation) We say that a vector z1 dominates vector z2,
denoted by z1 ≺ z2, if and only if:

∀i ∈ {1, . . . , k} : z1
i ≤ z2

i (1.2)

and
∃i ∈ {1, . . . , k} : z1

i < z2
i . (1.3)

If z1 = z2 or z1
i > z2

i for some i, then we say that z1 does not dominate z2 (denoted by
z1 ⊀pareto z2). Thus, to solve a MOP we have to find those solutions x ∈ X whose images,
z = f(x), are not dominated by any other vector in the feasible space. It is said that two
vectors, z1 and z2, are mutually nondominated vectors if z1 ⊀pareto z2 and z2 ⊀pareto z1.

Definition 1.2.3 (Pareto optimality) A solution x∗ ∈ X is Pareto optimal if there does not
exist another solution x ∈ X such that f(x) ≺ f(x∗).

Definition 1.2.4 (ρ-properly Pareto optimality) A solution x∗ ∈ X and its corresponding
vector z∗ ∈ Z are ρ-properly Pareto optimal (in the sense of Wierzbicki 1980b) if

(z∗ − Rkρ \ {0}) ∩ Z = ∅,

whereRkρ = {z ∈ Rk|maxi=1,...,k zi + ρ
∑k
i=1 zi ≥ 0}, and ρ is some scalar. The trade-offs

among the objectives are bounded by ρ and 1/ρ.

Definition 1.2.5 (Pareto optimal set) The Pareto optimal set, Popt, is defined as:

Popt = {x ∈ X |@y ∈ X : f(y) ≺ f(x)}. (1.4)

Definition 1.2.6 (Pareto front) For a Pareto optimal set, Popt, the Pareto front, PFopt, is
defined as:

PFopt = {z = (f1(x), . . . , fk(x)) | x ∈ Popt}. (1.5)

In decision variable space, these vectors are referred to as decision vectors of the Pareto
optimal set, while in objective space, they are called objective vectors of the Pareto optimal
set. In practice, the goal of a posteriori approaches is finding the “best” approximation set of
the Pareto optimal front. An approximation set is a finite subset of Z composed of mutually
nondominated vectors and is denoted by PFapprox. Currently, it is well accepted that the best
approximation set is determined by the closeness to the Pareto optimal front, and the spread
over the entire Pareto optimal front (Coello Coello et al. 2007; Deb et al. 2002b; Zitzler et al.
2003).

In interactive optimization methods it is useful to know the lower and upper bounds
of the Pareto front. The ideal point, z?, represents the lower bounds and is defined by
z?i = minz∈Z{zi} ∀i = 1, . . . , k. In turn, the upper bounds are defined by the nadir point,
znad, which is given by znad

i = maxz∈PFopt{zi} ∀i = 1, . . . , k. In order to avoid some
problems when the ideal and nadir points are equal or very close, a point strictly better than
the ideal point is usually defined. This point is called the utopian point, z??, and is defined
by z??i = z?i − ε, ∀i = 1, . . . , k, where ε > 0 is a small scalar.
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1.2.2 Classical Interactive Methods

Reference Point Methods

These kinds of methods are based on the achievement scalarizing function approach proposed
by Wierzbicki (1980a,b). An achievement scalarizing function uses a reference point to
capture the desired values of the objective functions.

Definition 1.2.7 (Achievement scalarizing function) An achievement scalarizing function
(or achievement function for short) is a parameterized function szref (z) : Rk → R, where
zref ∈ Rk is a reference point representing the decision maker’s aspiration levels. Thus, the
multiobjective problem is transformed into the following scalar problem:

Minimize szref (z),

subject to z ∈ Z.
(1.6)

A common achievement function is based on the Chebyshev distance (L∞ metric) (see
e.g., Ehrgott 2005; Miettinen 1998).

