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México, D.F. 07360, MEXICO
lvspenny@hotmail.com, aarias@computacion.cs.cinvestav.mx,

ccoello@cs.cinvestav.mx

Summary. Evolutionary algorithms have been very popular for solving multi-
objective optimization problems, mainly because of their ease of use, and their wide
applicability. However, multi-objective evolutionary algorithms (MOEAs) tend to
consume an important number of objective function evaluations, in order to achieve
a reasonably good approximation of the Pareto front. This is a major concern when
attempting to use MOEAs for real-world applications, since we can normally afford
only a fairly limited number of fitness function evaluations in such cases. Despite
these concerns, relatively few efforts have been reported in the literature to re-
duce the computational cost of MOEAs. It has been until relatively recently, that
researchers have developed techniques to achieve an effective reduction of fitness
function evaluations by exploiting knowledge acquired during the search. In this
chapter, we analyze different proposals currently available in the specialized litera-
ture to deal with expensive functions in evolutionary multi-objective optimization.
Additionally, we review some real-world applications of these methods, which can
be seen as case studies in which such techniques led to a substantial reduction in
the computational cost of the MOEA adopted. Finally, we also indicate some of the
potential paths for future research in this area.

1.1 Introduction

In many disciplines, optimization problems have, in a natural form, two or
more objectives that we aim to minimize simultaneously, and which are nor-
mally in conflict with each other. These problems are called “multi-objective”,
and their solution gives rise not to one, but to a set of solutions representing
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the best possible trade-offs among the objectives (the so-called Pareto opti-
mal set). In the absence of user’s preferences, all the solutions contained in
the Pareto optimal set are equally good. When plotted in objective function
space, the contents of the Pareto optimal set produces the so-called Pareto
front.

Evolutionary algorithms (EAs) have become a popular search engine for
solving multi-objective optimization problems [17, 21], mainly because they
are very easy to use and have a wide applicability. However, multi-objective
evolutionary algorithms (MOEAs) normally require a significant number of
objective function evaluations, in order to achieve a reasonably good approxi-
mation of the Pareto front, even when dealing with problems of low dimension-
ality. This is a major concern when attempting to use MOEAs for real-world
applications, since in many of them, we can only afford a fairly limited number
of fitness function evaluations.

Despite these concerns, relatively little efforts have been reported in the
literature to reduce the computational cost of MOEAs, and several of them
only focus on algorithmic complexity (see for example [36]), in which little
else can be done because of the theoretical bounds related to nondominance
checking [45].

It has been until relatively recently, that researchers have developed tech-
niques to achieve a reduction of fitness function evaluations by exploiting
knowledge acquired during the search [42]. Knowledge of past evaluations can
also be used to build an empirical model that approximates the fitness function
to optimize. This approximation can then be used to predict promising new
solutions at a smaller evaluation cost than that of the original problem [40, 42].
Current functional approximation models include Polynomials (response sur-
face methodologies [30, 65]), neural networks (e.g., multi-layer perceptrons
(MLPs) [33, 34, 62]), radial-basis function (RBF) networks [60, 77, 83], sup-
port vector machines (SVMs) [4, 71], Gaussian processes [6, 78], and Kriging
[24, 66] models. Other authors have adopted fitness inheritance [67] or cultural
algorithms [46] for the same purposes.

In this chapter several possible schemes are described, in which the use
of the knowledge from past solutions can help to guide the search of the new
solutions, with particular emphasis on MOEAs. The remainder of this chapter
is organized as follows. In Section 1.2, we present basic concepts related to
multi-objective optimization. Then, in Section 1.3 we discuss several schemes
that incorporate knowledge into the fitness evaluations of an evolutionary al-
gorithm, providing a brief explanation of the surrogate models that have been
used to approximate the fitness function. Next in Section 1.4 some selected
research works are discussed. Such works are related to real–world engineering
optimization problems, and can be considered as case studies in which the use
of the described techniques led to a substantial reduction in the computational
cost of the MOEA adopted. Finally, in Section 1.5, our conclusions and some
potential paths for future research in this area are indicated.
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1.2 Basic Concepts

The general multi-objective optimization problem (MOP) can be formally
defined as the problem of finding:

x∗ = (x∗
1
, x∗

2
, . . . , x∗

n)T which satisfies the m inequality constraints:

gi(
−→x ) ≤ 0; i = 1, . . . , m

the p equality constraints:

hj(
−→x ) = 0; j = 1, . . . , p

and optimizes the vector function:

f(x) = [f1(
−→x ), f2(

−→x ), . . . , fk(−→x )]
T

In other words, we aim to determine from among the set S of all vectors
(points) which satisfy the constraints those that yield the optimum values
for all the k objective functions simultaneously. The constraints define the
feasible region S and any point −→x in the feasible region is called a feasible
point.

1.2.1 Pareto dominance

Pareto dominance is formally defined as follows:
A vector −→u = (u1, . . . , uk) is said to dominate a vector −→v = (v1, . . . , vk)

if and only if −→u is partially less than −→v , i.e., ∀i ∈ {1, . . . , k}, ui ≤ vi ∧ ∃i ∈
{1, . . . , k} : ui < vi (assuming minimization).

In order to say that a solution dominates another one, it needs to be
strictly better in at least one objective, and not worse in any of them. So,
when we are comparing two different solutions A and B, there are 3 possible
outcomes:

• A dominates B.
• A is dominated by B.
• A and B are incomparable.

1.2.2 Pareto optimality

The formal definition of Pareto optimality is provided next:
A solution −→xu ∈ S (where S is the feasible region) is said to be Pareto

optimal if and only if there is no −→xv ∈ S for which v = f(xv) = (v1, . . . , vk)
dominates u = f(xu) = (u1, . . . , uk), where k is the number of objectives.

In words, this definition says that xu is Pareto optimal if there exists
no feasible vector xv which would decrease some objective without causing a
simultaneous increase in at least one other objective (assuming minimization).
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This definition does not provide us a single solution (in decision variable
space), but a set of solutions which form the so-called Pareto Optimal Set
(P ∗). The vectors that correspond to the solutions included in the Pareto
optimal set are nondominated.

1.2.3 Pareto front

When all nondominated solutions are plotted in objective function space,
the nondominated vectors are collectively known as the Pareto Front (PF ∗).
Formally:

PF ∗ := {
−→
f (x) = [f1(x), . . . , fk(x)]T |x ∈ P ∗}

It is, in general, impossible to find an analytical expression that defines the
Pareto front of a MOP, so the most common way to get the Pareto front is
to compute a sufficient number of points in the feasible region, and then filter
out the nondominated vectors from them.

The previous definitions are graphically depicted in Figure 1.1, showing
the Pareto front, the Pareto optimal set and the dominance relations among
solutions.

Fig. 1.1. Mapping of the Pareto optimal solutions to the objective function space

1.3 Knowledge Incorporation

From the many techniques adopted to solve such multi-objective optimiza-
tion problems, evolutionary algorithms are among the most popular mainly



1 A Review of Techniques for Handling Expensive Functions in EMO 5

Knowledge 
Incorporation

Functional
 Approximation
(meta-models)

Fitness Inheritance

Clusters

Problem
 Approximation

Evolutionary
 Approximation

Simulations

Response Surface Methods

Gaussian Processes (Kriging)

Radial Basis Functions

Neural Networks

Support Vector Machines

Fig. 1.2. A taxonomy of approaches for incorporating knowledge into evolutionary
algorithms

because of their population-based nature, which is very useful to generate
several nondominated solutions in a single run. However, dealing with a large
population size and a large number of generations make MOEAs an unaf-
fordable choice (computationally speaking) in certain applications, even when
parallelism is adopted. In general, MOEAs can be unaffordable for an appli-
cation when:

• The evaluation of the fitness functions is computationally expensive (i.e.,
it takes from minutes to hours).

