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Summary. In this chapter, we propose the use of rough sets to improve the approx-
imation provided by a multi-objective evolutionary algorithm. The main idea is to
use this sort of hybrid approach to approximate the Pareto front of a multi-objective
optimization problem with a low computational cost (only 3000 fitness function eval-
uations). The hybrid operates in two stages: in the first one, a multi-objective version
of differential evolution is used as our search engine in order to generate a good ap-
proximation of the true Pareto front. Then, in the second stage, rough sets theory is
adopted in order to improve the spread of the solutions found so far. To assess our
proposed hybrid approach, we adopt a set of standard test functions and metrics
taken from the specialized literature. Our results are compared with respect to the
NSGA-II, which is an approach representative of the state-of-the-art in the area.

1 Introduction

Multi-Objective Programming (MOP) is a research field that has raised great
interest over the last thirty years, mainly because of the many real-world
problems which naturally have several (often conflicting) criteria to be simul-
taneously optimized [7, 17].

In recent years, a wide variety of multi-objective evolutionary algorithms
(MOEASs) have been proposed in the specialized literature [4, 3]. However, the
study of hybrids of MOEAs with other types of techniques is still relatively
scarce. This chapter presents a study of the use of rough sets theory as a
local search explorer able to improve the spread of the solutions produced
by a MOEA. Our main motivation for such a hybrid approach is to reduce
the overall number of fitness function evaluations performed to approximate
the true Pareto front of a problem. Our proposed hybrid is able to produce
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reasonably good approximations of the Pareto front of a variety of problems
of different complexity with only 3000 fitness function evaluations.

The organization of the rest of the chapter is the following. Section 2 pro-
vides some basic concepts required to understand the rest of the chapter. An
introduction to rough sets theory is provided in Section 3. In Section 4, we
introduce differential evolution, which is the approach adopted as our search
engine. Section 5 describes the relaxed form of Pareto dominance adopted
for our secondary population (called Pareto-adaptive e-dominance). Our pro-
posed hybrid is described in Section 6. The experimental setup adopted to
validate our approach and the corresponding discussion of results are pro-
vided in Section 7. Finally, our conclusions and some possible paths for future
research are provided in Section 8.

2 Basic Concepts

We are interested in solving problems of the type?:

Minimize f(x) := [f1(x), f2(X), ..., fr(xX)] (1)
subject to:
9:(x) <0 i=1,2,...,m (2)
hix)=0 i=1,2,...,p (3)
where x = [z1, %2, ... ,a:n]T is the vector of decision variables, f; : R™ — IR,

i = 1,...,k are the objective functions and g;,h; : R" - R, ¢ = 1,...,m,
j = 1,...,p are the constraint functions of the problem. To describe the con-
cept of optimality in which we are interested, we will introduce next a few
definitions.

Definition 1. Given two vectors x,y € R*, we say that x <y if z; < y; for
i =1,...,k, and that x dominates y (denoted by x <y) if x <y and x # y.

Definition 2. We say that a vector of decision variables x € X C R" is
nondominated with respect to X, if there does not exist another x' € X
such that f(x') < f(x).

Definition 3. We say that a vector of decision variables x* € F C R" (F is
the feasible region) is Pareto-optimal if it is nondominated with respect to
F.

Definition 4. The Pareto Optimal Set P* is defined by:

P* = {x € F|x is Pareto-optimal}

4 Without loss of generality, we will assume only minimization problems.
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Definition 5. The Pareto Front PF* is defined by:

PF* = {f(x) € Rf[x € P*}

We thus wish to determine the Pareto optimal set from the set F of all the
decision variable vectors that satisfy (2) and (3).

3 Rough Sets Theory

Rough Sets theory is a new mathematical approach to imperfect knowledge.
The problem of imperfect knowledge has been tackled for a long time by
philosophers, logicians and mathematicians. Recently, it also became a crucial
issue for computer scientists, particularly in the area of artificial intelligence
(AI). There are many approaches to the problem of how to understand and
manipulate imperfect knowledge. The most used one is the fuzzy set theory
proposed by Lotfi Zadeh [26]. Rough sets theory was proposed by Pawlak [19],
and presents another attempt to this problem. Rough sets theory has been
used by many researchers and practitioners all over the world and has been
adopted in many interesting applications. The rough sets approach seems to
be of fundamental importance to Al and cognitive sciences, especially in the
areas of machine learning, knowledge acquisition, decision analysis, knowledge
discovery from databases, expert systems, inductive reasoning and pattern
recognition. Basic ideas of rough set theory and its extensions, as well as
many interesting applications, can be found in books (see [20]), special issues
of journals (see [15]), proceedings of international conferences, and in the
internet (see www.roughsets.org).

