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Summary. This chapter describes the general multiobjective optimization concepts
that can and have been used to incorporate constraints of any type (linear, nonlinear,
equality and inequality) into the fitness function of a genetic algorithm used for
global optimization. Several approaches reported in the literature are also described
and four of them are compared using several test functions. The results obtained
are discussed and further ideas about how to devise new approaches are also briefly
analyzed.

1 Introduction

Evolutionary Algorithms (EAs) are heuristics that have been successfully ap-
plied in a wide set of areas [14, 30, 1, 4, 19, 6, 3, 32, 44, 43, 28], both in single-
and in multiobjective optimization. However, EAs lack a mechanism able to
bias efficiently the search towards the feasible region in constrained search
spaces. This has triggered a considerable amount of research and a wide va-
riety of approaches have been suggested in the last few years to incorporate
constraints into the fitness function of an evolutionary algorithm [8, 31].

The most common approach adopted to deal with constrained search
spaces is the use of penalty functions. When using a penalty function, the
amount of constraint violation is used to punish or “penalize” an infeasible
solution so that feasible solutions are favored by the selection process. Despite
the popularity of penalty functions, they have several drawbacks from which
the main one is that they require a careful fine tuning of the penalty factors
that can bias the search in an appropriate way [40, 8].
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Among the several approaches that have been proposed as an alternative
to the use of penalty functiones, there is a group of techniques in which the
constraints of a problem are handled as objective functions (i.e., a single-
objective constrained problem is restated as an unconstrained multiobjective
problem). This chapter precisely focuses on these techniques.

This chapter is organized as follows. Section 2 presents the basic concepts
both from global optimization and from multiobjective optimization that are
going to be used in the remainder of this chapter. In Section 3, the most pop-
ular multiobjective-based constraint-handling techniques are discussed. Sec-
tion 4 presents a small comparative study in which four of the techniques dis-
cussed in the previous section are tested on four benchmark problems taken
from the standard constraint-handling literature [31]. Section 4 discusses the
results obtained, and Section 6 concludes and presents some possible paths of
future research in this area.

2 Basic Concepts

We are interested in the general nonlinear programming problem in which we
want to:

Find x which optimizes f(x) (1)
subject to:
gz(x)SO, ZZ].,,’I’L (2)
hJ(X):07 leaap (3)
where x is the vector of solutions x = [z1,%2,...,2,]7, n is the number of

inequality constraints and p is the number of equality constraints (in both
cases, constraints could be linear or nonlinear).

If we denote with F to the feasible region and with S to the whole search
space, then it should be clear that F C S.

For an inequality constaint that satisfies g;(x) = 0, then we will say that
is active at x. All equality constraints h; (regardless of the value of x used)
are considered active at all points of F.

Now, we will define some basic concepts from multiobjective optimization.

Definition 1 (General Multiobjective Optimization Problem): Find
the vector x* = [x{,xg,...,x;‘l]T which will satisfy the m inequality con-
straints:

the p equality constraints
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hi(x)=0 i=1,2,...,p (5)

and will optimize the vector function

f(X) = [fl(x)7f2(x)7"'7fk(x)]T (6)

where x = [z1, %2, . . . ,xn]T is the vector of decision variables. a

Having several objective functions, the notion of “optimum” changes, be-
cause in multiobjective optimization problems, the aim is to find good compro-
mises (or “trade-offs”) rather than a single solution as in global optimization.
The notion of “optimum” that is most commonly adopted is that originally
proposed by Francis Ysidro Edgeworth in 1881 [17] and later generalized by
Vilfredo Pareto (in 1896) [33]. This notion is normally referred to as “Pareto
optimality” and is defined next.

Definition 2 (Pareto Optimality:): A point x* € F is Pareto optimal
if for every x € F and I ={1,2,...,k} either,

Vier(fi(x) = fi(x")) (7)

or, there is at least one 1 € I such that

fix) > fi(x¥) (8)

O

In words, this definition says that x* is Pareto optimal if there exists

no feasible vector x which would decrease some criterion without causing

a simultaneous increase in at least one other criterion. The phrase “Pareto

optimal” is considered to mean with respect to the entire decision variable
space unless otherwise specified.

Other important definitions associated with Pareto optimality are the fol-

lowing:

Definition 3 (Pareto Dominance): A vector u = (u1,...,ux) is said to
dominate v = (v1,...,v;) (denoted by u <X v) if and only if u is partially less
than v, i.e., Vi € {1,...,k}, u; <v; AT e {1,...,k} 1u; <. O

Definition 4 (Pareto Optimal Set): For a given multiobjective optimiza-
tion problem, f£(x), the Pareto optimal set (P*) is defined as:

P :={zxeF|-3z' € F (') X f(z)}. (9)

O
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3 Multiobjective-based Constraint Handling techniques

The main idea behind using multiobjective techniques to handle constraints
is to redefine the single-objective optimization of f(x) as a multiobjective
optimization problem in which we will have m + 1 objectives, where m is
the total number of constraints. Then, we can apply any multiobjective opti-
mization technique [14] to the new vector ¥ = (f(x), f1(X),. .., fm(X)), where
f1(x), ..., fm(x) are the original constraints of the problem. An ideal solution
x would thus have f;(x)=0 for 1 < i <m and f(x) < f(y) for all feasible y
(assuming minimization).