Definition 1.2.8 (Chebyshev distance) For two vectors z1, z2 ∈ Rk the Chebyshev distance
is defined by

d∞(z1, z2) = ||z1 − z2||∞ = max
i=1,...,k

|z1
i − z2

i |. (1.7)

Definition 1.2.9 (Weighted achievement function) The weighted achievement function (or
achievement function for short) is defined by

s∞(z, zref) = max
i=1,...,k

{λi(zi − zref
i )}+ ρ

k∑
i=1

λi(zi − zref
i ), (1.8)

where zref is a reference point, λ = [λ1, . . . , λk] is a vector of weights such that ∀i λi ≥ 0
and, for at least one i, λi > 0, and ρ > 0 is an augmentation coefficient sufficiently small
(usually ρ = 10−6). The main role of ρ is to avoid the generation of weakly Pareto optimal
solutions.

We should note that, unlike the Chebyshev distance, the achievement function does not use
the absolute value in the first term. This small difference allows the achievement function to
correctly assess solutions that improve the reference point.

The achievement function has some convenient properties over other scalarizing functions.
As proved, for instance by Steuer (1986), Miettinen (1998) and Ehrgott (2005), the minimum
of eq. (1.8) is a Pareto optimal solution and we can find any ρ-properly Pareto optimal
solution (see def. 1.2.4).

Light Beam Search Method

The Light Beam Search (LBS) method proposed by Jaszkiewicz and Slowinski (1999), is
an iterative method which combines the reference point idea and tools of Multi-attribute
Decision Analysis (MADA). At each iteration, a finite sample of nondominated points is
generated. The sample is composed of a current point called middle point (which is obtained
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at a previous iteration), and J nondominated points from its neighborhood. A local preference
model in the form of an outranking relation S is used to define the neighborhood of the
middle point. It is said that a vector z1 outranks vector z2 (z1Sz2) if z1 is considered to be
at least as good as z2. The outranking relations are defined by the DM, which specify three
preference thresholds for each objective, namely: indifference threshold, preference threshold
and veto threshold. The DM has the possibility to scan the inner area of the neighborhood
along the objective function trajectories between any two characteristic neighbors or between
a characteristic neighbor and the middle point. In Algorithm 1 the general scheme of the LBS
procedure is shown.

Algorithm 1 General Scheme of the Light Beam Search Procedure.
Step 1: Ask the DM to specify the starting aspiration and reservation points.
Step 2: Compute the starting middle point.
Step 3: Ask the DM to specify a local preferential information used to build an

outranking relation.
Step 4: Present the middle point to de DM.
Step 5: Calculate the characteristic neighbors of the middle point and present them to

the DM.
Step 6: If DM is satisfied then

STOP.
else

6.1: Ask DM to choose one of the neighboring points to be the new middle
point, or

6.2: Update the preferential information, or
6.3: Define new aspiration point and/or reservation point.
6.4: Go to Step 3.

1.3 MOEAs based on Reference Point Methods

1.3.1 A Weighted Distance Metric

Deb and Sundar (2006) incorporated a reference point approach into the Nondominated
Sorting Genetic Algorithm II (NSGA-II) (Deb et al. 2002a). They introduced a modification
in the crowding distance operator in order to select from the last nondominated front the
solutions that would take part of the new population. They used the following achievement
function based on the Euclidean distance

d(z, zref ) =

√√√√ k∑
i=1

wi

(
zi − zrefi

zmax
i − zmin

i

)2

, (1.9)

where z ∈ Rk is a solution, zref is a reference point, zmax
i = maxz∈P {zi} and zmin

i =
minz∈P {zi} ∀i = 1, . . . , k, calculated with respect to the current population, P , and the
weight vector should satisfy wi ∈ [0, 1] and

∑M
i=1 wi = 1.
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zref

d(z1, zref) = d(z2, zref)

z1

z2

Pareto front

Figure 1.1 The location of the reference point and the shape of the Pareto front might avoid reducing
the region of interest.

