
Many-objective Problems: Challenges

and Methods
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Abstract

This chapter presents a short review of the state-of-the-art of the ef-
forts for understanding and solving problems with a large number of ob-
jectives (usually known as Many-objective optimization problems, MOPs).
The first part of the chapter presents the current studies aimed at discover-
ing the sources that make a Multiobjective Optimization Problem (MOP)
harder when more objectives are added, degrading in this way, the perfor-
mance of a Multiobjective Evolutionary Algorithm (MOEA). Next, some
of the most relevant techniques designed to deal with Many-objective Op-
timization Problems (MOPs) are presented and categorized.

1 Introduction

Since the first implementation of a Multiobjective Evolutionary Algorithm
(MOEA) in the mid 1980s [65], a wide variety of new MOEAs have been pro-
posed, gradually improving in both their effectiveness and efficiency to solve
MOPs [11]. However, most of these algorithms have been evaluated and applied
to problems with only two or three objectives, in spite of the fact that many
real-world problems have more than three objectives [32, 39, 72, 70].

Recent experimental [37, 76, 59] and analytical [74, 46] studies have shown
that MOEAs based on Pareto optimality [58] scale poorly in MOPs with a high
number of objectives (4 or more). These MOPs are usually known in the commu-
nity as Many-objective Optimization Problems (MOPs). Although those scala-
bility issues seems to affect mainly to Pareto-based MOEAs, as we will see later in
this chapter, optimization problems with a large number of objectives introduce
some difficulties common to any other multi-objective optimizer.

The goal of this chapter is presenting a general view of the difficulties posed
by many-objective problems for Pareto-based MOEAs. Specifically, we present
a review of the potential sources of difficulty currently found in the specialized
literature. Likewise, we present a brief review of the current proposals to deal
with these sources of difficulty. These proposals are classified into five classes.
Among the most common approaches to deal with MOPs we can find the use
of preference relations to further rank nondominated solutions, the removal
of redundant objectives during or after the search, and the incorporation of
preference information. Finally, at the end of the chapter some future research
paths are outlined.
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2 Basic Concepts and Notation

In this section, we will introduce the concepts and notation that will be used
throughout the rest of the paper. Since some of these proposals are based
on conflict information among the objectives, some definitions of conflict are
provided also.

2.1 Multi-objective Optimization Problems

Definition 1 (Multi-objective optimization problem). A Multiobjective Opti-
mization Problem (MOP) is defined as:

Minimize f(x) = [f1(x), f2(x), . . . , fk(x)]T ,
subject to x ∈ X .

(1)

The vector x ∈ Rn is formed by n decision variables representing the quanti-
ties for which values are to be chosen in the optimization problem. The feasible
set X ⊆ Rn is implicitly determined by a set of equality and inequality con-
straints. The vector function f : X → Rk is composed by k ≥ 2 scalar objective
functions fi : X → R (i = 1, . . . , k). In multi-objective optimization, the sets
Rn and Rk are known as decision variable space and objective function space,
respectively. The image of X under the function f is a subset of the objective
function space denoted by Z = f(X ) and referred to as the feasible set in the
objective function space.

In order to define precisely the multi-objective optimization problem stated
in Definition 1 we have to establish the meaning of minimization in Rk. That
is to say, we need to define how vectors z = f(x) ∈ Rk have to be compared for
different solutions x ∈ Rn. In single-objective optimization the relation “less
than or equal” (≤) is used to compare the scalar objective values. By using
this relation there may be many different optimal solutions x ∈ X , but only
one optimal value fmin = min{f(x) |x ∈ X} since the relation ≤ induces a
total order in R (i.e., every pair of solutions is comparable, and thus, we can
sort solutions from the best to the worst one). In contrast, in multi-objective
optimization problems, there is no canonical order on Rk, and thus, we need
weaker definitions of order to compare vectors in Rk.

In multi-objective optimization, the Pareto dominance relation is usually
adopted. This relation was originally proposed by Fracis Ysidro Edgeworth in
1881 [23], but generalized by the French-Italian economist Vilfredo Pareto in
1896 [58].

Definition 2 (Pareto dominance relation). We say that a vector z1 dominates
vector z2, denoted by z1 ≺ z2, if and only if:

∀i ∈ {1, . . . , k} : z1
i ≤ z2

i (2)

and
∃i ∈ {1, . . . , k} : z1

i < z2
i . (3)

If z1 = z2 or z1
i > z2

i for some i, then we say that z1 does not dominate z2

(denoted by z1 ⊀ z2). Thus, to solve a MOP we have to find those solutions
x ∈ X whose images, z = f(x), are not dominated by any other vector in the
feasible space. It is said that two vectors, z1 and z2, are mutually nondominated
vectors if z1 ⊀ z2 and z2 ⊀ z1.
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Definition 3 (Pareto optimality). A solution x∗ ∈ X is Pareto optimal if there
does not exist another solution x ∈ X such that f(x) ≺ f(x∗).