• The fitness functions cannot be defined in an algebraic form (e.g., when
the fitness functions are generated by a simulator).

• The total number of evaluations of the fitness functions is limited by fi-
nancial constraints (i.e., there is a financial cost involved in computing the
fitness functions).

Jin et al. [40] presented a taxonomy of approaches which incorporate
knowledege into EAs (see Figure 1.2). From this taxonomy, we can distin-
guish three main types of strategies or approaches to deal with expensive
fitness functions:

Problem approximation: Tries to replace the original statement of the
problem by one which is approximately the same as the original problem
but which is easier to solve. To save the cost of the experiments, numerical
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simulations instead of physical experiments are used to pseudo-evaluate
the performance of a design.

Functional approximation: In this case, a new expression is constructed
for the objective function based on previous data obtained from the real
objective functions. The models obtained from the available data are often
known as meta-models or surrogates (see Section 1.3.1).

Evolutionary approximation: This approximation is specific for EAs and
tries to save function evaluations by estimating an individual’s fitness
from other similar individuals. Two popular subclasses in this category
are fitness inheritance and clustering.

1.3.1 Surrogates

In many practical engineering problems, we have black-box objective func-
tions whose algebraic definitions are not known. In order to construct an
approximation function, it is required to have a set of sample points that help
us to build a meta-model of the problem. The objective of such meta-model
is to reduce the total number of evaluations performed on the real objective
functions, while maintaining a reasonably good quality of the results obtained.
Thus, such meta-model is used to predict promising new solutions at a smaller
evaluation cost than that of the original problem.

The accuracy of the surrogate model relies on the number of samples
provided in the search space, as well as on the selection of the appropriate
model to represent the objective functions. There exist a variety of techniques
for constructing surrogate models (see for example [79]). One example is least-
square regression using low-order polynomials, also known as response surface
methods. Comparisons of several surrogate modeling techniques have been
presented by Giunta and Watson [27] and by Jin et al. [39].

A surrogate model is built when the objective functions are to be esti-
mated. This local model is built using a set of data points that lie on the
local neighborhood of the design. Since surrogate models will probably be
built thousands of times during the search, computational efficiency becomes
a major issue of their construction process.

In [43], Knowles and Nakayama present a survey of meta-modeling ap-
proaches to solve specific problems. The authors discuss the problem on how
to model each objective function and how to improve the Pareto approxi-
mation set using a trade-off method proposed by Nakayama et al. [56]. In
multi-objective optimization problems, the trade-off method tries to satisfy
an aspiration level at the k-th iteration, with the help of a trade-off opera-
tor which changes the k-th level if the decision maker (DM) is not satisfied
with the solution. So, they combine the satisficing trade-off method and meta-
modeling for supporting the DM to get a final solution with a low number of
fitness function evaluations. They use the µ − v Support Vector Regression
method [57] as their meta-model and include two real-world multi-objective
optimization problems, using also a Radial Basis Function Network with a
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Genetic Algorithm in searching the optimal value of the predicted objective
function [58]. The proposed approach obtains good solutions within 1/10 or
less analysis time than a conventional optimization approach based on a quasi-
Newton method with approximated differentials.

1.3.2 Polynomials: response surface methods (RSM)

The response surface methodology comprises three main components: (1) re-
gression surface fitting, in order to obtain approximate responses, (2) design
of experiments in order to obtain minimum variances of the responses and (3)
optimizations using the approximated responses.

An advantage of this technique is that the fitness of the approximated re-
sponse surfaces can be evaluated using powerful statistical tools. Additionally,
the minimum variances of the response surfaces can be obtained using design
of experiments with a small number of experiments.

For most response surfaces, the functions adopted for the approximations
are polynomials because of their simplicity, although other types of functions
are, of course, possible. For the cases of quadratic polynomials, the response
surface is described as follows:

ŷ = (β0) +
n
∑

i=1

(βi · xi) +
n
∑

i,j=1,i≤j

(βi,j · xi · xj) (1.1)

where n is the number of variables, and β0 and βi are the coefficients to
be calculated. To estimate the unknown coefficients of the polynomial model,
both the least squares method (LSM) and the gradient method can be used,
but either of them requires at least the same number of samples of the real
objective function than the βi coefficients in order to obtain good results.

1.3.3 Gaussian Process or Kriging

An alternative approach for constructing surrogate models is to use a Gaussian
Process Model (also known as Kriging), which is also referred to as “Design
and Analysis of Computer Experiments” (DACE) model [68] and Gaussian
process regression [82]. This approach builds probability models through sam-
ple data and estimates the function values at every untested point with a
Gaussian distribution.

In Kriging, the meta-model prediction is formed by adding up two different
models as follows:

y(−→x ) = a(−→x ) + b(−→x )

where a(−→x ) represents the “average” long-term range behavior and the ex-
pected value of the true function. This function can be modeled in various
ways, such as with polynomials or with trigonometric series as:
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a(−→x ) = a0 +

L
∑

i=1

R
∑

j=1

aij(xi)
j

where: R is the polynomial order with L dimensions and b(−→x ) stands for a
local deviation term. b(−→x ) is a Gaussian random function with zero mean
and non-zero covariance that represents a localized deviation from the global
model. This function represents a short-distance influence of every data point
over the global model. The general formulation for b(−→x ) is a weighted sum of
N functions, Kn(x) that represent the covariance functions between the nth

data point and any point x:

b(−→x ) =

N
∑

n=1

bnK(h(x, xn)) and h(x, xn) =

√

√

√

√

L
∑

i=1

(
xi − xin

xmax
i − xmin

i

2

)

where xmin
i and xmax

i are the lower an upper bounds of the search space and
xin denotes the i− th component of the data point xn. However, the shape of
K(h) has a strong influence on the resulting aspect of the statistical model.
That is the reason why it is said that Kriging is used as an estimator or an
interpolator.

1.3.4 Radial basis functions

Radial Basis Functions (RBFs) were first introduced by R. Hardy in 1971 [32].
Let’s suppose we have certain points (called centers) −→x 1, . . . ,

−→x n ∈ R
d. The

linear combination of the function g centered at the points −→x is given by:

f : R
d 7→ R : −→x 7→

n
∑

i=1

λig(−→x −−→xi) =

n
∑

i=1

λiφ(‖−→x −−→xi‖) (1.2)

where ‖−→x −−→xi‖ is the Euclidean distance between the points −→x and −→x i.
So, f becomes a function which is in the finite dimensional space spanned by
the basis functions:

gi : −→x 7→ g(‖−→x −−→xi‖)

Now, let’s suppose that we already know the values of a certain function
H : R

d 7→ R at a set of fixed locations −→xi , . . . ,
−→xn. These values are named

fj = H(−→xj), so we try to use the −→xj as centers in the equation 1.2. If we want
to force the function f to take the values fj at the different points −→xj , then
we have to put some conditions on the λi. This implies the following:

∀j ∈ {1, . . . , n} fj = f(−→xj) =

n
∑

i=1

(λi · φ(‖−→xj −
−→xi‖))
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In these equations, only the λi are unknown, and the equations are linear
in their unknowns. Therefore, we can write these equations in matrix form:











φ(0) φ(‖x1 − x2‖) . . . φ(‖x1 − xn‖)
φ(‖x2 − x1‖) φ(0) . . . φ(‖x2 − xn‖)

...
...

