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CHAPTER 1

Evolutionary Algorithms: Basic Concepts and Applications in
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Carlos A. Coello Coello

CINVESTAV-IPN
Evolutionary Computation Group
Dpto. de Ing. Elect./Secc. Computacion
Awv. IPN No. 2508, Col. San Pedro Zacatenco
Mézico, D.F. 07300, MEXICO
E-mail: ccoello@cs.cinvestav.mz

In this chapter, we provide a short introduction to evolutionary algo-
rithms, including their basic concepts and some of their representative ap-
plications reported in the specialized literature. Then, we describe some
case studies involving successful applications of evolutionary algorithms in
biometrics. The final part of the chapter presents some possible research
directions regarding the use of evolutionary algorithms in biometrics.

1. Introduction

Nature has inspired man since ancient times. Although sometimes this
inspiration was simply imitated, many of the real breakthroughs of
humankind occurred when nature’s principles were understood rather
than copied. Many of such examples are well-documented in engineering
French(1994) (e o dams, tunnels, and airplanes).

Thus, it is not by any means surprising to find that the evolution of
species has served as inspiration to propose search and optimization tech-
niques. After all, nature has evolved (sometimes rather complex) solutions
to a wide variety of difficult problems over millions of years Pawkins(1990)
Early suggestions of the connections between evolution and optimization
can be traced as long back as the 1930s €annon(1932) However, it was until
the 1960s when the three main techniques based on the evolution of species
were developed ¥°9¢1(1998) These approaches (genetic algorithms, evolution-
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ary programming and evolution strategies), which are now collectively de-
nominated “evolutionary algorithms”, have been found to be very effective
for single-objective optimization and are now widely used in a great variety
of disciplines Goldberg(1989),Schwefel(1981),Fogel(1995), Holland(1975),Eiben(2003)

Biometrics is a discipline that measures and statistically analyses bi-
ological data. Recently, and in the context of information technology,
the term has been adopted to refer to the technologies for measuring
and analyzing human body characteristics such as fingerprints, eye reti-
nas and irises, voice patterns, facial patterns and hand measurements,

Zhang(2000)  Biometric applications

especially for authentication purposes
involve several complex problems. For example, many current biometric
applications are closely related to pattern recognition and image anal-
ysis Soldeketal-(1997) " The complexity of these problems (which tend to
be approached using statistical techniques) makes attractive the use of
heuristics such as evolutionary algorithms, which have been found to be
very powerful in a wide variety of optimization and classification tasks
Fogel(1995),Goldberg(1989),Eiben(2003),Backetal.(1997) .

The remainder of this chapter is organized as follows. Section 2 provides
some basic concepts related to evolutionary algorithms. Section 3 attempts
to summarize the material from the previous section, by providing a more
general framework for studying evolutionary algorithms. This includes a
discussion of some of the main advantages offered by evolutionary algo-
rithms. Section 4 discusses a few representative case studies of applications
of evolutionary algorithms in biometrics. After that, we provide some possi-
ble future research directions in Section 5 and our conclusions in Section 6.

2. Basic Notions of Evolutionary Algorithms

The famous naturalist Charles Darwin defined Natural Selection or Sur-
vival of the Fittest as the preservation of favorable individual differences
and variations, and the destruction of those that are injurious Perwin(1882)
In nature, individuals have to adapt to their environment in order to sur-
vive in a process called evolution, in which those features that make an
individual more suited to compete are preserved when it reproduces, and
those features that make it weaker are eliminated. Such features are con-
trolled by units called genes which form sets called chromosomes. Over
subsequent generations not only the fittest individuals survive, but also
their fittest genes which are transmitted to their descendants during the
sexual recombination process which is called crossover.
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Early analogies between the mechanism of natural selection and a learn-
ing (or optimization) process led to the development of the so-called “evolu-
tionary algorithms” (EAs) Ba¢k(1996) 'in which the main goal is to simulate
the evolutionary process in a computer. There are three main paradigms
within evolutionary algorithms, whose motivations and origins were totally
independent from each other: evolution strategies Schwefel(1981) " ayolution-
ary programming F09¢/(1999) " and genetic algorithms Holend(1975) = Addi-
tionally, some authors consider genetic programming %°2#(1992) a5 another
paradigm, although genetic programming can also be seen as a special type
of genetic algorithm. Each of these four types of evolutionary algorithm will
be discussed next in more detail.