Definition 4 (Pareto optimal set). The Pareto optimal set, Popt, is defined as:

Popt = {x ∈ X |@y ∈ X : f(y) ≺ f(x)}. (4)

Definition 5 (Pareto front). For a Pareto optimal set, Popt, the Pareto front,
PFopt, is defined as:

PFopt = {z = (f1(x), . . . , fk(x)) | x ∈ Popt}. (5)

In decision variable space, these vectors are referred to as decision vectors
of the Pareto optimal set, while in objective space, they are called objective
vectors of the Pareto optimal set. In practice, the goal of MOEAs is finding the
“best” approximation set of the Pareto optimal front. An approximation set is
a finite subset of Z composed of mutually nondominated vectors and is denoted
by PFapprox. Currently, it is well accepted that the best approximation set is
determined by the closeness to the Pareto optimal front, and the spread over
the entire Pareto optimal front [20, 83, 11].

A common approach to deal with multi-objective optimization problems is
formulating it as a single optimization problem by means of a kind of function
called scalarizing function.

Definition 6 (Scalarizing function). A scalarizing function is a parameterized
function s : Rk → R. Thus, the multi-objective problem is transformed into the
following scalar problem:

Minimize s(z),
subject to z ∈ Z.

(6)

A common scalarizing function is based on the Chebyshev distance (L∞
metric) (see e.g., [55, 24]).

Definition 7 (Weighted Chebyshev scalarizing function). The weighted Cheby-
shev scalarizing function (or Chebyshev function for short) is defined by

s∞(z, zref) = max
i=1,...,k

{λi(zi − zref
i )}, (7)

where zref is a reference point, λ = [λ1, . . . , λk] is a vector of weights such that
∀i λi ≥ 0 and, for at least one i, λi > 0.

2.2 Notions of Conflict Among Objectives

One important condition of a multi-objective problem is the conflict among their
objectives. If the objectives have no conflict among them, then we could solve
the problem optimizing each objective function independently. Nonetheless, it
has been found that in some problems, although a conflict exists elsewhere, some
objectives behave in a non-conflicting manner. Although different authors have
proposed definitions for conflict (non-conflict) among objectives (see, e.g. [9, 60,
73, 7]), in this chapter we only present conflict (non-conflict) definitions relevant
to this document.

3



Definition 8. Let SX be a subset of X , then, according to Carlsson and Fullér,
two objectives can be related in the following ways (assuming minimization):

1. fi is in conflict with fj on SX if fi(x1) ≤ fi(x2) implies fj(x1) ≥ fj(x2)
for all x1,x2 ∈ SX .

2. fi supports fj on SX if fi(x1) ≥ fi(x2) implies fj(x1) ≥ fj(x2) for all
x1,x2 ∈ SX .

3. fi and fj are independent on SX , otherwise.

In the cases 2 and 3, those objectives are also called non-conflicting objec-
tives. When SX = X , it is said that fi is in conflict with (or supports) fj
globally. However, in many MOPs the relation among the objectives changes
when comparing different subsets of X . Figure 1 shows an example in which
two functions are in conflict in some subsets of X , while in others, they support
each other.

f1(x)

f2(x)

x

Conflict Support

Figure 1: Two objective functions can be in conflict in some subsets of the
feasible space, and can be supportive in other subsets.

Non-conflicting objectives are also known as nonessential or redundant ob-
jectives because, as pointed out by Gal and Hanne [33], when a non-conflicting
objective is removed from the original set of objectives, the resulting Pareto front
does not change. Based on the notion of nonessential objectives, Brockhoff and
Zitzler [7] proposed a conflict definition that verifies whether the Pareto domi-
nance relation changes when some objectives are removed, or not. The Pareto
dominance relation induced by a given set of objectives, F ⊆ {f1, f2, . . . , fk}, is
defined as �F= {(x,y) |x,y ∈ X and ∀fi ∈ F : fi(x) ≤ fi(y)}.

Definition 9. Let F1, F2 ⊆ Φ be two subsets of objectives, where Φ is the entire
set of objectives Φ = {f1, f2, . . . , fk}. Then, we call F1 non-conflicting with F2

iff (�F1⊆�F2) ∧ (�F2⊆�F1).