...
φ(‖xn − x1‖) φ(‖xn − x2‖) . . . φ(0)











·











λ1

λ2

...
λn











=











f1

f2

...
fn











(1.3)

Typical choices for the basis function g(x) include linear splines, cubic
splines, multiquadrics, thin-plate splines and Gaussian functions as shown in
Table 1.1.

Type of Radial Function
LS linear splines |r|
CS cubic splines |r|3

MQS multiquadrics splines
p

1 + (ǫr)2

TPS thin plate splines |r|2m+1 ln |r|

GA Gaussian e
−(ǫr)2

Table 1.1. Radial basis functions

1.3.5 Artificial neural networks

An ANN basically builds a map between a set of inputs and the corresponding
outputs, and are good to deal with nonlinear regression analysis with noisy
signals [5]. A multilayer feedforward neural network consists of an array of
input nodes connected to an array of output nodes through successive inter-
mediate layers. Each connection between nodes has a weight, which initially
has a random value, and that is adjusted during a training process. The out-
put of each node of a specific layer is a function of the sum on the weighted
signals coming from the previous layer. The crucial points in the construction
of an ANN are the selection of inputs and outputs, the architecture of the
ANN, that is, the number of layers and the number of nodes in each layer,
and finally, the training algorithm.

The multi-layer perceptron (MLP) is a multilayered feedforward network
that has been widely used in function approximation problems, because it
has been often found to provide compact representations of mappings in real-
world problems. An MLP is composed of neurons and the output (y) of each
neuron is thus:

y = φ

(

n
∑

i=1

wi · ai + b

)
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where ai are the inputs of the neuron, and wi is the weight associated with
the ith input. The nonlinear function φ is called the activation function as it
determines the activation level of the neuron.

In Figure 1.3, we show an MLP network with one layer of linear output
neurons and one layer of nonlinear neurons between the input and output
neurons. The middle layers are usually called hidden layers.

W W W

W = hidden layer

Y = output layer

Y Y Y Y

X X

X = input layer

Fig. 1.3. A graphical representation of an MLP network with one hidden layer

To learn a mapping R
n → R

m by an MLP, its architecture should be the
following: it should have n input nodes and m output nodes with a single or
multiple hidden layer. The number of nodes in each hidden layer is generally
a design decision.

Training an ANN

In general terms, supervised training consists of presenting to the network
patterns whose output we know (the training set) finding the output of the
net and adjusting the weights so as to make the actual output more like the
desired (or teaching signal). The two most useful training protocols are: off-
line and on-line. In off-line learning, all the data are stored and can be accessed
repeatedly. In on-line learning, each case is discarded after it is processed and
the weights are updated. With off-line learning, we can compute the objective
function for any fixed set of weights, so we can see whether or not we are
making progress in training.

Error backpropagation is the simplest and most widely used algorithm to
train feedforward neural networks. In this algorithm the training is performed
by minimizing a loss function, usually the sum of square errors over the N

elements of the training set. In this case, it is adopted a generalization of the
square error function given by:

J(W ) =
1

2

N
∑

i=1

c
∑

k=1

(tki − zki)
2

=
1

2

N
∑

i=1

||
−→
ti −−→zi ||

2
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where ti and zi are the ith-target and the ith-network output vectors of length
c, respectively; W represents all the weights in the network. The backpropa-
gation learning rule is based on a gradient descent. The weights are initialized
with random values, and are changed in a direction to reduce the error fol-
lowing the next rule:

Wnew = Wold − η
∂J

∂W

The weight update for the hidden-output weights is given by:

∂Wkj = η(tk − zk)f ′(netk)yj

and the input-to-hidden weights learning rule is:

∂Wji = η · xi · f
′(netj)

n
∑

k=1

wkj∂k

where η is the learning rate, i, j, k are the corresponding node indexes for each
layer and netj is the inner product of the input layer with the weights wji at
the hidden unit.

1.3.6 Support vector machines

Support vector machines (SVM) have become popular in recent years for solv-
ing problems in classification, regression and novelty detection. An important
property of support vector machines is that the determination of the model
parameters corresponds to a convex optimization problem, and thus, any local
solution found is also a global optimum. In SV M regression, our goal is to
find a function f(x) that has at most an ǫ deviation from the obtained targets
yi for all the training data, and at the same time is as flat as possible. Let’s
suppose we are given training data χ = (xt, yt)

N

t=1
where yt ∈ R. Then, the

f(x) is given by:

f(x) = 〈w, x〉 + b with w ∈ R
d, x ∈ R

d, b ∈ R

where 〈·, ·〉 denotes the dot product in χ. A small w means that the regression
is flat. One way to ensure this, is to minimize the norm, ||w||2 = 〈w, w〉. The
problem can be written as a convex optimization problem:

minimize 1

2
||w||2 (1.4)

subject to

{

yi − 〈w, xi〉 − b ≤ ǫ

〈w, xi〉 + b − yi ≤ ǫ

And one can introduce two slack variables ξi, ξ
∗
i , for positive and negative

deviations, ξi ≥ 0 and ξ∗i ≥ 0, where ξi > 0 corresponds to a point for
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which 〈w, xi〉 + b > yi + ǫ and ξ∗i > 0 corresponds to a point for which
〈w, xi〉 + b < yi − ǫ (as in Figure 1.4):

minimize C
∑l

i=1
(ξi + ξ∗i ) + 1

2
||w||2 (1.5)

subject to







yi − 〈w, xi〉 − b ≤ ǫ + ξi

〈w, xi〉 + b − yi ≤ ǫ + ξ∗i
ξi, ξ

∗
i ≥ 0

The constant C > 0 determines the trade-off between the flatness of f

and the amount up to which deviations larger than ǫ are tolerated. The ǫ-
insensitive loss function [80] (see equation (1.6)) means that we tolerate errors
up to ǫ and also that errors beyond that value have a linear rather than a
quadratic effect. This error function is therefore more tolerant to noise and is
thus, more robust.

|ξ|ǫ =

{

0, if |ξ| ≤ ǫ;
|ξ| − ǫ, otherwise.

(1.6)

Figure 1.4, shows a plot of the ǫ-insensitive loss function. Note that only the
points outside the shaded region contribute to the cost of the function. It turns
out that in most cases, the optimization problem defined by equation (1.5)
can be solved more easily in its dual formulation. The dual formulation also
provides the capability for extending SVM to nonlinear functions using a
standard dualization method based on Lagrange multipliers, as described by
Fletcher [25]. So, optimizing the Lagrangian and substituting ti = 〈w, xi〉 for
simplicity, we have:

L = C

N
∑

i=1

(ξi + ξ∗i ) +
1

2
||w||2 −

N
∑

i=1

(µiξi + µ∗
i ξ

∗
i )

−
N
∑

i=1

αi(ǫ + ξi + yn − tn) −
N
∑

i=1

α∗
i (ǫ + ξ∗i + yn − tn) (1.7)

Then, we can substitute for y(x) using the linear model equation: y(x) =
wT φ(x) + b and set the derivatives of the Lagrangian with respect to 1) w, 2)
b, 3) ξi and 4) ξ∗i to zero, giving:
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∂L

∂w
= 0 ⇒ w =

N
∑

i=1

(αi − α∗
i )φ(xi) (1.8)

∂L

∂b
= 0 ⇒

N
∑

i=1

(αi − α∗
i ) = 0 (1.9)