Let’s assume that we are given a set of objects U called the universe and
an indiscernibility relation R C U x U, representing our lack of knowledge
about elements of U (in our case, R is simply an equivalence relation based
on a grid over the feasible set; this is, just a division of the feasible set in
(hyper)-rectangles). Let X be a subset of U. We want to characterize the
set X with respect to R. The way rough sets theory expresses vagueness is
employing a boundary region of the set X built once we know points both
inside X and outside X . If the boundary region of a set is empty it means that
the set is crisp; otherwise, the set is rough (inexact). A nonempty boundary
region of a set means that our knowledge about the set is not enough to define
the set precisely (see Figure 1).

Then, each element in U is classified as certainly inside X if it belongs to
the lower approximation or partially (probably) inside X if it belongs to the
upper approximation (see Figure 1). The boundary is the difference of these
two sets, and the bigger the boundary the worse the knowledge we have of set
X. On the other hand, the more precise is the grid implicity used to define
the indiscernibility relation R, the smaller the boundary regions are. But, the
more precise is the grid, the bigger the number of elements in U, and then,
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Fig. 1. Rough sets approximation

the more complex the problem becomes. Then, the less elements in U the
better to manage the grid, but the more elements in U the better precision we
obtain. Consequently, the goal is obtaining “small” grids with the maximum
precision possible. These two aspects are called Density and Quality of the
grid. If ¢ is the number of criteria (in our case, the number of objectives), @Q;
is the ¢-th criteria, b;'. is the j-th value of the i-th criteria (we assume these
value are ordered increasingly), then:

q 1Qi

Density(G) = ZZx;
i=1 j=1

, |Low(X)|

Quality(G) = ————
(@) x|

where z is 1 if b} is active in the grid and |Low(X)| is the cardinality of the
lower approximation of X.

3.1 Use of Rough Sets in Multi-Objective Optimization

For our MOP problems we will try to approximate the Pareto front using a
Rough Sets grid. To do this, we will use an initial approximation of the Pareto
front (provided by any other method) and will implement a grid in order to
get more information about the front that will let us improve this initial
approximation. Then, at this point we have to face the following problem: the
more precise the grid is, the higher the computational cost required to manage
it, and the less precise the grid is, the less knowledge we get about the Pareto
front. Thus, we need to design a grid that balances these two aspects. In
other words, a grid that is not so expensive (computationally speaking) but
that offers a reasonably good knowledge about the Pareto front to be used
to improve the initial approximation. To this aim, we must design a grid
and decide which elements of U (that we will call atoms and will be just
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rectangular portions of decision variable space) are inside the Pareto optimal
set and which are not. Once we have the efficient atoms, we could easily
intensify the search over these atoms as they are built in decision variable
space.

To create this grid, as an input we will have N feasible points divided
in two sets: the nondominated points (ES) and the dominated ones (DS).
Using these two sets we want to create a grid to describe the set ES in order
to intensify the search on it. This is, we want to describe the Pareto front
in decision variable space because then we could easily use this information
to generate more efficient points and then improve this initial approximation.
Figure 2 shows how information in objective function space can be translated
into information in decision variable space through the use of a grid.

% f, o Nondominated

® Dominated

£

X fy

Fig. 2. Decision variable space (left) and objective function space (right)

We must note the importance of the DS set as in a rough sets method the
information comes from the description of the boundary of the two sets. Then,
the more efficient points provided the better. However, it is also required to
provide dominated points, since we need to estimate the boundary between
being dominated and being nondominated. Once this information is computed,
we can simply generate more points in the “efficient side”. The way in which
these atoms are computed is described in Section 6.