2.1. Evolution Strategies

When working towards his PhD degree in engineering at the Technical Uni-
versity of Berlin, Ingo Rechenberg (see Fig. 1) came across some optimiza-

tion problems in hydrodynamics that could not be solved using traditional
Rao(1996).

mathematical programming techniques

Fig. 1. Ingo Rechenberg. He developed an optimization algorithm which consisted of
applying a set of random changes to a reference solution. The approach was later called
“evolution strategy”.

This led him to the development of a very simple optimization algorithm
which consisted of applying a set of random changes to a reference solution.
The approach was later called “evolution strategy” and it was formally
introduced in 1964 Fo9¢l(1998) The original evolution strategy was called
(1 + 1)-ES, because it consisted of a single parent that was mutated (i.e.,
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subject to a random change) to produce an offspring. Then, the parent was
compared to its offspring and the best from them was selected to become
parent for the following iteration (or generation).

In the original (141)-EE, a new individual was produced using;

F =zt + N(0, ),

where ¢ refers to the current generation (or iteration) and N (0, &) is a vector
of independent Gaussian numbers with median zero and standard deviation
d. It is important to emphasize that an “individual” in an evolution strategy
contains the set of decision variables of the problem. No encoding is used in
this case. So, if the decision variables are real numbers, such real numbers
are directly put together as a single vector for each individual.

Rechenberg fechenberg(1973) stated a rule for adjusting the standard devi-
ation in a deterministic way such that the evolution strategy could converge
to the global optimum. This is now known as the “1/5 success rule”, and
it consists of the following:

o(t—mn)/cifps >1/5
o(t)=¢ o(t—n)-cif p, <1/5
o(t—n) ifp,=1/5

where n is the number of decision variables, t is the current generation,
ps is the relative frequency of successful mutations (i.e., those mutations
in which the offspring replaced its parent because it had a better fitness)
measured over a certain period of time (e.g., at every 10 x n individuals)
and ¢ = 0.817 (this value was theoretically derived by Hans-Paul Schwefel
Schwefel(1981) __gee Fig. 2—). o(t) is adjusted at every n mutations.

Over the years, several other variations of the original evolution strategy
were proposed, after the concept of population (i.e., a set of solutions) was
introduced Bick(1996) The most recent versions of the evolution strategy
are the (u + A)-ES and the (p, A)-ES. In both cases, u parents are mutated
to produce A offspring. However, in the first case (+ selection), the u best
individuals are selected from the union of parents and offspring. In the
second case (, selection), the best individuals are selected only from the
offspring produced.

In modern evolution strategies, not only the decision variables of
the problem are evolved, but also the parameters of the algorithm
itself (i.e., the standard deviations). This is called “self-adaptation”
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X/
/4
Fig. 2. Hans-Paul Schwefel. He theoretically derived the “1/5 success rule”, which is

used for adjusting the standard deviation in a deterministic way such that the evolution
strategy can converge to the global optimum.

Schwefel(1981),Back(1996) Parents are mutated using:

o(i) x exp(T'N(0,1) + 7N;(0,1))

o'(i)
x z(i) + N(0,0' (7)),

"(4)
where 7 and 7' are proportionality constants that are defined in terms of
n.

Also, modern evolution strategies allow the use of recombination (either
sezxual, when only 2 parents are involved, or panmictic, when more than 2
parents are involved in the generation of the offspring).

Some representative applications of evolution
strategies are Schwefel(1981),Back(1996),Fogel(1995). nonlinear control, struc-
tural optimization, image processing and pattern recognition, biometrics,
classification, network optimization, and airfoil design.

2.2. Ewvolutionary programming

Lawrence J. Fogel (see Fig. 3) introduced in the 1960s an approach called
“evolutionary programming”, in which intelligence is seen as an adaptive
behavior F09el(1966),Fogel(1999) ~The original motivation of this paradigm
was to solve prediction problems using finite state automata.
Evolutionary programming emphasizes the behavioral links between
parents and offspring, instead of trying to emulate some specific genetic op-
erators (as in the case of the genetic algorithm Goldberg(1989),Mitchell(1996))
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Fig. 3. Lawrence J. Fogel. He developed an approach called “evolutionary program-
ming”, in which intelligence is seen as an adaptive behavior.