∂L

∂ξi

= 0 ⇒ αi + µi = C (1.10)

∂L

∂ξi

= 0 ⇒ α∗
i + µ∗

i = C (1.11)

Using these results to eliminate the corresponding variables from the La-
grangian, we see that the dual problem involves maximizing:

L′(a, a∗) = −
1

2

N
∑

i=1

N
∑

j=1

(αi−α∗
i )(αj−α∗

j )k(xi, xj)−ǫ

N
∑

i=1

(αi+α∗
i )+

N
∑

i=1

(αi−α∗
i )tn

(1.12)
with respect to αi and α∗

i , where k(xi, xj) = φ(xi)
T · φ(xj) is the kernel

function. So, the problem becomes a constrained maximization problem with
the box constraints:

0 ≤ αi ≤ C

0 ≤ α∗
i ≤ C

And the predictions for new inputs can be made using:

y(x) =

N
∑

i=1

(αi − α∗
i )k(x, xi) + b (1.13)

The support vectors are those data points that contribute to predictions
given by equation 1.13, in other words those for which either αi 6= 0 or α∗

i 6= 0.
These are points that lie on the boundary of the ǫ-tube or outside the tube.
All points within the tube have αi = α∗

i = 0.

1.3.7 Clustering

Clustering is the unsupervised classification of patterns into groups (or clus-
ters). The clustering problem has been addressed in many contexts and by
researchers in many disciplines [35].

Typical pattern clustering involves the following steps:

(1) Pattern representation: it refers to the number of classes, number of
patterns, and features available to the clustering algorithm.
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Fig. 1.4. ǫ-insensitive loss function for SVM

(2) Definition of a pattern proximity: it is usually measured by a distance
function defined on pairs. A simple distance measure such as the Euclidean
distance can often be used to reflect dissimilarity between two patterns.

(3) Clustering or grouping: it can usually be hard (a partition of the data
into well-defined groups) or fuzzy (where each pattern belongs in certain
degree to each of the output clusters).

(4) Data abstraction (if necessary): it is the process of extracting a simple
representation of a data set, and a compact description of each cluster,
such as the centroid.

(5) Assessment of output (if necessary): it distinguishes a good clustering
result from a poor one, it attempts to study the cluster tendency, and it
analyzes the clustering result with a specific criterion of optimality.

Although, there is no specific approach that uses only clustering to deal
with the problem of reducing the number of objective function evaluations
of a problem, clustering techniques are commonly used in combination with
surrogates. The computational cost of a surrogate method can become pro-
hibitively high when the size of the training data set is very large, because
of the time that it could require to process the data set. In such cases, it is
common to cluster the whole data set into several small clusters and then try
to build an independent local model from them.

1.3.8 Fitness Inheritance

Fitness Inheritance is a technique that was introduced by Smith et al. [72],
whose main motivation is to reduce the total number of fitness function eval-
uations performed by an evolutionary algorithm. The mechanism works as
follows: when assigning the fitness to an individual, some times we evaluate
the objective function as usual, but the rest of the time, we assign fitness
as an average of the fitness of the parents. This saves one fitness function
evaluation, and is based on the assumption of similarity of an offspring to its
parents.
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Fitness inheritance must not be always applied, since the algorithm needs
to use the true fitness function several times, in order to obtain enough infor-
mation to guide the search. The percentage of time in which fitness inheritance
is applied is called inheritance proportion. If this inheritance proportion is 1,
the algorithm is most likely to prematurely converge [8].

It is important to mention that some researchers consider this mechanism
not so useful in complex or real world problems, under the argument that it
has been only applied in “easy” problems. For example, Ducheyne et al. [23]
tested the original scheme of fitness inheritance on a standard binary genetic
algorithm and the Zitzler-Deb-Thiele (ZDT) [84] multiobjective test problems,
concluding that fitness inheritance was not useful when dealing with difficult
shapes of the Pareto front. Other authors, however, have successfully applied
fitness inheritance to the ZDT and other (more complicated) test problems
(see for example [67]).

1.4 Real-World Applications

In this section, we present some selected research work in which a real-world
multi-objective engineering optimization problem was solved using a MOEA
coupled to a technique for reducing the computational cost involved. There
are many engineering disciplines which require expensive function evaluations.
From them, we chose aeronautical/aerospace engineering, because it presents
problems having high CPU time demand, high nonlinearity and, some times,
also high dimensionality. All of these features are also common in other en-
gineering optimization problems, and we consider them representative of the
main sources of difficulty in engineering optimization in general.

Aeronautical and aerospace engineering are disciplines in which the so-
lution of multi-objective/multi-disciplinary problems is a standard practice.
During the last three decades, the process of engineering design in these in-
dustries has been revolutionized as computational simulation has come to play
an increasingly dominant role. The increasing demand of optimal and robust
designs, driven by time to market, economics and environmental constraints,
along with the increasing computing power available, has changed the role of
computational simulations from being used only as analysis tools to be used
as design optimization tools.

Among the problems with expensive evaluations identified in these disci-
plines are the following:

• Aerodynamic Shape Optimization: This type of optimization problem
ranges from 2D to complex 3D shapes. Typical optimization applications
for 2D problems comprise Wing and Turbine Airfoil Shape Optimization as
well as Inlet/Nozzle design optimization, whereas for 3D problems, turbine
blade, Wing Shape and Wing-Body configuration design optimizations are
typical example applications.
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• Structural Optimization: The aeronautical/aerospace design philoso-
phy focuses on the design of structures with minimum weight that are
strong enough to withstand certain design loads. These two objectives are
conflicting in nature and, therefore, the aim of structural optimization is
to find the best possible compromise between them. Typical applications
for this type of problems comprise structural shape and topology opti-
mization, robust structural design and structural weight optimization.

• Multidisciplinary Design Optimization: aeronautical/aerospace de-
sign has a multidisciplinary nature, since in many practical design appli-
cations, two or more disciplines are involved, each one with specific per-
formances to accomplish. Typical applications for this type of problems
are the aeroelastic applications in which aerodynamics and structural en-
gineering are the interacting disciplines.

For all the optimization problems indicated above, the objective func-
tion evaluations are routinarily done by using complex computational sim-
ulations such as CFD (Computational Fluid Dynamics) in the case of aero-
dynamic problems, CAA (Computational Aero-Acoustics) for aero-acoustic
problems, CSM (Computational Structural Mechanics, by means of Finite
Element Method software) for Structural Optimization Problems, or a combi-
nation of them in the case of multidisciplinary design optimization problems.
Because of their nature, any of these computational simulations have a high
computational cost (since they solve, in an iterative manner, the set of partial
differential equation governing the physics of the problem) and evaluating the
objective functions for the kind of problems indicated above, can take from
minutes to hours for a single candidate solution, depending on the fidelity of
the simulation.

Nowadays in aeronautical/aerospace industries, MOEAs have gained pop-
ularity and are considered as a mature and reliable numerical optimization
tool, since they provide to the designers not only with one design solution,
but with a set of them from which the tradeoff between the competing objec-
tives can be assessed. This last situation can help decision makers to select
a compromise design according to his/her own preferences. Given the high
computational cost required for the computational simulations and the pop-
ulation based nature of MOEAs, the use of hybrid methods or meta-models
is a natural choice in order to reduce the computational cost of the design
optimization process, as indicated by some representative research works that
will be described next.