Three are the mechanisms taken from evolutionary multiobjective opti-
mization that are more frequently incorporated into constraint-handling tech-
niques:

1. Use of Pareto dominance as a selection criterion.

2. Use of Pareto ranking [20] to assign fitness in such a way that nondom-
inated individuals (i.e., feasible individuals in this case) are assigned a
higher fitness value.

3. Split the population in subpopulations that are evaluated either with re-
spect to the objective function or with respect to a single constraint of the
problem. This is the selection mechanism adopted in the Vector Evaluated
Genetic Algorithm (VEGA) [39].

We will now proceed to discuss the different approaches that have been
proposed adopting the three main ideas previously indicated.

3.1 COMOGA

Surry & Radcliffe [41] used a combination of the Vector Evaluated Genetic
Algorithm (VEGA) [39] and Pareto Ranking to handle constraints in an ap-
proach called COMOGA (Constrained Optimization by Multi-Objective Ge-
netic Algorithms).

In this technique, individuals are ranked depending of their sum of con-
straint violation (number of individuals dominated by a solution). However,
the selection process is based not only on ranks, but also on the fitness of
each solution. COMOGA uses a non-generational GA and extra parameters
defined by the user (e.g., an parameter called € is used to define the change
rate of P,,s). One of these parameters is P,,4, that sets the rate of selection
based on fitness. The remaining 1 — P, individuals are selected based on
ranking values. P,.s is defined by the user at the beginning of the process
and it is adapted during the run using as a basis the percentage of feasible
individuals that one wishes to have in the population.

COMOGA was applied on a gas network design problem and it was com-
pared against a penalty function approach. Although COMOGA showed a
slight improvement in the results with respect to a penalty function, its main
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advantage is that it does not requiere a fine tuning of penalty factors or any
other additional parameter. The main drawback of COMOGA is that it re-
quires several extra parameters, although its authors argue that the technique
is not particularly sensitive to their values [41].

The algorithm of COMOGA is the following [41]:

Begin
1. Calculate constraint violation for all solutions.
2. Rank solutions based on constraint violation (nondominance
checking).
3. Evaluate the fitness of solutions.
4. Select a P,,s¢ proportion of parents based on
fitness and the remaining 1 — P, based on constraint ranking.
6. Apply genetic operators
7. Adjust P,,s: Decreasing it favors feasible solutions; Increasing it
favors lower cost solutions (high fitness)

End

3.2 VEGA

Parmee & Purchase [34] proposed to use VEGA [39] to guide the search of an
evolutionary algorithm to the feasible region of an optimal gas turbine design
problem with a heavily constrained search space. After having a feasible point,
they generated an optimal hypercube around it in order to avoid leaving the
feasible region after applying the genetic operators. Note that this approach
does not really use Pareto dominance or any other multiobjective optimization
concepts to exploit the search space. Instead, it uses VEGA just to reach the
feasible region. The use of special operators that preserve feasibility make this
approach highly specific to one application domain rather than providing a
general methodology to handle constraints.

Coello [12] used a population-based approach similar to VEGA [39] to han-
dle constraints in single-objective optimization problems. At each generation,
the population was split into m + 1 subpopulations of equal fixed size, where
m is the number of constraints of the problem. The additional subpopulation
handles the objective function of the problem and the individuals contained
within it are selected based on the unconstrained objective function value.
The m remaining subpopulations take one constraint of the problem each as
their fitness function. The aim is that each of the subpopulations tries to reach
the feasible region corresponding to one individual constraint. By combining
these different subpopulations, the approach will reach the feasible region of
the problem considering all of its constraints.

The algorithm of this approach is the following;:

Begin
Create M random solutions for the initial population.
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Split the population into m + 1 sub-populations
Evaluate all M individuals
Assign a fitness value to all M individuals depending of their
corresponding subpopulation.
While stopping criterion is not satisfied Do

Insert the best individual of the current

population into the next population

While the next population is not full Do

Select 2 parents p; and ps based on tournament selection

with n candidates from all the M individuals of the main population

Apply crossover to p; and ps to generate 2 offspring ¢; and ¢
Apply mutation to offspring ¢; and co
Insert ¢; and ¢, into the next population

End While

Split the population into m + 1 subpopulations

Evaluate all M new individuals

Assign a fitness value to all M individuals depending of their

corresponding subpopulation.

End While
End

The fitness assignment scheme of the approach is the following:

if g;(x) < 0.0 then fitness = g;(x)
elseifv#0 then fitness = —v
else fitness = f(x)

where g;(x) refers to the jth constraint of the problem, v is the number of
violated constraints (v < m) and f(x) is the value of the objective function
of the individual.

