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In recent years, the solution of many-objective optimization (i.e., multi-objective op-
timization problems with more than 3 objectives) has attracted a lot of attention in
the evolutionary computation community. This is mainly due to the fact that Pareto-
based Multi-Objective Evolutionary Algorithms (MOEASs) cannot properly solve
these problems [10]. The reason is that, as we increase the number of objectives,
many more solutions will become nondominated unless the population size is con-
siderably increased. Since most MOEAs (mainly because of practical reasons) tend
to adopt relatively small population sizes for many-objective optimization problems,
their selection pressure will quickly dilute, which makes a MOEA to behave similar-
ly to a random search algorithm. Although a density estimator can help to increase
the selection pressure, most Pareto-based MOEAs adopt mechanisms that do not
properly work in many-objective problems (e.g., the crowding-comparison operator
adopted in NSGA-II [4]).

In order to deal with many-objective optimization problems, modern MOEAs
normally adopt one of the two following strategies: (1) Use of a scalarization
method, or (2) use of an indicator-based approach.

Scalarization methods transform a multi-objective optimization problem into
several single-objective optimization problems that are simultaneously solved. The
Multi-Objective Evolutionary Algorithm based on Decomposition (MOEA/D) [12]
is the most representative MOEA based on a scalarization method. MOEA/D is
known to perform well in many-objective optimization problems, but it relies on a
set of weight vectors, whose distribution in objective space influences the diversity
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of the final solutions. The weight vectors are used to guide the search of individuals
in the population and, therefore, the number of weight vectors is directly related
to the population size of MOEA/D. As the number of objectives increases, more
weights are required and, consequently, a larger population size must be adopted.

When adopting an indicator-based approach, the idea is to use a performance
indicator either in the density estimator (as done, for example in the . Metric Se-
lection Evolutionary Multi-Objective Algorithm (SMS-EMOA) [2], which adopts
the hypervolume for its density estimator) or directly in the selection mechanism
of a MOEA (as done, for example, in the Indicator-Based Evolutionary Algorithm
(IBEA) [14], which can use any performance indicator). The performance indicator
that has been most frequently adopted is the hypervolume [13], mainly because it
is the only unary indicator which is known to be Pareto-compliant and because it
has been proved that maximizing it is equivalent to reaching the true Pareto optimal
set [5]. However, its high computational cost (which increases exponentially with
the number of objectives) has led to the use of other performance indicators such
as IGD+ [8] and R2 [3]. Nevertheless, the use of these other performance indicators
involves some issues. For example, IGD+ requires a reference set which is not easy
to provide and R2 also relies on weight vectors (as MOEA/D).

Some attempts have been made to approximate the hypervolume contribution
values at an affordable computational cost (see for example [1] where Monte Carlo
sampling is adopted). However, the performance of these approaches quickly dete-
riorates as we lower the quality of the hypervolume contribution values.

This chapter focuses on the recently proposed parallelization of SMS-EMOA,
which was original introduced by the authors of this chapter [6]. Although a few
other authors have parallelized SMS-EMOA [9, 11], those works focus on the par-
allelization of objective function evaluations (which are computationally expensive
in some real-world applications), which makes such approaches inappropriate for
dealing with many-objective problems.

The common factor of the aboved-mentioned approaches is that they parallelize
the operations of SMS-EMOA using several slave processors and being coordinated
by a master process. In fact, this paradigm is better known as master-slave model.
On the other hand, our proposal, named PArallel MICRo Optimizer based on the
< metric (.-PAMICRO), reduces the execution time of SMS-EMOA, through the
asynchronous island model.

In our proposed approach, the population is parallelized, thus the overall popu-
lation is partitionated in subpopulations, in which each one evolves a serial SMS-
EMOA in semi-isolation. Occasionally, few individuals are exchanged between sub-
populations (i.e., they migrate). In order to deal with the prohibitive computational
cost of SMS-EMOA, we used micro-populations (i.e., subpopulations with no more
than 11 individuals). In our original study [6], we observed that the computational
cost of calculating the hypervolume in our proposed approach seemed to be domi-
nated by the polynomial terms and not by the exponential terms. Furthermore, .-
PAMICRO maintains diversity through the use of external archives that are pruned
to a fixed size, employing a technique based on the Parallel-Coordinates graph [7].
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In [6], .“-PAMICRO was compared only with respect to hypervolume-based

algorithms in one benchmark. In this chapter, we provide more evidence of its ap-
plicability in many-objective optimization problems, deepening into its implemen-
tation details and on the effects that its most relevant migration parameters have on
performance.
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