The value of this function was used to sort and rank the population accordingly (the
solution closest to the reference point receives the best rank). In order to control the spread of
the RoI, solutions whose achievement value differs by an amount of ε or less receive the same
rank. This way, a set of solutions clustered around the best ranked solution forms the RoI. This
method was designed to take into account a set of reference points, i.e., several independent
RoIs can be generated. A drawback of this scheme is that it might generate some non-Pareto
optimal solutions, particularly in MOPs with disconnected Pareto fronts. Furthermore, we
want to point out that the location of the reference point and shape of the Pareto front also
determine the size of the RoI and, in general, the order in which solutions are ranked. Let’s
take for example the Pareto front of the 2-objective DTLZ2 problem (see Fig. 1.1). If we
choose the ideal point as reference point, then for any value of ε, all the solution in the Pareto
front will be equally ranked since they are equidistant to the origin (for example solutions z1

and z2 in Fig. 1.1).
An interesting case is observed when the reference point is farther away from the origin. In

that case, solutions in the extreme of the Pareto front are closer to the origin than the solution
in the center of the Pareto front. This means that the DM should have some knowledge about
the shape and lower bounds of the Pareto front in order to avoid these situations.

1.3.2 Light Beam Search combined with NSGA-II

A similar approach was also proposed by Deb and Kumar (2007), in which the LBS
procedure (Jaszkiewicz and Slowinski 1999) was incorporated into NSGA-II. Similar to the
previous approach, they modified the crowding operator to incorporate DM’s preferences.
They used a weighted achievement function to assign a crowding distance to each solution
in each front. Thus, the solution with the least distance will have the best crowding rank.
Like in the previous approach, this algorithm finds a subset of solutions around the optimum
of the achievement function adopting the outranking relation proposed by Jaszkiewicz and
Slowinski (1999). In Jaszkiewicz and Slowinski (1999) three kinds of thresholds are defined
to determine if one solution outranks another one. However, in Deb and Kumar (2007) the
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Z
SL

AU

f1

f2

Figure 1.2 Controlling accuracy of the Pareto front approximation.

veto threshold is the only one used. This relation depends on the crowding comparison
operator.

Although these two previous techniques were presented and implemented as an a priori
technique, it is possible to formulate an interactive method with the same basic idea.

1.3.3 Controlling the accuracy of the Pareto front approximation

Kaliszewski et al. (2012) presented an interesting interactive approach coupled with a MOEA.
The main contribution of this work is a mechanism to control the accuracy of the subset of
nondominated solutions obtained. The authors adopted an achievement function to generate
a set of weakly Pareto optimal solutions. In order to control the accuracy of the Pareto
front approximation, two sets are generated and updated during the search: a set of feasible
nondominated solutions, SL, and a set of infeasible nondominated solutions, AU , such that
SL ⊀ AU (see Fig. 1.2). The basic idea is to enclose the Pareto front with two approximation
sets, one approaching from below and another one from above. The accuracy of the Pareto
front approximation is determined by a distance measure between SL and AU .

The decision maker’s preferences are expressed by means of the so-called vector of
concessions which represents proportions in which the DM agrees to sacrifice unattainable
values of the objectives represented by the ideal point in the hope of getting Pareto optimal
solutions.

1.3.4 Light Beam Search combined with PSO

Wickramasinghe and Li (2009) proposed the combination of the LBS method (Jaszkiewicz
and Slowinski 1999) and a Particle Swarm Optimization (PSO) technique to guide the
swarm towards a RoI according to the aspiration and reservation points provided by the
DM. The main idea is ranking the population using the outranking relation instead of the
usual Pareto dominance. By changing the threshold parameters of the outranking relations
(indifference threshold, preference threshold, veto threshold) the size of the RoI near the
point that minimizes eq. (1.8) can be regulated. The authors used the Multi-objective
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Differential Evolution and Particle Swarm Optimization (MDEPSO) algorithm as a framework
to incorporate LBS. The key points in which LBS is inserted are the following:

• Each time a new particle is created its achievement function value is calculated.

• The leaders to guide the population are sorted according to its achievement function
value using the outranking relation. This is the step in which the spread of the RoI is
controlled.

• The personal best of each particle will take the value of the updated position only if
the achievement function value is improved.