As can be seen above, each subpopulation tries to satisfy one single con-
straint. If the encoded solution does not violate the constraint of its corre-
sponding subpopulation, then the fitness of an individual will be determined
by the total number of constraints violated. Finally, if the solution is feasible,
then the feasible criterion is to optimize the objective function. Therefore,
any feasible individuals will be merged with the subpopulation on charge of
optimizing the original (unconstrained) objective function.

The genetic operators are applied to the entire population and it is al-
lowed to every individual in a subpopulation to mate with any other in any
subpopulation (including its own, of course). In this way, individuals who sat-
isfy constraints are combined with individuals with a good fitness value. At
the end, it is expected to have a population of feasible individuals with high
fitness values.

This approach was tested with some engineering problems [12] in which
it produced competitive results. It has also been successfully used to solve
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combinational circuit design problems [13]. The main drawback of this ap-
proach is that the number of subpopulations required increases linearly with
the number of constraints of the problem. This has some obvious scalability
problems. Furthermore, it is not clear how to determine appropriate sizes for
each of the subpopulations used.

3.3 MOGA

Coello [11] proposed the use of Pareto dominance selection to handle con-
straints in EAs. This is an application of Fonseca and Fleming’s Pareto rank-
ing process [18] (called Multi-Objective Genetic Algorithm, or MOGA) to
constraint-handling. In this approach, feasible individuals are always ranked
higher than infeasible ones. Based on this rank, a fitness value is assigned
to each individual. This technique also includes a self-adaptation mechanism
that avoids the usual empirical fine-tuning of the main genetic operators.

Coello’s approach uses a real-coded GA with universal stochastic samplig
selection (to reduce the selection pressure caused by the Pareto ranking pro-
cess).

The algorithm of this approach is the following;:

Begin
Create M random solutions for the initial population.
Evaluate the M individuals in the population.
Calculate the rank for each of the M individuals in the population.
Assign a fitness value to all M individuals depending on rank
While stopping criterion is not satisfied Do
Insert the best individual of the current
population into the next population
While the next population is not full Do

Select 2 parents p; and p, using Universal Stochastic Sampling

Apply crossover to p; and p2 to generate 2 offspring ¢; and ¢
Apply mutation to offspring ¢; and ¢,
Insert ¢; and ¢s into the next population

End While

Evaluate the M new individuals in the population

Calculate the rank for each one of the M individuals in the population.

Assign a fitness value to all M individuals depending on rank
End While
End

To compute the rank of an individual x; this approach uses the following
procedure:

e Evaluate:
rank(x;) = count(x;) + 1 (10)

where count(x;) is computed according to the following rules:
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1. Compare x; against every other individual in the population. Assuming

pairwise comparisons, we will call x; (j = 1,...,pop_size and j # i)

the other individual against which z; is being compared at any given

time.

Initialize count(x;)(for i = 1,..., pop_size) to zero.

3. If both x; and x; are feasible, then both are given a rank of zero and
count(x;) remains without changes.

4. If x; is infeasible and x; is feasible, then count(x;) is incremented by
one.

5. If both x; and x; are infeasible, but x; violates more constraints than
x;, then count(x;) is incremented by one.

6. If both x; and x; are infeasible, and both violate the same number of

constraints, but x; has a total amount of constraint violation larger
than the constraint violation of x;, then count(x;) is incremented by
one.
If any constraint gi(x) (k = 1,...,m, where m is the total amount of
constraints) is considered satisfied if g;(x) < 0, then, the total amount
of constraint violation for an individual x; (denoted as coef(x;)) is
given by:

o

P
coef(x;) = ng(xi) for all g(x;) >0 (11)
k=1

To compute fitness, the following rules are adopted:

1. If x; is feasible, then rank(x;) = fitness(x;), else
2. rank(x;) = m

Then, individuals are selected based on rank(x;) (stochastic universal sam-
pling is used). Note that the values produced by fitness(x;) must be normal-
ized to ensure that the rank of feasible individuals is always higher than the
rank of infeasible ones.

This approach has been used to solve some engineering design prob-
lems [11] in which it produced very good results. Furthermore, the approach
showed great robustness and a relatively low number of fitness function evalu-
ations with respect to traditional penalty functions. Additionally, it does not
require any extra parameters. Its main drawback is the computational cost
(O(M?), where M is the population size) derived from the Pareto ranking
process.

3.4 NPGA

Coello and Mezura [9] implemented a version of the Niched-Pareto Genetic
Algorithm (NPGA) [23] to handle constraints in single-objective optimization
problems. The NPGA is a multiobjective optimization approach in which



EMO Concepts to Handle Constraints in GAs 9

individuals are selected through a tournament based on Pareto dominance.
However, unlike the NPGA, Coello and Mezura’s approach does not require
niches (or fitness sharing [16]) to maintain diversity in the population. The
NPGA is a more efficient technique than traditional multiobjective optimiza-
tion algorithms, since it does not compare every individual in the population
with respect to each other (as in traditional Pareto ranking), but uses only
a sample of the population to estimate Pareto dominance. This is the main
advantage of this approach with respect to Coello’s proposal [11].