1.4.1 Use of problem approximation

As indicated in Section 1.3, this approach tries to replace the original problem
by one which is approximately the same as the original one but which is eas-
ier to solve. In the context of aeronautical/aerospace engineering problems,
where complex CFD, CAA and CSD are employed, the problem can be ap-
proximated by using different resolutions in the flow or structural simulation
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by using either coarse or fine grids. In the case of CFD simulations another
level of approximation can be obtained by solving Euler flows or potential
flows instead of Navier-Stokes flow simulations. Some of these techniques are
used in the following research works.

Chiba et al. [9, 10] addressed the problem of multidisciplinary wing shape
optimization using the ARMOGA (Adaptive Range Multi-Objective Genetic
Algorithm) [69] and CFD and CSD Simulations. Three objective functions are
minimized: (i) Block Fuel, (ii) Maximum takeoff weight, and (iii) Difference in
the drag coefficient between transonic and subsonic flight conditions. In this
work, and during the optimization process, an iterative aeroelastic solution is
performed in order to minimize the wing weight, with constraints on flutter
and strength requirements. For this iterative process, Euler flow solutions
(instead of Navier-Stokes flow solutions) are used as a problem approximation
in order to reduce the computational cost. Also, a flight envelope analysis is
done, which uses high-fidelity CFD Navier-Stokes flow solutions for various
flight conditions. The whole optimization process evolves a population of 8
individuals during 16 generations. Authors indicate that they use on the order
of 70 Euler and 90 Navier-Stokes simulations per generation of their MOEA.

Sasaki et al. [69, 70] and Obayashi and Sasaki [59], solved a supersonic
wing shape optimization problem minimizing four objective functions: (i) drag
coefficient at transonic cruise, (ii) drag coefficient at supersonic cruise, (iii)
bending moment at the wing root at supersonic cruise condition, and (iv)
pitching moment at supersonic cruise condition. In this research study, which
also makes use of the ARMOGA algorithm, no iterative aeroelastic analysis
is performed, aiming at reducing the associated computational cost. The ob-
jective associated with the bending moment at wing root, is approximated by
numerical integration of the pressure distribution over the wing surface, as
obtained by the CFD analysis.

Lee et al. [48, 51] presented the application of the HAPMOEA (Hierarchi-
cal Asynchronous Parallel Multi-Objective Evolutionary Algorithm) [31] to
the robust design optimization of an ONERA M6 wing shape. The optimiza-
tion problem is solved considering uncertainties in the design environment,
related to the flow Mach number. The Taguchi method is employed to trans-
form the problem into one with two objectives: (i) minimization of the mean
value of an objective function with respect to variability of the operating
conditions, and (ii) minimization of the variance of the objective function
of each solution candidate, with respect to its mean value. HAPMOEA is
based on evolution strategies, incorporating the concept of the Covariance
Matrix Adaptation (CMA). It also incorporates a Distance Dependent Muta-
tion (DDM) operator, and a hierarchical set of CFD models (varying the grid
resolution of the solver) and populations; small populations are evolved using
fine mesh CFD solutions (exploitation of solutions) while large populations
are evolved with coarse mesh CFD solutions (exploration of solutions). Good
solutions from the coarse mesh populations are transferred to the fine mesh
populations. The use of a hierarchical set of CFD models can be seen as dif-
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ferent levels of fitness approximation; low-quality fitness approximations are
obtained by using coarse mesh grids at low computational cost, while high-
quality fitness approximations are obtained by using a fine mesh grid with its
associated higher computational cost.

Lee et al. [49, 50] made use of a generic framework for multidisciplinary
design and optimization [31] to explore the application of a robust MOEA-
based algorithm for improving the aerodynamic and radar cross section char-
acteristics of an UCAV (Unmanned Combat Aerial Vehicle). In both appli-
cations, two disciplines are considered, the first concerning the aerodynamic
efficiency and the second one dealing with the visual and radar signature of
an UCAV airplane. The evolutionary Algorithm employed corresponds to the
HAPMOEA indicated above. In this case, the minimization of three objective
functions is considered: (i) inverse of the lift/drag ratio at ingress condition,
(ii) inverse of the lift/drag ratio at cruise condition, and (iii) frontal area.
The problem has, approximately, 100 decision variables, and the first two ob-
jective functions are evaluated using a potential flow solver (FLO22) coupled
to FRICTION code for obtaining the viscous drag. The use of these last two
codes approximates the Navier-Stokes flow solution, considerably reducing the
computational cost. The evolutionary system evaluates a total of 1600 solu-
tion candidates from which, a Pareto set containing 30 members is obtained.
From these nondominated solutions, a single compromise solution is obtained.
The authors reported a solution time of 200 hours on a single processor.

1.4.2 Use of RSM by polynomial approximation

Lian and Liou [52] used a multi-objective genetic algorithm coupled to a
second-order polynomial response surface model for the multiobjective op-
timization of a three-dimensional rotor blade. The optimization problem con-
sisted of the redesign of the NASA rotor 67 compressor blade, a transonic
axial-flow fan rotor which acts as the first stage of a two-stage compressor
fan. Two objectives are considered: (i) maximization of the stage pressure
raise, and (ii) minimization of the entropy generation. A constraint is im-
posed on the mass flow rate to have a difference less than 0.1% between
the new and the reference design. Blade geometry is constructed from air-
foil shapes defined at four span stations, with 32 total design variables. The
quadratic response surface model is constructed with 1,024 sampling design
candidates and using the IHS (Improved Hypercube Sampling) algorithm [3].
The authors noted that the evaluation of the 1,024 sampling individuals took
approximately 128 hours (5.3 days) using eight processors and a Reynolds-
Averaged Navier-Stokes CFD simulation. The optimization process for this
application is done for 200 generations with a population size of 320 individ-
uals, where objective functions are obtained from the approximation model.
Following the optimization process, 12 design solutions are selected from the
obtained response surface method Pareto front, and verified with the high fi-
delity CFD simulation. Objective functions differ slightly from those obtained



1 A Review of Techniques for Handling Expensive Functions in EMO 19

using the approximation model, and all selected solutions are better in both
objective functions than the reference design. A similar research work is pre-
sented by Lian and Liou [53, 54], but minimizing the blade weight instead of
entropy generation.

Goel et al. [29] used a quintic polynomial response surface method for
solving a liquid-rocket injector multiobjective optimization design problem.
Four competing objectives are considered: i) combustion length, ii) injector
face temperature, iii) injector wall temperature, and iv) injector tip tempera-
ture. In this research, the NSGA-IIa (referred to as archiving NSGA-II [22]),
and a local search strategy called “ǫ − constraint” are adopted to generate
a solution set that is used for approximating the Pareto optimal front by a
response surface method (RSM). Once the Pareto optimal solutions are ob-
tained, a clustering technique is used to select representative tradeoff design
solutions.