Since the computational cost of managing the grid increases with the num-
ber of points used to create it, we will try to use just a few points. However,
such points must be as far from each other as possible, because the better
the distribution the points have in the initial approximation the less points
we need to build a reliable grid. On the other hand, in order to diversify the
search we build several grids using different (and disjoint) sets DS and ES
coming from the initial approximation. To ensure these sets are really disjoint
we will mark each point as explored or non-explored (if it has been used or not
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to compute a grid) and we will not allow repetitions. Algorithm 1 describes a
Rough Sets iteration.

Algorithm 1 Rough Sets Iteration

1: Choose NumE f f non-explored points of ES.
2: Choose NumDom non-explored points of DS.
3: Generate NumEf f efficient atoms.

4: for i =0to NumEff do

5 for j =0 to Of fspring do

6: Generate (randomly) a point new in atom ¢ and send to ES
7 if new is efficient then

8: Include in ES

9: end if

10: if A point old in ES is dominated by new then
11: Send old to DS

12: end if

13: if new is dominated by a point in ES then

14: Remove new

15: end if

16: end for

17: end for

4 Differential Evolution

Differential Evolution (DE) [24, 21] is a relatively recent heuristic designed
to optimize problems over continuous domains. DE has been shown to be not
only very effective as a global optimizer, but also very robust producing in
many cases a minimum variability of results from one run to another. DE has
been extended to solve multi-objective problems by several researchers (see
for example [1, 16, 2, 25, 18, 13, 11, 22]). However, in such extensions, DE
has been found to be very good at converging close to the true Pareto front
(i-e., for coarse-grained optimization), but not so efficient for actually reaching
the front (i.e., for fine-grained optimization). Thus, we will show how these
features can be exploited by our hybrid, which uses rough sets theory as a
local optimizer in order to improve the spread of the nondominated solutions
obtained by the MOEA adopted (which is based on differential evolution in
our case).

In DE, each decision variable is represented in the chromosome by a real
number. As in any other evolutionary algorithm, the initial population of DE
is randomly generated, and then evaluated. After that, the selection process
takes place. During the selection stage, three parents are chosen and they
generate a single offspring which competes with a parent to determine who
passes to the following generation. DE generates a single offspring (instead of
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two as a genetic algorithm) by adding the weighted difference vector between
two parents to a third parent. In the context of single-objective optimization,
if the resulting vector yields a lower objective function value than a prede-
termined population member, the newly generated vector replaces the vector
with respect to which it was compared. In addition, the best parameter vec-
tor Xpest,c is evaluated for every generation G in order to keep track of the
progress that is made during the minimization process. More formally, the
process is described as follows:

For each vector w_,_g),z =0,1,2,...,N — 1., a trial vector 7 is generated
using:

7 = xrl,é +F- (3772,65’ - $7'3,C%)

with 71, r2,73 € [0, N — 1], integer and mutually different, and F' > 0.

The integers r1, r2 and r3 are randomly chosen from the interval [0, N —1]
and are different from ¢. F' is a real and constant factor which controls the
amplification of the differential variation (Z,5.¢ — Zr3.0)-

5 Pareto-adaptive e-dominance

One of the concepts that has raised more interest within evolutionary multi-
objective optimization in the last few years is, with no doubt, the use of
relaxed forms of Pareto dominance that allow us to control the convergence of
a MOEA. From such relaxed forms of dominance, e-dominance [14] is certainly
the most popular. e-dominance has been mainly used as an archiving strategy
in which one can regulate the resolution at which our approximation of the
Pareto front will be generated. This allows us to accelerate convergence (if a
very coarse resolution is sufficient) or to improve the quality of our approxi-
mation (if we can afford the extra computational cost). However, e-dominance
has certain drawbacks and limitations. For example: (1) we can lose a high
number of nondominated solutions if the decision maker does not take into
account (or does not know) the geometrical characteristics of the true Pareto
front, (2) the extrema of the Pareto front are normally lost and (3) the upper
bound for the number of points allowed by a grid is not easy to achieve in
practice.