• In order to obtain the new population, the original and updated particles are mixed
and sorted according to the outranking relation. Finally, the best half of the mixed
population will form the new population.

1.3.5 A preference relation based on a weighted distance metric

Said et al. (2010) use the achievement function given by eq. (1.9) to create a new preference
relation called r-dominance. This relation combines the usual Pareto dominance and the
achievement function in the following way.

Definition 1.3.1 Given a set of solutions P and a reference point zref , a solution z1 is said
to r-dominate a solution z2 if:

1. z1 ≺ z2, or

2. z1 and z2 are mutually non-dominated solutions, and D(z1, z2, zref) < −δ, where
δ ∈ [0, 1] and

D(z1, z2, zref) =
d(z1, zref)− d(z2, zref)
Distmax −Distmin

,

Distmax = max
z∈P

d(z, zref),

Distmin = min
z∈P

d(z, zref).

The authors prove that the r-dominance relation, in the same way as the Pareto dominance,
defines a strict partial order on a set of solutions since the relation is irreflexive, asymmetric
and transitive. They also prove that r-dominance is complete with the Pareto dominance and
compatible with the non Pareto dominance, i.e., if z1 r-dominates z2, then z1 ≺ z2, and if
z1 r-dominates z2, then z2 ⊀par z1. In spite of these desirable properties, the r-dominance
relation has some drawback due to the Euclidean distance function adopted. The size of the
RoI is mainly determined by the threshold δ. If δ = 1, r-dominance is equivalent to the Pareto
dominance relation. In turn, if δ = 0, in most cases, the relation becomes more stringent since
only those solutions minimizing eq. (1.9) will be the most preferred by the relation.

The r-dominance relation was inserted in the interactive method presented in Algorithm 2
using a variant of NSGA-II as the search engine.
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1.3.6 The Chebyshev Preference Relation

This preference relation, proposed by López-Jaimes et al. (2011), is based on the Chebyshev
achievement function (see eq. (1.8)), and provides a simple way to integrate preferences into
different types of MOEAs. The basic idea of the Chebyshev preference relation is to combine
the Pareto dominance relation and an achievement function to compare solutions in objective
function space.

First, the achievement function value, s∞(z, zref), is computed for each solution z.
Then, the objective space is divided into two regions. One region defines the RoI and
contains those solutions with an achievement value less or equal to smin + δ, where smin =
minz∈Z s∞(z, zref), and δ is a threshold that determines the size of the RoI. Fig. 1.3 shows
the RoI defined by means of the achievement function. Solutions in this region are compared
using the usual Pareto dominance relation, while solutions outside of the RoI are compared
using their achievement function value.

Figure 1.3 Nondominated solutions with respect to the Chebyshev relation.

Formally, the Chebyshev preference relation is defined as follows.

Definition 1.3.2 A solution z1 is preferred to solution z2 with respect to the Chebyshev
relation (z1 ≺cheby z2), if and only if:

1. s∞(z1, zref) < s∞(z2, zref) ∧ {z1 /∈ R(zref , δ) ∨ z2 /∈ R(zref , δ)}, or,

Algorithm 2 Interactive Optimization using the r-dominance relation.
Step 1: Ask the DM for the following parameter values: population size, number of

generations, reference solution, weight vector and threshold δ.
Step 2: Apply r-NSGA-II the number of generations required.
Step 3: Present to the DM the set of preferred solutions.
Step 4: If the DM is satisfied with the provided set of solutions, then

Stop the process.
Otherwise

Ask the DM for new values for the parameters and return to Step 2.
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2. z1 ≺ z2 ∧ {z1, z2 ∈ R(zref , δ)},

where R(zref , δ) = {z | s∞(z, zref) ≤ smin + δ} is the Region of Interest with respect to the
vector of aspiration levels zref .

The threshold δ is set in terms of the user parameter τ ∈ [0, 1] according to
δ = τ · (smax − smin), where smax = maxz∈P s∞(z, zref) and smin = minz∈P s∞(z, zref).
In this way, if τ = 1, all the solutions in the population P are compared adopting the usual
Pareto dominance relation. On the other hand, if τ = 0, then all the solutions are compared
using the achievement function value.