In other words, F1 and F2 are called non-conflicting if and only if the corre-
sponding relations �F1 and �F2 are identical, but not necessarily F1 = F2. The
non-conflicting definition is useful since if F and F ′ ⊂ F are non-conflicting,
then we can replace F with F ′ and obtain the same Pareto optimal front. The
objectives in F ′ are then called essential objectives, whereas the objectives in
F \ F ′ are known as nonessential or redundant objectives.
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In practice, however, it is useful to allow a certain extent of change on the
Pareto front when an objective is omitted in order to define degrees of non-
conflict among objectives. In this direction, Brockhoff and Zitzler proposed
to use the additive ε-dominance indicator to measure the change between two
dominance relations. The ε-dominance relation induced by a set F is defined
by �εF= {(x,y) |x,y ∈ X and ∀fi ∈ F : fi(x)− ε ≤ fi(y)}.

Definition 10. Let F1, F2 ⊆ F be two subsets of objectives, where F is the entire
set of objectives. Then, we call F1 δ-non-conflicting with F2 iff (�F1⊆�δF2

) ∧
(�F2⊆�δF1

).

In this case, if an objective subset F ′ ⊂ F is δ-non-conflicting with F , then
we can omit all objectives in F \F ′ without causing a larger error than δ in the
omitted objectives.

3 Sources of Difficulty to Solve Many-Objective
Optimization Problems

3.1 Deterioration of the Search Ability

A widespread explanation for this problem is based on the fact that the pro-
portion of nondominated solutions (i.e., equally good solutions according to
Pareto dominance) in a population increases rapidly with the number of objec-
tives [26, 78]. In order to illustrate this condition, Figure 2 shows the nondom-
inated regions with respect to a given solution z.

Figure 2: Example of the increasing proportion of nondominated solutions:
for 2 objectives 1/2 of the search space is composed of nondominated regions,
whereas for 3 objectives 3/4 of the search space consists of nondominated re-
gions. In general, for k objectives, (2k − 2)/2k of the objective space comprises
nondominated regions.

In general, as presented by Farina and Amato [26], the expression to compute
the proportion, e, of mutually nondominated regions and the whole search space
is given by e = (2k−2)/2k, where k is the number of objectives. This proportion
goes to infinity when the number of objectives approaches infinity.
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Therefore, since in MOPs with a high number of objectives almost all solu-
tions are equivalent, many researchers have suggested [26, 61, 19, 46, 47, 42]
that in such problems, the selection of the appropriate individuals for steering
the population towards the Pareto optimal set gets more difficult. As a result,
a MOP gets harder to solve as more objectives are added.

However, as pointed out by Schütze et al. [66], the increase of the num-
ber of nondominated individuals is not a sufficient condition for increase of
the hardness of a problem. Specifically, they conclude that in a class of uni-
modal problems, their difficulty is marginally increased when more objectives
are added despite the exponential growth of the proportion of nondominated
solutions with k. Nonetheless, they suggest that the hardness increase observed
in experimental studies might be the result of the addition of local optima to
the problem as more objectives are aggregated.

Therefore, although the rise of the proportion of incomparable solutions
does not significantly determine the difficulty of a MOP per se, it seems that
the addition of objectives aggravates some particular difficulties observed in
the context of 2 or 3 objectives. This is the case of the so called Dominance
Resistant Solutions (DRSs) or outliers [40, 35, 20, 36]. DRSs are solutions with
a poor value in at least one of the objectives, but with near optimal values in
the others. In other words, those are nondominated solutions, but far from the
Pareto optimal front. Figure 3 shows an example of DRSs in the well-known
test problem DTLZ2 [20]. These kind of solutions represent potential difficulty
since, as many researchers have pointed out [40, 35, 20, 36], the number of DRSs
grows as the number of objectives is increased.
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Figure 3: Illustration of some Dominance Resistant Solutions (DRSs) in prob-
lem DTLZ2: although solutions marked as DRSs seem to be dominated by some
solution in the lower part of the circled solutions, they achieve marginal improve-
ments in objectives f1 or f2, and therefore, they are nondominated solutions,
but having poor values in objective f3, though.
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3.2 Effectiveness of Crossover Operators

In a combinatorial class of MOPs, Sato et al. [62] performed a series of experi-
ments that revealed that solutions in the variable space become more distant1

from each other as more objectives are added to the problem. In this scenario,
the recombination of two parents close to the Pareto front might generate an
offspring far from the Pareto front since a conventional crossover operator might
be too disruptive.