Pagano et al. [61] presented an application for three-dimensional aerody-
namic shape optimization, particularly the aerodynamic shape of an aircraft
propeller. The aim of this multiobjective optimization is to improve an actual
propeller performance. The authors considered two conflicting objectives: (i)
minimize noise emission level, and (ii) maximize aerodynamic propeller ef-
ficiency. For this industrial problem, several disciplines are considered and,
therefore the objective function evaluations consider: (a) aerodynamics, (b)
structural behavior, and (c) aeroacustics. For each of these, specialized com-
puter simulation codes are employed. Every calculation comprises an iterative
coupling procedure (fluids-structures-acoustics) among these simulation codes
in order to evaluate a more realistic operating condition. As a consequence,
the optimization process becomes computationally demanding. In order to
reduce the burden of this high computational cost, the authors made use
of design of experiment techniques (DOE), and a quadratic response surface
method (RSM) for efficiently exploring the design space. The geometry for
the propeller blade is parameterized using a total of 14 design variables. The
optimization problem contains constraints on the geometry design variables
and on propeller shaft power at two flight conditions; takeoff and cruise, re-
spectively. The evolutionary algorithm employed corresponds to the NSEA+
(Nondominated Sorting Evolutionary Algorithm) as implemented in the OP-
TIMUS commercial code which is adopted by the authors. The population
size for the evolutionary algorithm is set to 20 individuals, and the optimiza-
tion is run using the DOE and RSM methods. Afterwards, the Pareto front
solutions obtained are evaluated using the high fidelity simulation codes. The
authors indicated that a total of 340 designs were evaluated with using high
fidelity simulations. From them, approximately 20 Pareto solutions were ob-
tained, all of them being better than the reference design in the two objectives
considered.
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1.4.3 Use of Artificial Neural Networks

Rai [64] addressed the problem of multiobjective robust design of a turbine
blade airfoil, considering performance degradation due to manufacturing un-
certainties. For this problem, the objectives are: (i) minimize the variance
of the pressure distribution over the airfoil’s surface, and (ii) maximize the
wedge angle at the trailing edge. Both objectives must be met subject to
the constraint that the required flow turning angle is achieved. Objectives
are evaluated by means of a model that modifies the geometry of the airfoil
surface following a probability density function that is observed for manufac-
turing tolerances, and with a CFD simulation for obtaining the flow pressure
distribution. The blade geometry is defined by eight design parameters, but
only two of them are varied during the optimization process. The evolutionary
algorithm used in this research correspond to a multiobjective version of the
differential evolution algorithm previously implemented by the same author
and described in [63]. In order to cope with the associated calculation time of
the CFD simulations required to evaluate the objective functions, the authors
used a hybrid neural network comprised of 10 individual single–hidden–layer
feed forward networks. The optimization is run with a small population size
of 10 individuals and during 25 generations.

Arabnia and Ghaly [2] presented a strategy that makes use of multi-
objective evolutionary algorithms for aerodynamic shape optimization of tur-
bine stages in three-dimensional fluid flow. The NSGA [74] is used and coupled
to an artificial neural network (ANN) based response surface method (RSM)
in order to reduce the overall computational cost. The blade geometry, both
for rotor and stator blades, is based on the E/TU-3 turbine which is used as a
reference design to compare the optimization results to. The multi-objective
optimization consists of finding the best distribution of 2D blade sections in
the radial and circumferential directions. For this, a quadratic rational Bèzier
curve, with 5 control points, is used for each of the two blades. The objective
functions to be optimized include: (i) maximization of isentropic efficiency for
the stage, and (ii) minimization of the streamwise vorticity. Both objective
functions are evaluated using a 3D CFD flow simulation with constraints on:
(1) inlet total pressure and temperature, (2) exit pressure, (3) axial chord and
spacing, (4) inlet and exit flow angles, and (5) mass flow rate. The authors
noted that one CFD simulation took approximately 10 hours. Therefore they
resorted to an ANN based RSM. The ANN model with backpropagation, con-
taining a single hidden layer with 50 nodes, was trained and tested with 23
CFD simulations, sampling the design space using the latin hypercubes sam-
pling technique. The optimization process used the ANN model to estimate
the objective functions, and the constraints values as well. The population size
used in the NSGA was set to 50 individuals, and was run for 150 generations.
Finally, the Pareto solutions were evaluated with the CFD flow simulation.
From their results, the authors indicated that they obtained design solutions
which were better in comparison to the reference turbine design. Indeed, they
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attained a 1.2% improvement in stage efficiency, which is remarkable consid-
ering the small number of design variables used in the optimization process.

Alonso et al. [1] described a procedure for the multi-objective optimiza-
tion design of a generic supersonic aircraft. The competing design objectives
considered were two: i) maximization of aircraft range, and ii) minimization
of the perceived loudness of the ground boom signature. Constraints were set
for aircraft’s structural integrity, take-off field length and landing field length.
The objective functions were evaluated using CFD with various fidelity (ap-
proximation) levels. In this work, the authors made use of a neural network
(NN) based response surface method. The prototype for the NN is a single
hidden layer perceptron with sigmoid activation functions, providing a general
nonlinear model, which is useful for the high non-linearities present in the ob-
jective functions landscapes associated to this problem. The neural network
was trained with 300 sampling design solutions, obtained with low fidelity
simulations in order to reduce the computational cost. In their optimization
cycle, authors used high fidelity simulations only in promising regions of the
design space to do a local exploration. The problem comprised 10 design vari-
ables and the NSGA-II [22] was used as the search engine with a population
size of 64 and was run for 1000 generations using the surrogate-based objective
function.

1.4.4 Use of a Gaussian Process or Kriging

D’Angelo and Minisci [20] used an evolutionary algorithm based on MOPED
[19], which is a multi-objective optimization algorithm for continuous prob-
lems that uses the Parzen method to build a probabilistic representation of
Pareto solutions, with multivariate dependencies among variables. The au-
thors included three modifications to improve a previous implementation of
MOPED: (a) use of a kriging model by which solutions are evaluated without
resorting to costly computational simulations, (b) use of evolution control,
which is adopted to avoid the evolution to converge to a false minima; the
mechanism of this technique is to evaluate a subset of individuals or the whole
actual generation, with the real simulation model, for a continuous kriging
model update, and (c) hybridization of the algorithm; in this case, the selec-
tion and ranking of the individuals is different from the original algorithm
and some mechanisms borrowed from the NSGA-II algorithm are adopted as
well. In their optimization examples, subsonic airfoil shape optimization was
performed. The optimization problem considered two objective functions: (i)
drag force coefficient, and (ii) lift force coefficient difference with respect to
a reference value. Both objectives were minimized. The airfoil geometry is
parameterized using Bèzier curves both for its camber line and thickness dis-
tribution. In total, 5 design variables were used and constraints were imposed
on the objective functions extreme values. The authors indicated that the sub-
sonic airfoil shape optimization presented several difficulties. For example, the
true Pareto front was discontinuous and partially converged solutions from the
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aerodynamic simulation code introduced irregularities in the objective func-
tion. It is important to note that the approximation model used (kriging)
reduced the number of real evaluations to only 2300, considering that the
evolution system comprised a population size of 100 individuals and a total
of 150 generations.

Song and Keane [73] applied a multi-objective genetic algorithm for study-
ing the shape optimization of a civil aircraft engine nacelle. The primary goal
of the study was to identify the tradeoff between aerodynamic performance
and noise effects associated with various geometric features for the nacelle.
The geometry was parameterized using 40 parameters, 33 of which were con-
sidered as design variables. In their study, the authors used NSGA-II [22] as
the multi-objective search engine, while a commercial software was used for
the CFD evaluations of the three-dimensional flow. Due to the large size of
the design space to be explored, as well as the simulations being very time
consuming, a kriging surrogate model was adopted in order to keep to a min-
imum the number of designs being evaluated with the CFD tool. The kriging
model was continuosly updated, adding sampling solutions from the Pareto
front obtained using the kriging model and evaluated with the CFD tool.
In their research, the authors reported difficulties in obtaining a converged
Pareto front (there exist large discrepancies between the approximated and
the real Pareto fronts). They attributed this behavior to the large number of
variables in the design problem, and to the associated difficulties in obtain-
ing an accurate kriging model for these situations. In order to alleviate this
situation, they performed an ANOVA (Analysis of Variance) test to find the
variables that contributed the most to the objective function values. After this
test, they presented results with a reduced kriging surrogate model, employ-
ing only 7 variables. The authors argued that they obtained a similar design
with this reduced kriging model at a considerably lower computational effort.