Note however that Coello and Mezura’s approach requires an additional
parameter called S, that controls the diversity of the population. S, indicates
the proportion of parents selected by four comparison criteria described be-
low. The remaining 1 — S, parents will be selected by a pure probabilistic
approach. Thus, this mechanism is responsible for keeping infeasible individ-
uals in the population (i.e., the source of diversity that keeps the algorithm
from converging to a local optimum too early in the evolutionary process).

A graphical illustration of the role of the parameter S,. is shown in Figure 1.

Candidate 1 Candidate 2

Pure Four
- Comparison
gdogcta?grl}alc T B T

Fig. 1. Diagram that illustrates the role of S, in the selection process of Coello and
Mezura’s algorithm.

Tournaments in this approach are decided using as a basis four comparison
criteria:
If

1. both individuals are feasible, the individual with the higher fitness wins.

. one is feasible and the other is infeasible, the feasible individual wins.

3. both are infeasible: Nondominance checking is applied (tournament selec-
tion as in the NPGA [23]).

4. both are nondominated or dominated, the individual with the lowest
amount of constraint violation wins.

N

The algorithm of this approach is the following;:

Begin
Create M random solutions for the initial population.
Evaluate the M individuals in the population.
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While stopping criterion is not satisfied Do
Insert the best individual of the current
population into the next population
While the next population is not full Do
Select 2 parents p; and py based on S, value
Apply crossover to p; and p2 to generate 2 offspring ¢; and ¢
Apply mutation to offspring ¢; and ¢,
Insert ¢; and ¢ into the next population
End While
Evaluate the M new individuals in the population
End While
End

This approach has been tested with several benchmark problems and was
compared against several types of penalty functions [29]. Results indicated
that the approach was robust, efficient and effective. However, it was also
found that the approach had scalability problems (its performance degrades
as the number of decision varibles increases).

3.5 Pareto Set and Line Search

Camponogara & Talukdar [5] proposed an approach in which a global opti-
mization problem was transformed into a bi-objective problem where the first
objective is to optimize the original objective function and the second is to
minimize:

2 = 3 max(0,g:(x) (12)

Equation 12 tries to minimize the total amount of constraint violation of
a solution (i.e., it tries to make it feasible). At each generation of the process,
several Pareto sets are generated. An operator that substitutes crossover takes
two Pareto sets S; and S; where ¢ < j and two solutions z; € S; and z; € S;
where z; dominates x;. With these two points a search direction is defined
using:

g &%)
|z; — 2]

(13)

Line search begins by proyecting d over one variable axis on decision vari-
able space in order to find a new solution # which dominates both z; and z;.
At pre-defined intervals, the worst half of the population is replaced with new
random soutions to avoid premature convergence. This indicates some of the
problems of the approach to maintain diversity. Additionally, the use of line
search within a GA adds some extra computational cost.

The algorithm is the following [5]:
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Begin
Let S be a random initial population.
Let F = {fo(),-.., fr()} be a set of objectives to be minimized.
‘While stopping criterion is not satisfied Do
Let L ={S1,...,S;:} be the Pareto list for S with respect to F’
If t =1 Then
Replace half of the points in S by random points
Rebuild the Pareto List L
End If
Let N = () be the set of new points to be generated
While |[N| < m Do
Choose two Pareto sets S; and S; with ¢ < j
Choose two points sets z; € S; and z; € S; with ¢ < j
Let d = % be the search direction
With probability « project d onto the axis of one variable j in
the solution space
Execute line search through the line defined by the point z; and
by the direction d
Let U = {u,,...,ux} be the set of points obtained in the line
search such that u; is the best point with
evaluation f;()
Let N=NJU
End While
Let S=SUN
Let L = {Si,...,S;} be the Pareto list for S
Remove |N| points from the last Pareto sets in List L
End While
End

The authors of this approach validated it using a benchmark consisting of
five test functions. The results obtained were either optimal or very close to
it. The main drawback of this approach is its additional computational cost.
Also, it is not clear what is the impact of the segment chosen to search in the
overall performance of the algorithm.

3.6 Min-Max

An approach similar to a min-max formulation used in multiobjective opti-
mization [7] combined with tournament selection was proposed by Jiménez
and Verdegay [25].

The algorithm is the following;:

Begin
Create M random solutions for the initial population.
Evaluate the M individuals in the population.
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While stopping criterion is not satisfied Do
Insert the best individual of the current
population into the next population
While the next population is not full Do
Select 2 parents p; and py based on tournament selection and
based on the criteria shown below
Apply crossover to p; and p2 to generate 2 offspring ¢; and ¢
Apply mutation to offspring ¢; and ¢,
Insert ¢; and ¢y into the next population
End While
Evaluate the M new individuals in the population
End While
End

The selection criteria is based on the following rules:

Between two feasible individuals, that one with a higher fitness wins.

A feasible individual wins over a infeasible individual.

Between two infeasible individuals, that one with the lowest amount of
constraint violation wins.