In order to overcome some of these limitations, the concept of pae-
dominance was proposed in [10]. Briefly, the main difference is that in pae-
dominance the hyper-grid generated adapts the sizes of the boxes to certain
geometrical characteristics of the Pareto front (e.g., almost horizontal or verti-
cal portions of the Pareto front) as to increase the number of solutions retained
in the grid. This scheme maintains the good properties of e-dominance but
improves on its main weaknesses. In order to do this, it considers not only a
different € for each objective but also the vector € = (€1, €3, ..., €, ) associated
to each f = (f1,f2,..., fm) € R™ depending on the geometrical characteristics
of the Pareto front. This is, the scheme considers different intensities of dom-
inance for each objective according to the position of each point along the
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Pareto front. Then, the size of the boxes is adapted depending on the portion
of the Pareto front that is being covered. Namely, the boxes are, for example,
smaller at the extrema of the Pareto front (since these regions are normally
more difficult to cover), and they become larger towards the middle portions
of the front.

In [10], it is empirically shown that the advantages of pae-dominance over
e-dominance make it a more suitable choice to be incorporated into a MOEA
and therefore our decision of adopting this scheme for the work reported in
this chapter.

6 The Hybrid Method: DEMORS

Our proposed approach, called DEMORS (Differential Evolution for Multi-
objective Optimization with Rough Sets) [9], is divided in two different phases,
and each of them consumes a fixed number of fitness function evaluations.
During Phase I, our DE-based MOEA is applied for 2000 fitness function
evaluations. During Phase II, a local search procedure based on rough sets
theory is applied for 1000 fitness function evaluations, in order to improve
the solutions produced at the previous phase. Each of these two phases is
described next in more detail.

6.1 Phase I : Use of Differential Evolution

The pseudo-code of our proposed DE-based MOEA is shown in Algorithm 2
[23]. Our approach keeps three populations: the main population (which is
used to select the parents), a secondary (external) population, which is used
to retain the nondominated solutions found and a third population that retains
dominated solutions removed from the second population.

First, we randomly generate 25 individuals, and use them to generate 25
offspring. Phase I has two selection mechanisms that are activated based on
the total number of generations and a parameter called sel, € [0, 1], which reg-
ulates the selection pressure. For example, if selo = 0.6 and the total number
of generations is G4, = 200, this means that during the first 120 generations
(60% of Gnaz), a random selection will be adopted, and during the last 80
generations an elitist selection will be adopted. In both selections (random and
elitist), a single parent is selected as reference. This parent is used to compare
the offspring generated by the three different parents. This mechanism guar-
antees that all the parents of the main population will be reference parents
for only one time during the generating process. Both types of selection and
recombination operators are described in [23].

Differential evolution does not use an specific mutation operator, since such
operator is somehow embedded within its recombination operator. However,
in multi-objective optimization problems, we found it necessary to provide
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Algorithm 2 Phase I pseudo-code

1: Initialize vectors of the population P
2: Evaluate the cost of each vector
3: for 1 =0to G do

4: repeat

5: Select (randomly) three different vectors

6: Perform crossover using DE scheme

7 Perform mutation

8: Evaluate objective values

9: if offspring is better than main parent then
10: replace it on population

11: end if

12:  until population is completed

13:  Identify nondominated solutions in population

14:  Add nondominated solutions into secondary population
15:  Add dominated solutions into third population

16: end for

an additional mutation operator in order to allow a better exploration of the
search space. We adopted uniform mutation for that sake [8].

As indicated before, our proposed approach uses an external archive (also
called secondary population). In order to include a solution into this archive,
it is compared with respect to each member already contained in the archive
using the pae-dominance grid [10]. Any member that is removed from the
secondary population is included in the third population. The pae-dominance
grid is created once we obtain 100 nondominated solutions. If Phase I is not
able to find at least 100 nondominated solutions, then the grid is created
until Phase II (if during this second phase it is possible to find at least 100
nondominated solutions). The minimum number of nondominated solutions
needed to create the grid is critical in several aspects:

o If we create the grid with just a few points, then the performance of the
grid may significantly degrade.

e Once we create the grid, the number of points in this second population
significantly decreases, and we have to ensure a minimum number of points
that will be used by the Phase II.

e The behavior of the Phase II is a lot better if the grid was created dur-
ing Phase I, since this ensures that the secondary population has a good
distribution of solutions.