3.3 Dimensionality of the Pareto front

Due to the ‘curse of dimensionality’, the number of points required to represent
accurately a Pareto front increases exponentially with the number of objectives.
Formally, the number of points necessary to represent a Pareto front with k
objectives and resolution r is bounded by O(krk−1) (e.g., see [69]). This ex-
pression is derived assuming that each solution is contained inside a hypercube
to preserve an even distribution. As can be seen in Figure 4, the number of
hypercubes determines the resolution of the Pareto front, i.e., r is the number
of hypercubes per dimension. An example of the shortest connected and non-
degenerated 2-objective Pareto front (a straight line) is shown on the left side
of Figure 4. The figure also shows a bound for the largest Pareto front for 2 and
3 objectives. In general, the bounding Pareto front is formed by k hyperplanes
containing rk−1 hypercubes each (see, for example, the 3-objective case shown
on the right side of Figure 4). This way, the maximum number of points of a
2-objective Pareto front with resolution r = 6 is 2 · 62−1 = 12, whereas for 3
objectives and r = 5 is 3 · 53−1 = 75. Table 1 shows the maximum number of
points required to represent a Pareto front for different numbers of objectives
using a resolution of r = 25, which is a conservative number considering that a
resolution of r = 50 is usually used in several studies to obtain 100 solutions in
2-objective problems. Notwithstanding, for 5 objectives, we would require ap-
proximately 2 million points to represent a Pareto front with resolution r = 25.
There are other formulations leading to a similar exponential expression with
respect to k. For example, using the concept of ε-dominance, Laumanns et
al. [49] and Schütze et al. [68] give a similar exponential bound for the size of
an approximation of a Pareto front.

Figure 4: Number of points required to represent a Pareto front with a resolution
r, i.e., the number of hypercubes per dimension.

1In terms of Hamming distance between binary encoded solutions.
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k Points
2 50
4 62 500
5 1 953 125
7 1 708 984 375

Table 1: Bound for the number of points required to represent a Pareto front
with resolution r = 25.

This poses some difficulties to solve MOPs. The most important one is the
number of function evaluations required to deal with a large number of solutions.
This is a serious issue since plenty of real-world problems (e.g., [1, 6, 10, 44,
48, 71, 79]), due to time constraint reasons, have a small budget of function
evaluations. In fact, there is an important research effort towards designing
MOEAs that generate good approximations of the Pareto front using less than
1000 function evaluations (e.g., [25, 45, 34, 80]). Other challenges are related to
the design of both data structures to efficiently manage that number of points,
and density estimators to achieve an even distribution of the solutions along
the Pareto front. Unfortunately, even if we could efficiently obtain an accurate
approximation of the Pareto front, the selection of one solution among such a
huge number of solutions would be a very difficult task for a decision maker
(DM).

3.4 Visualization of the Pareto front

Clearly, with more than three objectives it is not possible to plot the Pareto
front as usual. This is a serious problem since visualization plays a key role for
a proper decision making process. Parallel coordinates [77] and self-organizing
maps [57] are some of the methods proposed to ease decision making in high
dimensional problems. The reader is referred to Chapters 8 and 9 of [5] for a
good review of various visualization techniques. Nevertheless, more research in
the many-objective optimization context is still required.

4 Current Approaches to Deal with Many-Ob-
jective Problems

Besides studies about the scalability of Pareto-based MOEAs, in the current
literature we can find several proposals to overcome those scalability issues.
The most common approaches can be categorized as follows:

1. Adopt or propose a preference relation that yields a finer solution ordering
than the one yielded by Pareto optimality. In other words, these relations
are able to further rank nondominated solutions. In addition, most of these
preference relations share the property that their optimal set of solutions
is a subset of the Pareto optimal set. Therefore, these techniques can also
be used as a remedy to cope with the dimensionality of Pareto fronts in
Many-objective Optimization Problems (MOPs).

2. Reduce the number of objectives of the problem during the search pro-
cess or, a posteriori, once an approximation of the Pareto front has been
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found [19, 7, 52]. The main goal of this kind of reduction techniques is
to identify the non-conflicting objectives (at least to a certain extent) in
order to discard them.

3. Scalarizing decomposition of a MOP. As described in the previous section,
the degradation observed on MOEAs when dealing with many-objective
problems is mainly attributed to the inefficiency of the Pareto relation in
high-dimensional spaces. Therefore, methods that do not rely on Pareto
dominance, like scalarizing decomposition methods, have been suggested
as an alternative to deal with many-objective problems. The underlying
idea of this type of methods is performing a number of single-objective
searches along different search vectors evenly distributed over the objective
space. Each single-objective search is formulated by means of a scalarizing
function. This way, the approximation of the Pareto front is composed by
the optima found by every single-objective search.

4. Incorporation of preference information interactively throughout the course
of the optimization process. By incorporating preferences we can cope
with MOPs in two aspects. First, the search can be focused on the de-
cision maker’s region of interest, avoiding this way, the evaluation of a
huge number of solutions. Second, the preference relations usually used in
interactive methods help to deal with a large number of objectives since
they are able to rank incomparable nondominated solutions.