This approach was validated using four test functions, and the results ob-
tained in most cases were very close to the optima. A subtle problem with
this approach is that the evolutionary process first concentrates only on the
constraint satisfaction problem and therefore it samples points in the feasible
region essentially at random [42]. This means that in some cases (e.g., when
the feasible region is disjoint) we might land in an inappropriate part of the
feasible region from which we will not be able to escape. However, this ap-
proach (as in the case of Parmee and Purchase’s [34] technique) may be a good
alternative to find a feasible point in a heavily constrained search space. The
relative simplicity of this approach is another advantage of this technique.

3.7 Pareto Ranking and Domain Knowledge

Ray et al. [36] proposed the use of a Pareto ranking approach that operates on
three spaces: objective space, constraint space and the combination of the two
previous spaces. This approach also uses mating restrictions to ensure better
constraint satisfaction in the offspring generated and a selection process that
eliminates weaknesses in any of these spaces. To maintain diversity, a niche
mechanism based on Euclidean distances is used. This approach can solve
both constrained or unconstrained optimization problems with one or several
objective functions.
The algorithm is the following [36]:

Begin
Let M be a random initial population.
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Do

Compute Pareto Ranking based on objective matrix to yield

a vector RankObj

Compute Pareto Ranking based on constraint matrix to yield

a vector RankCon

Compute Pareto Ranking based on the combined matrix to yield

a vector RankCom

If problem is multiobjective optimization Then
Select individuals from the population in this generation if
RankCom=1 and Feasible and put them into the population for
the next generation

End If

If problem is single objective optimization Then
Select individuals from the population in this generation if
RankCom is better than allowable rank and Feasible
and put them into the population for the next generation

End If

Do
Select an individual A and its partner from the population at
this generation
Mate A with its partner
Put parents and children into the population of the next generation

While the population is not full

Remove duplicate points in parametric space and shrink population

While the maximum number of generations is not attained
End

From the previous pseudo-code, it can be seen that three different matrices
must be computed: the objective matrix (containing the objective function
values of each solution), the constraint matrix (that contains the constraint
values of each individual), and a matrix that combines the two previous. These
matrices are illustrated in equations 14, 15 and 16.

fir fiz oo fik

fo1 faa ... for
C (14)

faven fae - fark

C11 €12 --. C1g

C21 €22 ... Cag
(15)

Cp1 CM2 --- CMs
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fll f12 flkz €11 €12 ... Cis

far fo2 oo far a1 ca2 ... o
. . ) (16)

fat fa2 oo fue e cm2 oo Cus

The mating restrictions used by this method are based on the information
that each individual has about its own feasibility. Such a scheme is based on
an idea proposed by Hinterding and Michalewicz [22].

The main advantage of this approach is that it requires a very low number
of fitness function evaluations (between 2% and 10% of the number of evalu-
ations required by the homomorphous maps of Koziel and Michalewicz [27],
which is one of the best constraint-handling techniques known to date). The
technique has some problems to reach the global optima, but it produces very
good approximations considering its low computation cost. The main draw-
back of the approach is that its implementation is considerably more complex
than any of the other techniques previously discussed.

3.8 Pareto Dominance and Preselection

Jiménez et al. [24] proposed an algorithm that uses Pareto dominance inside
a preselection scheme to solve several types of optimization problems (multi-
objective, constraint satisfaction, global optimization, and goal programming
problems). The approach redefines the problem as an unconstrained multiob-
jective optimization problem in which objectives are given priorities. Feasible
solutions with a good objective function value are given the highest priority.
The authors use a real-coded nongenerational GA with two types of crossover
operators (uniform and arithmetic) and two mutation operators (uniform and
nonuniform).
The preselection scheme of this approach works as follows [24]:

Begin
At each iteration of the algorithm
select two parents p; and py at random.
Apply the crossover operators NC times
to produce NC offspring
Apply the mutation operators to produce
a total of 2 x NC offspring
Obtain the best ¢; individuals of the first NC
offspring based on Pareto dominance
Obtain the best ¢y individuals of the second NC
(mutated) offspring based on Pareto dominance
If ¢; dominates p; Then
c1 replaces p; in the population
EndIf
If ¢; dominates p» Then
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¢y replaces ps in the population
EndIf
End

The authors argue that this preselection mechanism is an implicit niche
formation technique because individuals are replaced only by similar ones
(i.e., their offspring). As only the best individuals are inserted into the new
population, this scheme is also an elitist strategy.

This approach was validated with eleven test functions, producing very
good results. Note however, that the authors do not specify the computational
cost of the approach and it is not clear if the approach is competitive with
other techniques in that regard.