Jeong et al. [38] investigated the improvement of the lateral dynamic char-
acteristics of a lifting-body type re-entry vehicle in transonic flight condition.
The problem was posed as a multi-objective optimization problem in which
two objectives were minimized: (i) derivative of the yawing moment, and (ii)
derivative of the rolling moment. Due to the geometry of the lifting body and
the operating flow condition of interest, namely high Mach number and strong
vortex formation, the evaluation of the objectives was done by means of a full
Navier-Stokes CFD simulation. Since the objectives were derivatives, multiple
flow solutions were required to determine their values in a discrete manner
through the use of finite differencing techniques. This considerably increased
the total computational time due to a large number of calls for the CFD code.
The optimization problem considered 4 design variables, and two solutions
were sought: the first one without constraints, and the second one constrain-
ing the L/D ratio for the lifting-body type reentry vehicle. the authors used
the EGOMOP (Efficient Global Optimization for Multi-Objective Problems)
algorithm developed by Jeong et al. [37]. Such algorithm was built upon the
ideas borrowed from the EGO and ParEGO algorithms from Jone et al. [41]
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and Knowles et al. [42], respectively. EGOMOP adopts the use of the kriging
model as a response surface model, for predicting the function value and its
uncertainty. For the exploration of the Pareto solutions, Fonseca’s MOGA [26]
was used. The initial kriging model was built by using the latin hypercube
sampling method for uniformly covering the design space, and the model was
continuosly updated.

Voutchkov et al. [81] used the NSGA-II [22] to perform a robust structural
design of a simplified FEM jet engine model. This application aimed at finding
the best jet engine structural configuration minimizing: the variation of re-
acting forces under a range of external loads, the mass for the engine and the
engine’s fuel consumption. These objectives are competing with each other
and, therefore, the authors used a multi-objective optimization technique to
explore the design space looking for trade-offs among them. The evaluation
of the structural response was done in parallel by means of finite element
simulations. The FEM model comprised a set of 22 groups of shell elements.
The thickness for 15 of these groups were considered as the design variables.
Computational time was reduced by using a kriging based response surface
method. The optimization problem was posed as a MOP, comprising four
objectives (all to be minimized): (i) standard deviation of the internal reac-
tion forces, (ii) mean value of the internal reaction forces, (iii) engine’s mass,
and (iv) mean value of the specific fuel consumption. The first two objectives
were computed over 200 external load variations. The authors noted that for
this class of problem which comprises huge combinations of loads and finite
element thicknesses, the multiobjective optimization problem would take on
the order of one year of computational time on a single 1 GHZ CPU. Also,
they indicated that by using the surrogate model and parallel processing, the
optimization time was reduced to about 26 hours in a cluster with 30 PEs
(processing elements).

Todoroki and Sekishiro [75, 76] proposed a new optimization method for
composite structural components. This approach is based on the use of a
multi-objective genetic algorithm coupled to a kriging model, in order to re-
duce the number of objective function evaluations, and to a FBB (Fractal
Branch and Bound) method for the stacking sequence optimization needed
in laminar composite structures. The problem consisted of two objectives:
(i) minimize the structural weight of a hat-stiffened wing panel, subject to
buckling load constraints, and (ii) maximize the probability of satisfying a
predefined buckling load. The variables for the problem are a set of mixed
real/discrete variables. Real variables correspond to the stiffener geometry
definition, while discrete variables correspond to the number of plies for the
composite panel. Constraints were imposed on the dimensions of the stiffener,
but they were automatically satisfied in the definition of the variables ranges.
The authors noted that the buckling load constraint demanded a large com-
putational cost, since it needed a FEM (Finite Element Analysis). For this
reason a kriging model was adopted and initialized with sampling points ob-
tained by the LHS (Latin Hypercube Sampling) technique. The optimization
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cycle consisted of two layers. The upper one driven by the multi-objective ge-
netic algorithm and the kriging model, in which the optimization of the struc-
tural dimensions was performed. In the lower layer, the stacking sequences
of the stiffener and panels were optimized by means of the FBB method.
The evolutionary algorithm was run for 300 generations with a population
of 100 individuals, and every 50 generations some nondominated solutions
were evaluated with the FEM model, in order to update the kriging model.
The authors obtained a Pareto Front that was discontinuous. Also, from the
results obtained, a comparison of different designs was made. The solution
obtained with the evolutionary algorithm was 3% heavier than a previous de-
sign obtained with a conventional method (deterministic), but obtained after
only 301 FEM analyses compared to the tens of thousands required by the
conventional method.

Choi et al. [11] used the NSGA-II [22] in the solution of a multidisciplinary
supersonic business jet design. In this case, the disciplines involved were (i)
aerodynamics and, (ii) aeroacoustics. The main objective of this particular
problem was to obtain a compromise design having good aerodynamic per-
formance while minimizing the intensity of the sonic boom signature at the
ground level. Multiobjective optimization was used to obtain tradeoffs among
the following objectives: (i) the aircraft drag coefficient, (ii) initial pressure
raise (boom overpressure), and (iii) ground perceived noise level. All the ob-
jectives were minimized. The geometry of the aircraft was defined by 17 design
variables, involving the modification of the wing platform, its position along
the fuselage, and some cross sections and camber for the fuselage. For evalu-
ating the objective functions, a high fidelity Euler solution was obtained with
a very fine grid close to the aircraft’s surface. In order to reduce the computa-
tional time required for the optimization cycle, a kriging model was employed.
Its initial definition was formed with a latin hypercube sampling of the de-
sign space with 232 initial solutions, including both feasible and infeasible
candidates. Following a kriging based optimization cycle, the Pareto optimal
solutions were evaluated with high fidelity simulation tools and used to up-
date the kriging model. In the example, constraints were imposed on some
geometry parameters, and on the aircrfat’s operational conditions. No spe-
cial constraint-handling mechanism was adopted other than discarding the
solution candidates that did not satisfy the constraints, which were mostly
geometrical. From their results, the authors noted that after the first design
cycle using the kriging based NSGA-II, 59 feasible solutions were obtained. It
is important to note that all the solutions obtained were better in both objec-
tives compared to a base design. Another important issue in this particular
application was that the kriging model did not perform as well as in other
applications. The reason for this behavior was the high nonlinear physics in-
volved in the two disciplines considered, which required, in consequence, more
design cycles in the optimization.

In related work, Chung and Alonso [12] and Chung et al. [13] solved the
same previously defined multidisciplinary problem, but using the µ-GA Algo-
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rithm, from Coello Coello and Toscano Pulido [15, 16]. This change was aimed
at reducing the total number of function evaluations during the optimization
process. This µ-GA algorithm used a population size of 3 to 6 individuals and
an external file to keep track of the nondominated solutions obtained so far.
In the study reported in [12], the design cycles were performed using a kriging
model. Two design cycles were executed, each one consisting of 150 solution
candidates using the latin hypercube sampling technique applied around a
base design in the first cycle. For the second cycle, the sampling was applied
around the best solution obtained in the previous cycle. The authors reported
that they obtained a very promising Pareto front estimation with only 300
functions evaluations. In the second study, reported in [13], the authors pro-
posed an tested the GEMOGA (Gradient Enhanced Multiobjective Genetic
Algorithm). The basic idea of this algorithm is to enhance the Pareto solu-
tions with a gradient based search. One important feature of the algorithm is
that gradient information is obtained from the kriging model. With this, the
computational cost is not considerably increased.