5. Use of specialized recombination operators or strategies to control the mat-
ing among parents. The first approach tries to diminish the disruptive
effect of recombination operators by regulating the proportion in which
the traits of each parent contribute to create the offspring. The second
approach restricts which individuals can be paired for recombination, for
instance using the similarity as mating criteria or the location in the ob-
jective space.

In the remainder of this section some of the most relevant approaches to deal
with many-objective problems are presented.

4.1 Preference Relations to Deal with Many-Objective
Problems

Bentley and Wakefield [3] proposed the Average Ranking (AR) and the Maxi-
mum Ranking (MR) preference relations. The AR relation computes, for each
solution, a different rank considering each objective independently. The final
rank is obtained by summing up the ranks on each objective. In turn, the MR

relation takes the best rank as the global rank. Clearly, this method favors ex-
treme solutions, i.e., solutions with high performance in some of the objectives,
although with poor overall performance. Although it is less evident, the average
ranking relation also favors extreme solutions.

In the favour relation, proposed by Drechsler et al. [22], a vector z1 is pre-
ferred to vector z2 with respect to the favour relation (z1 ≺favour z2), if and
only if:

]{i : z1
i < z2

i , 1 ≤ i ≤ k} > ]{j : z1
j > z2

j , 1 ≤ j ≤ k}.
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In other words, the favoured vector is that which outperforms the other one in
more objectives. Unfortunately, this relation emphasizes extreme solutions.

The Preference Order Relation (POR), developed by di Pierro [21], is based
on the concept of efficiency of order proposed by Das [13], which states that:
A vector z∗ is efficient of order q if it is not dominated by any other vector in
all the

(
k
q

)
objective subsets of size q.

Based on that definition, it is said that vector z1 is preferred to vector z2

(z1 ≺POR z2), if and only if, for some integer q and ∀I ⊆ {1, 2, . . . , k} such that
|I| = q:

z1
i ≤ z2

i ∀i ∈ I, and ∃i ∈ I : z1
i < z2

i .

In other words, if z1 and z2 do not dominate each other, then the solutions are
compared in a lower-dimensional space in order to break the tie.

Sato, Aguirre and Tanaka [63] proposed a preference relation to control the
dominance area of solutions. This method controls the degree of expansion or
contraction of the dominance area by modifying each objective vector z with
the expression:

z′i =
r · sin(ωi + si · π)

sin(si · π)
∀ i = 1, 2, . . . , k,

where s ∈ Rk is a user-defined vector, r = ||z||, and ωi is the declination angle
between z and the axis of fi.

If the user adopts values si < 0.5 (∀ i = 1, 2, . . . , k), the dominance area is
expanded and produces a more fine-grained ranking of solutions which would
strengthen the selection process. Thus, we can say that vector z is preferred to
vector y with respect to the expansion relation (z ≺expansion y), if and only if
z′ ≺ y′.

Farina and Amato [27] proposed an alternative relation which takes into ac-
count the number of improved objectives between two solutions. This relation
employs three quantities, nb(x1,x2), ne(x1,x2) and nw(x1,x2), which denote
the objectives where x1 is better, equal or worse than x2, respectively. Us-
ing these quantities the concepts of (1 − k)-Dominance and k-Optimality are
defined. A solution x1 (1− k)-dominates x2 if and only if{

ne(x1,x2) < M
nb(x1,x2) ≥ M−ne

k+1

In a similar way to Pareto optimality, a solution x∗ is a k-optimum if and
only if there is no x in the decision variable space such that x k-dominates x∗.

An important remark that we have to take in mind with respect to a new
preference relation is that in spite of the fact that some preference relations
contribute to converge faster to the Pareto front than the Pareto dominance
relation, they also stress the generation of solutions far from the knee region
(usually the middle region of the Pareto front). This condition limits the ap-
plicability of these relations since, in the general case, it is commonly assumed
that the DM prefers solutions from the knee region [12, 54, 4, 67].