3.9 Pareto Ranking and Robust Optimization

Ray [35] explored an extension of his previous work on constraint-handling [36]
in which the emphasis was robustness. A robust optimized solution is not sen-
sitive to parametric variations due to incomplete information of the problem
or to changes on it. This approach is capable of handling constraints and finds
feasible solutions that are robust to parametric variations produced over time.
This is achieved using the individual’s self-feasibility and its neighborhood
feasibility. Thus, a new matrix called “modified constraint matrix” is used to
replace both the constraint matrix and the combined matrix of Ray’s original
proposal (see equations 15 and 16). An example of this modified constraint
matrix is the following:

C11 €12 ... Cls Cis41 Cis4+2 ... Cl2s
C21 €22 ... C25 C2542 C2542 -.. C22s

(17)

CM1 CM2 --- CMs CMs+1 CMs+2 -+ - CM2s

where ¢;s11,Cist2 - - - Cias denotes the number of violations of the first con-
straint among k neighbors and so on. A mechanism based on ranking values
in both spaces (objective space and constraint space) is used to select the best
individuals and copy them into the next population. The remaining portion
of the new population is filled by mating two parents p; and ps. One parent
(p1) is selected based on a crowding factor using roulette wheel selection. The
partner of this individual (p2) is the result of the competition between two in-
dividuals (A4 and B) picked up by a roulette wheel selection process. To decide
between A and B in order to obtain ps the following criteria are adopted:

1. If A is feasible and B is not: Select A as the partner ps.

2. If B is feasible and A is not: Select B as the partner ps.

3. If both A and B are feasible: Select one with a minimum Rank Objec-
tive. If the Rank Objective of A and B are the same, select one with
minimum number of neighbors in the parametric space as a mate.
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4. If both A and B are infeasible: Select A or B with a minimum Rank
Constraint. If the Rank Constraints are the same, randomly select
between A and B.

The general algorithm is the following [35]:

Begin
Let M be a random initial population.
Do
Generate the Objective and Constraint matrices
Rank individuals based on these matrices
Select elite solutions and copy them into the population
to be used in the next generation
Pick an elite individual
Choose its partner
Mate them and generate two children
Put these children into the population
to be used in the next generation
While termination condition=true
End

A real-coded GA with Simulated Binary Crossover [15] was used to im-
plement this technique. The results reported in two well-known design prob-
lems [35] showed that the proposed approach did not reach solutions as good
as the other techniques against which it was compared, but it turned out to
be less sensitive to parametric variations, which was the main goal of the ap-
proach. In constrast, the other techniques analyzed showed significant changes
when the parameters were perturbed. The main drawback of this approach is,
again, its relative complexity (i.e., its difficulty to implement it), and it would
also be desirable that the approach is further refined so that it can get closer
to the global optimum than the current available version.

4 A Small Comparative Study

Four techniques were selected from those discussed before to perform a
small comparative study that aims to illustrate some practical issues of
constraint-handling techniques. The techniques selected are the following: CO-
MOGA [41], the use of VEGA proposed by Coello [12], the NPGA to handle
constraints [9] and the approach that uses MOGA [11]. In order to simplify
our notation, the last three techniques previously indicated will be called
HCVEGA, HCNPGA and HCMOGA, respectively.

To evaluate the performance of the techniques selected, we decided to
use two of the well-known benchmark proposed in [31] plus two engineering
design problems used in [11]. The full description of the four test functions is
the following;:
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1. g04:
Minimize:

F(x) = 5.3578547x2 + 0.83568912175 + 37.203239z, — 40792.141 (18)

subject to:
g1(x) = 85.334407 + 0.0056858z2x5 + 0.00062622124 — 0.0022053x325 — 92 < 0
ga(x) = —85.334407 — 0.0056858z2x5 — 0.0006262x12x4 + 0.0022053z325 < 0
g3(x) = 80.51249 + 0.0071317z2z5 + 0.002995521 22 + 0.0021813z3 — 110 < 0
g4(x) = —80.51249 — 0.0071317z275 — 0.0029955z1 75 — 0.0021813z3% + 90 < 0
g5(x) = 9.300961 + 0.0047026x325 + 0.0012547x123 + 0.0019085z324 — 25 < 0
g6(x) = —9.300961 — 0.0047026z325 — 0.0012547x123 — 0.00190852324 + 20 < 0
where: 78 < 1 <102, 33 < x2 < 45,27 < x; <45 (i = 3,4,5).

2. gl1
Minimize:

f(x) = af + (22 - 1)? (19)

subject to:

h(x) =25 — 22 =0

where: —1<z; <1, -1<uzy <1.
3. Design of a Pressure Vessel

Fig. 2. Center and end section of the pressure vessel used for the third example.

A cylindrical vessel is capped at both ends by hemispherical heads as
shown in Figure 2. The objective is to minimize the total cost, includ-
ing the cost of the material, forming and welding. There are four design
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variables: T (thickness of the shell), T}, (thickness of the head), R (inner
radius) and L (length of the cylindrical section of the vessel, not including
the head). T and T}, are integer multiples of 0.0625 inch, which are the
available thicknesses of rolled steel plates, and R and L are continuous.
Using the same notation given by Kannan and Kramer [26], the problem
can be stated as follows:

Minimize :

F(x) = 0.6224z1x374 + 1.7781z023 + 3.16612324 + 19.84z7x3  (20)

Subject to :
g1(x) = —z1 +0.019323 <0 (21)
g2(x) = —z2 + 0.00954z3 < 0 (22)
4
93(x) = —mxiz, — gmg + 1,296,000 < 0 (23)
94 (X) = T4 — 240 S 0 (24)

4. Design of a 10-bar plane truss

360"

360" 360"

Fig. 3. 10-bar plane truss used for the fourth example.