Unlike some distance metrics, the achievement function (eq. (1.8)) allows a MOEA to find
points in problems with nonconvex Pareto fronts.

López-Jaimes et al. (2011) also proposed a variant of the Chebyshev relation that uses an
approximation of the ideal point as reference point in definition 1.3.2. This variant is called
the central-guided Chebyshev relation since it focuses the search towards the ideal point.

Algorithm 3 shows the interactive process using the Chebyshev relation.

Algorithm 3 Interactive technique using the Chebyshev preference relation.
Step 1: Ask the DM to specify the threshold τ .

If the DM has some knowledge about the problem, he/she can provide a reference
point. Otherwise, the central-guided preference relation can be used to converge
towards the ideal point.

Step 2: If a reference point was provided, then
Execute the MOEA using the Chebyshev relation with the reference point
provided by the decision maker.

else
Execute the MOEA using the central-guided Chebyshev relation.

Step 3: Ask the DM to define how many solutions of the current approximation should
be shown.
Additionally, from the use of the central-guided relation the DM can be informed
of the current ideal point in order to decide new aspiration levels.

Step 4: If the DM is satisfied with some solution of the current set, then
STOP.

else
Go to Step 1.

1.4 MOEAs based on Value Function Methods

1.4.1 Progressive approximation of a value function

Deb et al. (2010) proposed a method in which the DM’s value function is progressively
approximated through pairwise comparisons of a small set of solutions.

After applying a MOEA, a selection of well-distributed solutions of the achieved Pareto
front approximation is presented to the DM (in the experiments reported by the authors,
five solutions are shown). Then, for every pair of solutions the DM should establish which
one is preferred over the other, or if they are incomparable. Based on this preference
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information a polynomial value function, V (z), is built. For 2-objective problems, this
function is the product of two linear functions whose parameters must be determined using
the preference information as constraints of an optimization problem. The created value
function is employed to define a preference relation in order to select the parents and, later,
to decide which individuals will survive to the next generation. This preference relation uses
the value function value (denoted by V2) of the second-best solution found in the population.

Definition 1.4.1 A solution z1 is preferred to solution z2 with respect to an value function
value V2 if and only if:

1. z1 ≺ z2, or

2. V (z1) > V2 and V (z2) < V2.

The value function is also used to formulate a termination criterion of the interactive
process. The idea is to perform a linear search along the gradient of the value function taking
the best solution in the population as initial point. If this solution is improved by a given
threshold value, the interactive process continues and the MOEA is applied again. Otherwise,
the process stops and the solution found in the linear search is considered the most preferred
solution.

1.4.2 Value function by ordinal regression

For a given class of value function it is possible that many of its instances generated by
changing the parameters can be compatible with the provided preference information. In
many approaches, like the one presented in Section 1.4.1, only one specific instance is used
to evaluate the set of solutions. However, as Branke et al. (2010) pointed out, since this
selection is rather arbitrary, a more robust approach should take into consideration all the set
of value functions compatible with the preference information (see Fig. 1.4). This motivation
was the origin of the Robust Ordinal Regression (ROR) proposed by Branke et al. (2010).
When all the compatible value function are considered, two different preference relation can
be defined:

1. Necessary preference relation: a solution z1 is ranked at least as good as z2 if z1 is
preferred over z2 in all compatible instances of the value function.

2. Possible preference relation: a solution z1 is ranked at least as good as z2 if z1 is
preferred over z2 in at least one compatible instance of the value function.

The necessary preference relation is robust in the sense that any pair of solutions is
compared the same whatever the compatible instance of the value function.

In order to define a necessary preference ranking, the preference information is obtained by
asking the DM to make a pairwise comparison of a small set of alternative solutions. Then, the
necessary preference relation is computed by solving a linear programming problem. In some
decision-making situations is useful to know the most representative value function among
all the compatible ones. The authors considered the most representative value function as the
one which maximizes the difference of scores between alternatives related by preference in
the necessary ranking.