4.2 Objective Reduction Approaches

Deb and Saxena [19] proposed a method for reducing the number of objectives
based on principal component analysis. The main assumption is that if two
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objectives are negatively correlated (taking the generated Pareto front as the
data set), then these objectives are in conflict with each other. To determine the
most conflicting objectives (i.e., the most essential), the authors analyze in turn
the eigenvectors (i.e., the principal components) of the correlation matrix. That
is, by picking the most-negative and the most-positive elements from the first
eigenvector, we can identify the two most important conflicting objectives. To
aggregate more objectives to the set of essential objectives the remainder of the
eigenvectors are analyzed in a similar way until the cumulative contribution of
the eigenvalues exceeds a threshold cut (TC). This method is incorporated into
an iterative scheme which uses a multi-objective optimizer (the actual imple-
mentation uses the Nondominated Sorting Genetic Algorithm II (NSGA-II) [15])
to obtain a reduced objective set containing only the non-redundant objectives
according to the analysis of the eigenvectors. In this scheme, the evolutionary
multi-objective optimizer is first run and then, the correlation analysis is carried
out to obtain a reduced set of objectives. This process is repeated using the new
reduced set of objectives. The process stops when the current subset is equal
to the subset generated in the previous iteration.

Brockhoff and Zitzler [7] defined two kinds of objective reduction problems
and two corresponding algorithms to solve them. The problems proposed are
the following:

1. The δ-MOSS problem. Given a MOP, the δ-minimum objective subset
problem is defined as follows.

• Input: A Pareto front approximation of the MOP and a δ ∈ R.

• Task: Compute the minimum objective subset F ′ ⊆ F such that F ′

is δ-non-conflicting with F .

2. The K-EMOSS problem. Given a MOP, the problem of finding the
minimum objective subset of size K with minimum error is defined as
follows.

• Input: A Pareto front approximation of the MOP and a K ∈ N.

• Task: Compute an objective subset F ′ ⊆ F with size |F ′| ≤ K, such
that F ′ is δ-non-conflicting with F with the minimum possible δ.

Since both problems are NP-hard, the authors proposed both an exact and
a greedy algorithm for each of them. The exact algorithms for both problems
have time complexity O(m2k· 2k), where m is the size of the given nondominated
set and k is the number of objectives. On the other hand, the greedy algorithm
for the δ-MOSS problem has time complexity O(min{m2k3,m4k2}), while the
greedy algorithm for the K-EMOSS problem has time complexity O(m2k3).

A similar approach was proposed by López et al. [52]. They proposed two
different objective reduction algorithms:

1. An algorithm that finds a minimum subset of non-redundant objectives
with the minimum error possible.

2. An algorithm that finds a K-size subset of non-redundant objectives, yield-
ing the minimum error possible.
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Both algorithms are based on an unsupervised feature selection technique
proposed by Mitra et al. [56], in which the correlation coefficient is used to esti-
mate the conflict among objectives. Specifically, a negative correlation between
a pair of objectives means that one objective increases while the other decreases
and vice versa (see for example the functions in Fig. 1). On the other hand,
if the correlation is positive, then both objectives increase or decrease at the
same time. This way, we could interpret that the more negative the correlation
between two objectives, the more the conflict between them.

These two algorithms were designed to be used after an approximation of the
Pareto front has been found. From a general point of view, the removal of the
non-conflicting objectives can help to the problem designer or the decision maker
to gain knowledge about the relation and importance of the objectives according
to the conflict. With regard to the decision making process, the removal of the
non-conflicting objectives eases the visualization of the approximation of the
Pareto front. In cases with a moderate number of objectives (i.e., 4 to 7), the
reduced objective set might be visualized using traditional 3D plots.

However, an objective reduction technique can be also used in the course of
the search. In [53], for instance, the authors proposed the incorporation of an
objective reduction technique into a Pareto-based MOEA in order to cope with
many-objective problems during the search. One possible approach is gradually
reducing the number of objectives throughout different stages of the search until
a target objective subset size has been reached. In each reduction stage, an ob-
jective reduction method is applied on the current Pareto front approximation.
Towards the end of the search, the original objective set is used again to ap-
proximate the entire Pareto front. This kind of approach can be advantageous
for solving real-world problems with expensive objective functions since only a
small subset of the objective functions is evaluated. Additionally, the use of a
small set of objectives throughout the course of the search makes possible the
adoption of expensive ranking schemes (e.g., those based on the hypervolume
indicator) in problems with a high number of objectives (see e.g., [8]).

A further approach, presented in [50] consists in partitioning the objective
set into several subsets so that a different portion of the population focuses the
search on a different subspace. The partitioning of the set of objectives is based
on the analysis of the conflict information obtained from the current Pareto
front approximation.

4.3 Preference Incorporation Approaches

Like the alternative preference relations reviewed in Section 4.1, the integration
of DM’s preferences provides a finer rank of the solutions. However, unlike
preference relation approaches, in an interactive approach the region of interest
can be changed during the search according to the requirements of the decision
maker.