An exhaustive set of experiments undertaken by the authors indicated that
100 points was a good compromise to cover the three aspects indicated above.
The third population stores the dominated points needed for the Phase
II. Every removed point from the secondary population is included in the
third population. If this third population reaches a size of 100 points, a pae-
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dominance grid will be created in order to manage them and thus ensure a
good distribution of points.

6.2 Phase IT : Local Search using Rough Sets

Upon termination of Phase I, we start Phase II, which departs from the non-
dominated set generated in Phase I (ES). This set is contained within the
secondary population. We also have the dominated set (D.S), which is con-
tained within the third population. It is worth remarking that ES can simply
be a list of solutions or a pae-dominance grid, depending on the moment at
which the grid is created (if Phase I generated more than 100 nondominated
solutions, then the grid will be built during that phase). This, however, does
not imply any difference in the way in which the Phase IT works.

Algorithm 3 Phase II pseudo-code

1: ES < nondominated set generated by Phase I
2: DS < dominated set generated by Phase I

3: eval < 0

4: repeat

5:  Items < NumEff points € ES & NumDom points € DS
6: Range Initialization

7:  Compute Atoms

8: for i« 0, Offspring do

9: eval < eval + 1

10: ES < Of fspring generated

11: Add Offspring into ES set

12:  end for

13: until 1000 < eval

From the set ES we choose NumE f f points previously unselected. If we
do not have enough unselected points, we choose the rest randomly from the
set ES. Next, we choose from the set DS NumDom points previously unse-
lected (and in the same way if we do not have enough unselected points, we
complete them in a random fashion). These points will be used to approxi-
mate the boundary between the Pareto front and the rest of the feasible set
in decision variable space. What we want to do now is to intensify the search
in the area where the nondominated points reside, and refuse finding more
points in the area where the dominated points reside. For this purpose, we
store these points in the set Items and perform a rough sets iteration:

1. Range Initialization: For each decision variable i, we compute and sort
(from the smallest to the highest) the different values it takes in the set
Items. Then, for each decision variable i, we have a set of Range; values,
and combining all these sets we have a (non-uniform) grid in decision
variable space.
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2. Compute Atoms: We compute NumEff rectangular atoms centered
in the NumE(f f efficient points selected. To build a rectangular atom
associated to a nondominated point 2¢ € Items we compute the following
upper and lower bounds for each decision variable i:

o Lower Bound i: Middle point between z{ and the previous value in the
set Range;.

e Upper Bound i: Middle point between z{ and the following value in
the set Range;.

In both cases, if there are no previous or subsequent values in Range;, we

consider the absolute lower or upper bound of variable i. This setting lets

the method to explore close to the feasible set boundaries.

3. Generate Offspring: Inside each atom we randomly generate O f f spring
new points. Each of these points is sent to the set ES (that, as mentioned,
can be a pae-dominance grid) to check if it must be included as a new non-
dominated point. If any point in ES is dominated by this new point, it is
sent to the set DS.

7 Computational Experiments

In order to validate our proposed approach, our results are compared with re-
spect to those generated by the NSGA-II [5], which is a MOEA representative
of the state-of-the-art in the area.

The first phase of our approach uses three parameters: crossover prob-
ability (Pc), elitism (sely) and population size (Pop). On the other hand,
the second phase uses three more parameters: number of points randomly
generated inside each atom (Of fspring), number of atoms per generations
(NumEff) and the number of dominated points considered to generate the
atoms (NumDom). Finally, the minimum number of nondominated points
needed to generate the pae-dominance grid is set to 100 for all problems.

Our approach was validated using 27 test problems, but due to space con-
straints, only 9 were included in this chapter: 5 from the ZDT set [27] and 4
from the DTLZ set [6]. In all cases, the parameters of our approach were set
as follows: Pc = 0.3, sela = 0.1, Pop = 25, Of fspring = 1, NumEff = 2
and NumDom = 10. The NSGA-II was used with the following parameters:
crossover rate = 0.9, mutation rate = 1/num_var (num_var = number of de-
cision variables), . = 15, n,, = 20, population size = 100 and maximum
number of generations = 30. The population size of the NSGA-II is the same
as the size of the grid of our approach, in order to allow a fair comparison of
results, and both approaches adopted real-numbers encoding and performed
3000 fitness function evaluations per run.