Consider the 10-bar plane truss shown in Figure 3 [2]. The problem is
to find the moment of inertia of each member of this truss, such that we
minimize its weight, subject to stress and displacement constraints. The
weight of the truss is given by:

10

f@ =% p4; L, (25)

Jj=1
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where z is the candidate solution, A; is the cross-sectional area of the jth
member, L; is the length of the jth member, and p is the weight density
of the material.

The assumed data are: modulus of elasticity, E = 1.0 x 10* ksi 68965.5
MPa), p = 0.10 Ib/in® (2768.096 kg/m?), and a load of 100 kips (45351.47
Kg) in the negative y-direction is applied at nodes 2 and 4. The maximum
allowable stress of each member is called o,, and it is assumed to be £25
ksi (172.41 MPa). The maximum allowable displacement of each node
(horizontal and vertical) is represented by u,, and it is assumed to be 2
inches (5.08 cm).

There are 10 stress constraints, and 12 displacement constraints (we can
really assume only 8 displacement constraints because there are two nodes
with zero displacement, but they will nevertheless be considered as addi-
tional constraints). The moment of inertia of each element can be different,
thus the problem has 10 design variables.

To get a measure of the difficulty of solving each of these problems, a p
metric (as suggested by Koziel and Michalewicz [27]) was computed using the
following expression:

p=I|Fl/IS] (26)

where |F| is the number of feasible solutions and |S| is the total number of
solutions randomly generated. In this work S = 1,000,000 random solutions.

|Pr0blem| n |Type of function| p |LI|NI|LE|NE|

1 5 quadratic 27.0079%| 0] 0] 4] 2
2 2 quadratic 0.0973% [0 1]0]0
3 4 quadratic 39.6762%| 00| 3 | 1
4 |10  nonlinear  [46.8070%| 0 [0 [0 |22

Table 1. Values of p for the four test problems chosen.

The different values of p for each of the functions chosen are shown in Ta-
ble 1, where n is the number of decision variables, LI is the number of linear
inequalities, NI the number of nonlinear inequalities, LE is the number of lin-
ear equalities and NE is the number of nonlinear equalities. It can be clearly
seen that the second test function should be the most difficult to solve since
it presents the lowest value of p.

In our comparative study, we used a binary-coded GA with two-point
crossover and uniform mutation. Equality constraints were transformed into
inequalities using a tolerance value of 0.001 (see [8] for details of this trans-
formation). The number of fitness function evaluations is the same for all the
approaches under study (80,000). The parameters adopted for each of the
methods were the following:
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e COMOGA:
— Population Size = 200
— Crossover rate = 1.0
— Mutation rate = 0.05
— Desired proportion of feasible solutions = 10 %
- €=0.01
e HCVEGA:
— Population Size = 200
— Number of generations = 400
— Crossover rate = 0.6
— Mutation rate = 0.05
— Tournament size= 5
e HCNPGA:
— Population Size = 200
— Number of generations = 400
— Crossover rate = 0.6
— Mutation rate = 0.05
— Size of sample of the population = 10
— Selection Ratio = 0.8
¢ HCMOGA:
— Population Size = 200
— Number of generations = 400
— Crossover rate = 0.6
— Mutation rate = 0.05

A total of 100 runs per technique per problem were performed. Statistical
results are presented in Tables 2, 3, 4 and 5, where P; refers to the problem
solved (1 < i < 4), 0.0 < F, < 1.0 is the average rate of feasible solutions
found during a single run (with respect to the full population).

COMOGA
P Optimal Best Median Mean St. Dev. ‘Worst Fp
P; [ —30665.539 | —30533.056641 | —30328.199219 | —30329.563398 | 74.793290 |—30141.033203|0.002358

Py 0.750 0.749058 0.749787 0.749829 0.000495 0.751753 0.000286
P3[6059.946341| 6369.428223 7889.838867 7795.411538 [701.363966| 9147.520508 |0.003989
P4 |5152.636136| 6283.198730 6675.126709 6660.455649 [126.289250| 6968.627441 [0.006516

Table 2. Experimental results using COMOGA with the four test problems.

5 Discussion of Results

Although this study is too limited to derive general conclusions, there are a few
interesting issues that deserve discussion. First, it is important to emphasize
that all of the approaches tested were able to reach the feasible region in
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HCVEGA
P Optimal Best Median Mean St. Dev. Worst Fp
P; [ —30665.539 | —30647.246094 | —30628.587891 | —30628.468711 | 7.877054 |—30607.240234)0.408108
Py 0.750 0.749621 0.812369 0.798690 0.025821 0.847242 0.011206
P316059.946341| 6064.723633 6238.489746 6259.963745 |170.254024| 6820.944824 |0.425354
P, |5152.636136| 5327.418457 5453.446045 5455.871895 56.744241 5569.240723 |0.676408

Table 3. Experimental results using HCVEGA to handle constraints with the four
test problems.