Among the earliest attempts to incorporate preferences in a MOEA, we can
find Fonseca and Fleming’s proposal [29, 31]. This proposal consisted of extend-
ing the ranking mechanism of Multiobjective Genetic Algorithm (MOGA) [30]
using the so-called preferability relation. This relation accommodates goal in-
formation (equivalent to a reference point in other methods) and priorities in a
single preference relation. The DM should define goal values and group objec-
tives according to its priority. Using the preferability relation two solutions are

12



first compared in terms of the group of objectives with the highest priority. If
the objectives of both solutions meet all their goal values or, contrarily, violate
some or all of their goal values in a similar way, the next priority objective group
is considered. This process continues until reaching the lowest priority group,
where solutions are compared using the Pareto dominance relation. By setting
particular goals and priorities the authors derived the following special cases:
the usual Pareto relation, lexicographic relation, constrained optimization, and
goal programming. One disadvantage of this relation is that it is affected by
the feasibility of the goal provided by the decision maker. If the given goal is
far away from the feasible region, then the solutions will be mainly compared
in terms of the objective priorities, reducing the relation to the lexicographic
relation. In addition, if two solutions either do or do not meet their goals, the
relation does not take into account the degree of under- or over-attainment.

Deb [14] proposed a technique to transform goal programming problems into
multi-objective optimization problems which are then solved using a MOEA. In
goal programming the DM has to assign goals that wishes to achieve for each
objective, and these values are incorporated into the problem as additional
constraints. The objective function then attempts to minimize the absolute
deviations from the goals to the objectives. Unfortunately, as the previous
method, this approach is sensitive to the feasibility of the goal values. If the
goal is contained in the feasible space, it could prevent the generation of a better
solution. On the other hand, if the goal is located far away from the feasible
space, the effect of the method is practically nonexistent.

More recently, Deb and Sundar [19] incorporated a reference point approach
into the NSGA-II [18]. They introduced a modification in the crowding distance
operator in order to select from the last nondominated front the solutions that
would take part of the new population. They used the Euclidean distance to
sort and rank the population accordingly (the solution closest to the reference
point receives the best rank). This method was designed to take into account a
set of reference points. The drawback of this scheme is that it only guarantees
weak Pareto optimality. That is to say, besides Pareto optimal solutions, the
method might generate some weakly Pareto optimal solutions, particularly in
MOPs with disconnected Pareto fronts. A similar approach was also proposed
by Deb and Kumar [17], in which the light beam search procedure [43] was
incorporated into the NSGA-II. Similar to the previous approach, they modified
the crowding operator to incorporate DM’s preferences. They used a weighted
achievement function to assign a crowding distance to each solution in each
front. Thus, the solution with the least distance will have the best crowding
rank. Like in the previous approach, this algorithm finds a subset of solutions
around the optimum of the achievement function adopting the usual outrank-
ing relation. A vector z1 outranks vector z2 if z1 is considered to be at least as
good as z2. In [43] three kinds of thresholds are defined to determine if one solu-
tion outranks another one, namely, indifference, preference, and veto threshold.
However, in [17] the veto threshold is the only one used. This relation depends
on the crowding comparison operator. In contrast, the new preference relation
presented in this work does not depend on external methods, and, therefore, it
can be used in every Pareto-based MOEA.

Recently, Thiele et al. [75] proposed a variant of the Indicator-Based Evolu-
tionary Algorithm (IBEA) [82], in which preference information is incorporated
by means of an achievement scalarization function. The basic idea is to divide
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the original indicator value (which is to be maximized) by the achievement value
(which is to be minimized). Thus, solutions with a smaller achievement value
will be preferred since the modified indicator value is larger. In a further paper,
the new IBEA of Thiele et al. was used in [28] in order to approximate the entire
Pareto front by defining several reference points.

A recent interactive optimization method was proposed by López et al. [51]
to deal with MOPs. This method is based on a Chebyshev achievement func-
tion. The basic idea of the Chebyshev preference relation is to combine the
Pareto dominance relation and the achievement function to compare solutions
in objective function space. The Chebyshev preference relation is defined as
follows.

Definition 11. A solution z1 is preferred to solution z2 with respect to the
Chebyshev relation (z1 ≺cheby z2), if and only if:

1. s∞(z1, zref) < s∞(z2, zref) ∧ {z1 /∈ R(zref , δ) ∨ z2 /∈ R(zref , δ)}, or,

2. z1 ≺ z2 ∧ {z1, z2 ∈ R(zref , δ)},

where R(zref , δ) = {z | s∞(z, zref) ≤ smin + δ} is the Region of Interest with
respect to the vector of aspiration levels zref .

As an illustration of the preference relation, consider solutions z1 and z2

presented in Figure 5. Since z2 /∈ R(zref , δ) and s∞(z1, zref) < s∞(z2, zref),
then z1 ≺cheby z2.