In order to allow a quantitative comparison of results, we adopted the
three following performance measures:

Size of the space covered (SSC): This metric was proposed by Zitzler
and Thiele [28], and it measures the hypervolume of the portion of the
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objective space that is dominated by the set, which is to be maximized. In
other words, SSC measures the volume of the dominated points. Hence,
the larger the SSC value, the better.

Unary additive epsilon indicator (I, ): The epsilon indicator family has
been introduced by Zitzler et al. [29] and comprises a multiplicative and
additive version. Due to the fact that the additive version of e-dominance
has been implemented in the hybrid algorithm, we decided to use the
unary additive epsilon indicator (I%,) as well. The unary additive epsilon
indicator of an approximation set A (I, (4)) gives the minimum factor €
by which each point in the real front R can be add such that the resulting
transformed approximation set is dominated by A:

Il (A) = infeer{V2® € R\32' € A: 2] <z} +e€Vi}.

I, (4) is to be minimized and a value smaller than O implies that A
strictly dominates the real front R.

Standard Deviation of Crowding Distances (SDC): In order to mea-
sure the spread of the approximation set A, we compute the standard
deviation of the crowding distance of each point in A:

||

SDC = | 77 (s =
i=1

where d; is the crowding distance of the ¢ —th point in A (see [4] for more
details of this distance) and d; is the mean value of all d;. Nevertheless,
other types of measures could be use for d;. Now, 0 < SDC < oo and
the lower the value of SDC, the better the distribution of vectors in A. A
perfect distribution, that is SDC = 0, means that d; is constant for all 4.

7.1 Discussion of Results

Table 1 shows a summary of our results. For each test problem, we performed
30 independent runs per algorithm. The results reported in Table 1 are the
mean values for each of the three performance measures and the standard
deviation of the 30 runs performed. The best mean values in each case are
shown in boldface in Table 1.

It can be clearly seen in Table 1 that our DEMORS produced the best
mean values in all cases. The graphical results shown in Figures 3 and 4 serve
to reinforce our argument of the superiority of the results obtained by our
DEMORS. These plots correspond to the run in the mean value with respect
to the unary additive epsilon indicator. In all the bi-objective optimization
problems, the true Pareto front (obtained by enumeration) is shown with a
continuous line and the approximation obtained by each algorithm is shown
with black circles. In Figures 3 and 4, we can clearly see that in the ZDT
problems, the NSGA-II is very far from the true Pareto front, whereas our
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DEMORS has already converged to the true Pareto front after only 3000
fitness function evaluations. The spread of solutions of our DEMORS is evi-
dently not the best possible, but we argue that this is a good trade-off (and
the performance measures back up this statement) if we consider the low com-
putational cost achieved. Evidently, the quality of the spread of solutions is
sacrificed at the expense of reducing the computational cost required to obtain
a good approximation of the Pareto front.

Our results indicate that the NSGA-II, despite being a highly competitive
MOEA is not able to converge to the true Pareto front in most of the test
problems adopted when performing only 3000 fitness function evaluations. If
allowed a higher number of evaluations, the NSGA-II would certainly produce
a very good (and well-distributed) approximation of the Pareto front.

SsC Il SDC
Function| DEMORS NSGA-II | DEMORS | NSGA-II | DEMORS | NSGA-II
Mean o |(Mean o |Mean o |Mean o [Mean o [Mean o
ZDT1 [0.852 0.001 |0.635 0.021]|0.006 0.001{0.193 0.022|0.008 0.004|0.051 0.010
ZDT2 [0.794 0.014 |0.555 0.032|0.031 0.036|0.342 0.053|0.033 0.026|0.159 0.041
ZDT3 [0.788 0.002 |[0.647 0.025|0.017 0.006{0.154 0.020(0.091 0.016|0.073 0.005
ZDT4 [0.993 0.002 [ 0.866 0.029]|0.002 0.001{0.137 0.030{0.011 0.012|0.128 0.070
ZDT6 [0.899 0.002 [0.333 0.042]{0.004 0.002{0.572 0.054|0.016 0.030|0.211 0.089