HCNPGA
P Optimal Best Median Mean St. Dev. ‘Worst Fp
P | —30665.539 | —30661.033203 | —30635.346680 | —30630.883145 [ 20.466057 | —30544.324219|0.345432
Py 0.750 0.749001 0.749613 0.753909 0.012147 0.832940 0.025842
P316059.946341| 6059.926270 6127.618408 6172.527373 [123.897547| 6845.770508 |0.330693
P4 [5152.636136| 5179.740723 5256.108154 5259.013174 | 37.658930 5362.890625 [0.503566

Table 4. Experimental results using HCNPGA to handle constraints with the four
test problems.

HCMOGA
Problem| Optimal Best Median Mean St. Dev. Worst Fp
Py —30665.539 | —30649.958984 | —30570.754883 | —30568.917930 | 53.531272 [—30414.773438[0.344896
Py 0.750 0.749001 0.749155 0.749393 0.000595 0.752445 0.016913
Ps3 6059.946341( 6066.969727 6561.483154 6629.064048 [385.110736| 7547.403320 [0.452672
Py 5152.636136| 5336.618652 5745.238281 5748.830526 [210.696096] 6474.041992 [0.603598

Table 5. Experimental results using HCMOGA to handle constraints with the four
test problems.

all of the test functions. We also found that HCNPGA was the most robust
approach. This technique was able to find the best results in all of the test
functions, except for g11 in which there was a tie with HCMOGA. Note that
the mean values obtained by the HCNPGA is not always the best of all the
approaches in all of the test functions (see for example g04 and g11), but it
tends to have the lowest standard deviations, which is an indicative of a more
robust performance.

COMOGA presented its best performance in function g11, which is the one
with the most heavily constrained search space. HCMOGA normally presented
the best statistical performance (i.e., lowest standard deviations) of all the
approaches. HCVEGA presented its best performance in g04 but its best
result was still relatively far from the global optimum.

The high selection pressure of the nongenerational GA used in COMOGA
made it difficult to avoid premature convergence. This is reflected by the F
values produced by this approach, which are lower than those generated by
the three other approaches.

The population-based approach used by the HCVEGA was the most ro-
bust in the test function with the highest number of decision variables. This
seems to suggest that this sort of approach may be more effective in problems
with high dimensionality. In fact, we have found in other studies that most
constraint-handling techniques based on Pareto dominance tend to degrade
their performance as the number of decision variables increases.
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HCMOGA performed well in all four problems but its overall performance
was not as good as that of the HCNPGA. However, in problem 4 (g11) the
HCMOGA presented the most consistent behavior and the best solution that
it found was the same as the one produced by the HCNPGA. This seems
to suggest that ranking all the population may be useful to deal with highly
constrained spaces. The obvious drawback is its computational cost.

Dealing with a high number of constraints (e.g., problem 4) was not dif-
ficult for any of the approaches, except for COMOGA which could not find
good results.

Although not conclusive, this study seems to indicate that Pareto dom-
inance, Pareto ranking and population-based mechanisms are promising ap-
proaches to handle constraints. These results also seem to suggest that a
traditional (i.e., generational) GA performs better in optimization problems
than nongenerational GAs.

Regarding diversity, the four approaches exhibited a good performance,
which seems to indicate that the search space is well sampled by all of them.
However, note that none of the four approaches could reach the global op-
timum. This indicates that further refinements are required to improve the
effectiveness of these approaches.

The use of a sample of the population to determine the Pareto dominance
of an individual was found to be appropriate in this context. This is consis-
tent with the behavior reported for the NPGA in multiobjective optimization
problems [10]. However, in problems with highly constrained search spaces,
Pareto ranking of the entire population seems to be advantageous. On the
other hand, population-based approaches seem to be less sensitive to scala-
bility of the decision variable space. An open question is if the advantages of
each of these techniques can be combined into a single approach.

6 Conclusions and Future Work

A set of constraint-handling techniques based on multiobjective concepts
were presented in this chapter. In each case, advantages and disadvantages
were discussed. We also presented a small comparative study in which four
of the techniques discussed were implemented and evaluated using four test
functions. Our results provided some insights regarding the behavior of each
type of technique. Note however, that comparisons with respect to traditional
penalty functions [37, 40] and with the most competitive constraint-handling
techniques used with EAs (e.g., stochastic ranking [38], the homomorphous
maps [27], and the adaptive segregational constrained handling evolutionary
algorithm (ASCHEA) [21]) are still lacking.

The results obtained seem to indicate that techniques based on multiobjec-
tive optimization can properly deal with constrained search spaces. However,
such results also seem to indicate that additional mechanisms should be used
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to improve the effectiveness of these approaches, since they had obvious diffi-
culties to reach the global optimum in all the test functions used.

Some of the most promising paths of future research in this area are the
following;:

e Incorporation of self-adaptation or on-line adaptation to make unnecessary
the fine tuning of additional parameters.

e Exploitation of domain knowledge extracted from the evolutionary process
to improve the results obtained by the EA.

e Hybridization with classical global optimization techniques and/or with
other heuristics.
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