Figure 5: Nondominated solutions with respect to the Chebyshev relation.

5 Recombination Operators and Mating Restric-
tions

The idea of restricted mating is not new in the field of evolutionary optimization.
For instance, in 1989 Deb and Goldberg [16] suggested the use of restrictive
mating with respect to the phenotypic2 distance using some metric. A different

2i.e., using the decoded values of the variables
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approach consisted in distributing solutions on a logical topology. For example,
Baita et al. [2] placed solutions on a grid and restricted the area within which
each solution could mate. For more examples of restricted mating the reader is
referred to [11].

Recently, specific mating techniques to deal with many-objective problems
have been proposed. Sato et al. [64] describe a local recombination scheme that
recombines individuals if they have similar search directions in the objective
space. The search direction is defined by the polar coordinates of each solution,
i.e., its norm and declination angles to the axis associated with the first k − 1
objectives.

In order to control the disruptive effect of recombination, in [62] a crossover
operator for binary representation was proposed, namely the Controlling Crossed
Genes (CCG) operator. This technique was applied into the two point and uni-
form crossover operators. In two-point crossover, from the three binary segments
in which two parents are divided, the middle segment is exchanged between the
parents to produce two children. Thus, in the CCG operator for two-point
crossover, the length of the middle segment is regulated by a user parameter.
This way, as the middle segment gets shorter, the generated children become
more similar to each parent.

Regarding uniform crossover, the number of exchanged bits between parents
is regulated with the probability of writing a 1 or a 0 in the bit mask string that
determines which parent bit will be copied into the produced offspring.

6 Scalarization Methods

Most of the scalarization methods have in common the following mechanisms
(although they differ in the way in which they are implemented):

• A class of scalarizing function to evaluate solutions.

• A mechanism to generate a uniform distribution of search direction vec-
tors.

• A mechanism to obtain an overall ranking of the solutions derived from
the evaluation of each scalarizing function.

Hughes [38] proposed a method in which the weighted Chebyshev function
and the vector angle distance scaling are used as scalarizing functions. The
method to generate the search direction is formulated as the problem of max-
imizing the angle between each pair of neighboring search vectors. The fitness
of each solution in the current population is based on the best result obtained
over all the scalarizing function, i.e., the search direction in which the solution
performs better.

Another algorithm that has been recently tested in many-objective prob-
lems is the Multiobjective Evolutionary Algorithm Based on Decomposition
(MOEA/D) [81]. In [41], the performance of MOEA/D using either a weighted
sum function or a Chebyshev function was studied using several instances of a
knapsack problem. The results showed that the weighted sum function provided
better results than the Chebyshev function, while in nonconvex problems, the
Chebyshev function helped to achieve a better performance of MOEA/D.
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7 Conclusions and Research Paths

This chapter presented a short review of the current advances to cope with
optimization problems with a high number of objectives (MOPs) using MOEA.
We covered results aimed at discovering and studying the causes that make a
MOP more difficult as more objectives are aggregated. We also described and
classified some of the current techniques to deal with MOPs.

Regarding the sources of difficulty of many-objective optimization problems
we can realize that most of the initial works are based on experimental analysis,
and only a few studies are focused on investigating the nature of the problem
using theoretical considerations. When the interest on many-objective opti-
mization problems begun, some hypotheses about the causes of the poor perfor-
mance of MOEA on MOPs were suggested. Although some of them were consid-
ered highly probable and may turn out to be true, further investigation is still
needed to confirm or refute these hypotheses. This was the case of the propor-
tion of nondominated solutions, which was often taken as a sufficient condition
to increase the difficulty of a MOP. However, recent studies have shown that
there exists some problems, in which this proportion rises exponentially, while
the hardness of the problem only increases marginally. In this sense, future re-
search paths must be channeled to investigate other sources of difficulty. Some
promising areas of future research are, for example, the following:

• Since Dominance Resistant Solutions are not present in every MOP, a
characterization of the problems that promote the creation of DRSs is
required.

• Investigate if recombination operators in continuous spaces also represent
an issue as observed in discrete spaces.

Regarding the methods to solve MOPs, many proposals have been designed
to improve the search ability of MOEAs in high dimensional scenarios. However,
a few efforts are perceived for developing visualization methods specialized for
MOPs. Similarly, more proposals for coping with the dimensionality of the Pareto
front are needed. For instance, diversity mechanisms that are effective in large
spaces or data structures to efficiently manage a large number of solutions.
With respect to the assessment of a new MOEA in many-objective scenarios,
our recommendation is adopting a diverse set of MOPs, taking instances from
different families of test suites.
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