DTLZ1 [0.997 0.0007(0.996 0.002(0.023 0.007|0.046 0.009(0.096 0.013{0.040 0.018
DTLZ2 |0.941 0.0017(0.930 0.004(0.067 0.008|0.079 0.015[0.026 0.011{0.007 0.007
DTLZ3 [0.996 0.0006(0.996 0.004(0.042 0.018|0.060 0.014|0.110 0.036{0.043 0.016
DTLZ4 [0.821 0.115 [0.890 0.032|0.352 0.078|0.245 0.038(0.136 0.050{0.039 0.010

Table 1. Comparison of results between our DEMORS and the NSGA-II for the
ZDT and DTLZ problems adopted. o refers to the standard deviation over the 30
runs performed.

7.2 Evaluating the Importance of Using Rough Sets

A natural question to ask regarding the use of rough sets in this case is if they
really provide an aggregated value to the MOEA adopted. Some may think
that the multi-objective extension of differential evolution that we adopted
for the first stage of our approach is powerful enough as to converge to the
Pareto front of the problems that we studied without any further help. We
have argued that this is not the case, but some numerical results may be a
more convincing argument. For that sake, we conducted a small experimental
study in which we evaluated the outcome produced when applying only the
first stage of the algorithm, and then we compared such results with respect to
those generated upon applying the second stage. Table 2 shows this compar-
ison of results. The values in boldface are the best mean results. By looking
at Table 2, one can clearly appreciate that in most cases, and with respect to
the three performance measures adopted, the use of rough sets improved (on
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average) the performance of the algorithm (mainly with respect to the unary
additive epsilon indicator metric).

SSC I, SDC
Function| DEMORS Phase-1 DEMORS Phase-1 DEMORS Phase-I
Mean o Mean o (Mean o |Mean o |Mean o |Mean o
ZDT1 |0.852 0.001 | 0.849 0.002|{0.006 0.001|0.020 0.008(0.008 0.004|0.031 0.023
ZDT2 |0.794 0.014 |0.796 0.010|0.031 0.036({0.016 0.012{0.033 0.026|0.035 0.026
ZDT3 |0.788 0.002 |0.788 0.002|{0.017 0.006(0.023 0.007[0.091 0.016(0.073 0.009
ZDT4 (0.993 0.002 | 0.992 0.002|{0.002 0.001|0.004 0.003{0.011 0.012|0.024 0.020
ZDT6 |(0.899 0.002 | 0.896 0.002{0.004 0.002(0.017 0.005(0.016 0.030(0.062 0.036

DTLZ1 |0.997 0.0007| 0.996 0.007|{0.023 0.007|{0.023 0.008]|0.096 0.013|0.019 0.014
DTLZ2 |0.941 0.0017| 0.933 0.002{0.067 0.008|0.077 0.015|0.026 0.011]|0.029 0.015
DTLZ3 |0.996 0.0006| 0.995 0.008|{0.042 0.018|{0.042 0.014]|0.110 0.036|0.024 0.016
DTLZ4 (0.821 0.115 |0.7570 0.108]{0.352 0.078|0.394 0.038[0.136 0.050(0.185 0.056

Table 2. Comparison of results between our DEMORS and the Phase 1 of our algo-
rithm for the ZDT and DTLZ problems adopted. o refers to the standard deviation
over the 30 runs performed.

8 Conclusions and Future Work

We have presented a new technique to improve the results of a MOEA based
on a local search mechanism inspired on Rough sets theory. The proposed
approach was found to provide very competitive results in a variety of test
problems, despite the fact that it performed only 3000 fitness function eval-
uations. Within this number of evaluations, NSGA-II, a highly competitive
MOEA, is not able to converge to the true Pareto front in most of the test
problems adopted. This led us to conclude that Rough Sets is a suitable tool to
be hybridized with a MOEA in order to improve the local exploration around
the nondominated solutions found so far. If the search engine adopted to pro-
duce a coarse-grained approximation of the Pareto front is efficient (as in our
case), then a good approximation of the true Pareto front can be achieved
with a low computational cost.

As part of our future work, we are interested in coupling the local search
mechanisms described in this chapter to different search engines. Particularly,
we are interested in exploring a hybridization with particle swarm optimiza-
tion [12], which has also been found to be a very effective search engine in
multiobjective optimization.
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