Kumano et al. [44] used Fonseca’s MOGA [26] for the multidisciplinary
design optimization of wing shape for a small jet aircraft. In this study, four
objectives were considered: (i) drag at the cruise condition, (ii) drag divergence
between cruising and off-design condition, (iii) pitching moment at the cruising
condition, and (iv) structural weight of the main wing. All these objectives
were minimized. In this study, the optimization process was also performed
by means of a kriging model, and such model was continuosly updated after
a certain prescribed number of iterations (defined by the user), adding new
nondominated points obtained from the optimization steps.

1.4.5 Use of Clustering

Langer et al. [47] applied an integrated approach using CAD (Computer Aided
Design) modeling with a MOEA for structural shape and topology optimiza-
tion problems. The application presented in this research, dealt with the struc-
tural optimization of a typical instrument panel of a satellite, and considered
two objectives: (i) minimize the instrument panel mass, and (ii) maximize the
first eigenfrecuency. The problem contained a mixed continuous/discrete set
of variables. 17 design variables were used, from which 3 were discrete, which
consider the number of stringers to use in the panel, as well as the plate
and stringer materials. The authors solved the optimization problem for three
shape and topology optimization cases: (a) a panel without instruments, (b)
a panel with instruments at fixed positions, and (c) a panel with instrumen-
tal placing. They made use of polynomial based response surface methods in
order to reduce the computational cost. Multiple local approximation models
were constructed using a clustering technique. In all the examples included,
the population size was set to 200 and was evolved for 20 generations. The
evaluation of the objective functions comprised four load cases: (a) quasi-
static acceleration, (b) modal analysis, (c) sinusoidal vibration loads, and (d)
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‘pseudo temperature’ load. This latter load case, constrained the positioning
of the instruments on the panel, since it imposed a limiting operating tem-
perature for a specific instrument. The first three load cases were evaluated
in parallel using FEM (Finite Element Method) simulations on a cluster of 32
workstations.

1.4.6 Use of Radial Basis Functions

Cinnella et al. [14] presented the airfoil shape optimization for transonic flows
of BZT (Bethe-Zel’dovich-Thompson) fluids, by using a multi-objective ge-
netic algorithm. This application explored the design of airfoil shapes in tur-
bine cascades which could exploit the benefits of BZT transonic flows past
airfoils. In the application, the authors proposed two optimization problems
which aimed at finding optimal airfoil geometries both for (i) non–lifting air-
foils, and (ii) lifting airfoils. In both cases GA-Based approaches were used
as search engines. In the second case, the optimization problem considered
two design objectives: (i) maximize lift at BZT subcritical conditions, and
(ii) Minimize wave drag while maximizing lift for supercritical BZT flow con-
ditions. Therefore, a bi-objective problem was solved, and the evolutionary
algorithm helped the designers to find trade-off solutions between these two
design points. The multi-objective genetic algorithm used in the second case
was the NSGA [74]. In previous related work [18], a population size of 36 and
24 generations were used (totaling 864 objective function evaluations obtained
from CFD), based on the constraint that the whole CFD calculation time had
to be kept inferior to one week (the evaluation time for each individual varied
from 5 to 10 min in a PC equipped with a Pentium Processor). In order to
reduce the computational cost, the authors included an ANN (Artificial Neu-
ral Network) based on radial basis functions, formed by an input layer, an
intermediate layer, and an output layer. The weights of the linear combina-
tions were determined through a training procedure. The number of neurons
involved was taken as the number of individuals in the training set. The first
training set was formed with all the solutions obtained from the first two
generations. Afterwards, the objective functions were approximated with the
ANN-RBF model, and the training set was updated by adding a 30% of “ex-
actly evalauted” individuals per generation. With this technique the authors
obtained similar design solutions with approximately 60% less computational
cost.

Kampolis and Giannakoglou [7] solved the inverse design of an isolated
airfoil at two operating conditions. For this design problem, two reference
airfoil and operating conditions were defined (these solutions could be seen
as the extreme portions of the Pareto front), and a MOEA was used to find
the tradeoff solutions between them. The MOEA adopted was SPEA-2 [85].
In their approach, the authors proposed the use of a radial basis function
meta-model.
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1.5 Conclusions and Future Research Paths

We have described several techniques which have been coupled to MOEAs,
aiming to reduce the computational cost of evaluating the objective functions
of a multi-objective optimization problem. Additionally, some selected real-
world applications of such techniques were also presented as case studies in
which these hybrid schemes led to substantial reductions in the computational
cost. The main aim of this review was to provide a general overview of this
area, which we believe that may be of interest both for MOEA researchers who
may be looking for new algorithmic design challenges, and for practitioners,
who may benefit from combining MOEAs with surrogate methods or any other
approximation techniques that they normally use to reduce the computational
cost of their simulations.

From the application examples reviewed here, we observed that the most
preferred methods seem to be problem approximation, kriging and polynomial
interpolation, followed by the use of neural networks and radial basis functions.
Our study of the small sample of real-world applications presented here, also
led us to outline some of the future research paths that seem promising within
this area:

• Model selection guidelines: Since the high computational cost involved
in applications such as those described here preclude us from any exhaus-
tive experimentation, the existence of guidelines that allow us to identify
which sort of method could be a good choice for a given problem would
be of great help. To the authors’ best knowledge no guidelines of this sort
have even been reported in the specialized literature.

• Hybridization: Approximation models can be used not only to replace
the objective function evaluations, but also to estimate first-order infor-
mation (e.g., gradient information). This could lead to the use of hybrids
of MOEAs with gradient-based methods. An example of this type of ap-
proach is presented in Chung et al. [13], where solutions are improved by
the use of gradient information obtained from a kriging model. This sort
of hybridization scheme is, however, relatively scarce in the literature until
now.

• Use of multiple approximation models: Most authors report the use
of a single approximation model. However, it may be worth exploring the
combination of several of them for exploiting either their global or their
local nature. This idea has been explored in the past, for example, by Mack
et al. [55], by using a combination of polynomial respose surface methods
and radial basis functions, for performing global sensitivity analysis and
shape optimization of bluff bodies. Also, Glaz et al. [28] adopted three
approximation models, namely polynomial, kriging, and radial basis func-
tions. This combined approach, adopted a weighted estimation from the
different models, which was used to reduce the vibration for a helicopter
rotor blade. To the authors’ best knowledge, no similar combination of
approaches has ever been reported when using MOEAs.
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• Automatic Switching: Considering that every approximation model has
particular properties in terms of global or local accuracy, and that the
selection of the “best” approximation method to use for a particular ap-
plication can also be considered a difficult task, one promising research
area is to develop mechanisms allowing to automatically switch from one
approximation method to a different one, as the optimization process is
being executed. For example, a global approximation method (i.e., coarse-
grained) could be used for exploration of the design space, while a more
locally accurate method (i.e., fine-grained) might be used for solution ex-
ploitation.

• Sampling techniques: The accuracy of the approximation highly de-
pends on the sampling and updating technique used. In most cases, the
initial sampling is defined by a latin hypercube sampling, aiming at cov-
ering as much as possible the design space. This can be considered as
a general technique. Another possibility is to use application-dependent
sampling techniques, where the initial sampling design points are selected
on the basis of reference or similar solutions. One example of this sort of
situation is reported by Chung et al. [13] and by Chung and Alonso [12],
where the initial approximation models are built around a reference design
in decision variable space.
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