The concept of ROR was integrated into NSGA-II making two important changes:
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ui(xi)

fi

Figure 1.4 Range of compatible value function for objective fi.

1. The Pareto dominance is replaced by the necessary preference relation in such a
way that the selection for reproduction and the selection for survival are carried out
according to the necessary preference rank.

2. The crowding distance is computed taking into account the multidimensional scaling
given by the most representative value function.

During the main loop of NSGA-II, after k generations, the DM is asked for new preference
information.

1.5 Miscellaneous Methods

1.5.1 Desirability functions

Wagner and Trautmann (2010) proposed transforming each objectives of the problem by
a Desirability Function (DF) that maps the original objective to a domain [0, 1] This new
function has a bias towards the preferred solutions according to the desired values provided
by the DM.

Let’s consider that the image of objective fi is Zi ⊆ R, then a DF is defined as
any function di : Zi → [0, 1] that specifies the desirability of different regions of the
domain Zi for objective fi. The authors adopted two types of DF which were introduced
by Harrington (1965): one designed for maximization or minimization of the objectives (one-
sided function), and another one for target value problems (two-sided function). Thus, the
original MOP is transformed into

Minimize − d(z) = −d[f(x)] = −(d1[f1(x)], . . . , dk[fk(x)])T

where x ∈ X ,

z ∈ Z,

d(z) : Z → [0, 1], i = 1, . . . , k.

(1.10)

Since the transformed problem is also a MOP, the multi-objective optimization algorithm
adopted to solve the original problem can be used without modification to solve the new
problem. However, the Pareto optimal solutions of the modified problem will present a biased
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distribution towards the RoI of the original MOP. For the one-sided DF, the DM states his/her
preferences by setting two points of each objective’s DF: the first point, (z(1)

i , d
(1)
i ) represents

the most desirable value, d(1)
i = 1, in the domain Zi, while the second point, (z(2)

i , d
(2)
i ),

denotes the least desirable value, d(2)
i = 0, in the domain. The values for z(1)

i and z(2)
i are

taken from the range [z?i , z
nad
i ], i.e., the range of the Pareto optimal front. For example, in

order to focus the search on the center of a Pareto front, z(1)
i = z?i and z(2)

i = znad
i /2 should

be used.

1.6 Conclusions and Future Work

This chapter has presented a short review of recent efforts to design interactive MOEAs. It
is clear that most of the proposals are based on classical well-known techniques originated
in the OR field. From the proposed interactive methods, the most popular approach is the
reference point method. This opens important paths of future research. There are many
interactive techniques proposed by the OR community and, therefore, one of the obvious
future research paths is the development of new interactive MOEAs using techniques based on
a classification of the objectives, trade-off methods, or marginal rates of substitution. Another
interesting possibility would be the development of interactive MOEAs using concepts
from other sources. For example, the incorporation of preferences through the bias of the
hypervolume (or other indicators used for assessing performance of MOEAs (Zitzler et al.
2003)).

The use of interactive MOEAs to deal with problems with a high number of objectives
has become a popular research trend within evolutionary multi-objective optimization.
We believe that there are two main reasons for this. On the one hand, the incorporation
of preferences avoids the problem of visualizing a huge number of solutions in high
dimensionality. On the other hand, emphasizing a region of interest introduces a stringent
criterion that allows comparing nondominated solutions.

Summarizing, we believe that the incorporation of preferences into MOEAs is a very
important research topic, not only because this is a fundamental part of the decision making
process involved in the solution of a multi-objective optimization problem, but also because
it can help to deal with problems having a large number of objectives. This topic, however,
is still scarcely researched in the current literature, mainly because of its strong links
with Operations Research, which makes it necessary to have a good background in such
a discipline as well as in evolutionary multi-objective optimization. However, as more efforts
are being made to bring together these two communities (OR and EMO) (Branke et al. 2008)
we expect to see much more research in this area in the next few years.
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