The basic algorithm of evolutionary programming is very similar to that
of the evolution strategy. A population of individuals is mutated to generate
a set of offspring. However, in this case, there are normally several types of
mutation operators and no recombination (of any type), since evolution is
modeled at the species level and different species do not interbreed. Another
difference with respect to evolution strategies is that in this case, each
parent produces exactly one offspring. Also, the decision of whether or not
a parent will participate in the selection process is now determined in a
probabilistic way, whereas in the evolution strategy this is a deterministic
process. Finally, no encoding is used in this case (similarly to the evolution
strategy) and emphasis is placed on the selection of the most appropriate
representation of the decision variables.

In its original version, evolutionary programming didn’t have a mecha-
nism to self-adapt its parameters. However, in the early 1990s, Fogel and
some of his co-workers realized of the importance of such mechanism and
proposed the so-called “meta-evolutionary programming” Fogeletal.(1991) fo.
continuous optimization. Over time, other self-adaptation mechanisms were
proposed also for discrete optimization Angelineetal.(1996)

Interestingly, it was until the early 1990s that the evolution strategies
community met the evolutionary programming community, despite the fact
that both paradigms share very evident similarities Back(1996),Fogel(1999)

Some representative applications of evolutionary programming are
Fogel(1995),Fogel(1999) . forecasting, games, route planning, pattern recogni-
tion, and neural networks training.
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2.3. Genetic Algorithms

Genetic algorithms (originally denominated “genetic reproductive plans”)
were introduced by John H. Holland (see Fig. 4) in the early 1960s

Holland(1962), Holland(1962a) The main motivation of this work was the so-
Holland(1975)

lution of machine learning problems

Fig. 4. John H. Holland. He introduced genetic algorithms.

Genetic algorithms emphasize the importance of sexual recombination
(which is the main operator) over the mutation operator (which is used
as a secondary operator). They also use probabilistic selection (like evo-
lutionary programming and unlike evolution strategies). Before describ-
ing the way in which a genetic algorithm (GA) works, we will provide
some of the basic terminology adopted by the researchers from this area
HeitkoetterandBeasley(1995) i, Tables 1 and 2.

The basic operation of a Genetic Algorithm is illustrated in the following

segment of pseudo-code BucklesandPetry(1992).

generate initial population, G(O);

evaluate G(0);

t:=0;

repeat
t:=t+1;
generate G(t) using G(t-1) (applying genetic operators);
evaluate G(t);

until the stop condition is reached

First, an initial population is randomly generated. The individuals of
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Table 1. Basic terminology of genetic algorithms.

Term Definition

A data structure that holds a “string” of task parameters, or genes.
This string may be stored, for example, as a binary bit-string (binary
representation) or as an array of integers (floating point o real-coded
representation) that represent a floating point number. This chromo-
some is analogous to the base-4 chromosomes present in our own DNA.
Normally, in the GA community, the haploid model of a cell is assumed
(one-chromosome individuals). However, diploids have also been used
in the specialized literature Goldberg(1989)

A chromosome

A subsection of a chromosome that usually encodes the value of a single
A gene parameter (i.e., a decision variable).

The value of a gene. For example, for a binary representation each gene
may have an allele of 0 or 1, and for a floating point representation,

An allele each gene may have an allele from 0 to 9.

A pattern of gene values in a chromosome, which may include “do not
care” states (represented by a # symbol). Thus, in a binary chromo-
some, each schema can be specified by a string of the same length as

A schema the chromosome, with each character being one of { 0, 1, # }. A partic-
ular chromosome is said to “contain” a particular schema if it matches
the schema (e.g. chromosome 01101 matches schema #1#04).

A value that reflects its performance (i.e., how well solves a certain
task). A fitness function is a mapping of the chromosomes in a pop-
The fitness of an  ulation to their corresponding fitness values. A fitness landscape is
individual the hypersurface obtained by applying the fitness function to every
point in the search space.

A small, tightly clustered group of genes which have co-evolved in such
a way that their introduction into any chromosome will be likely to
give increased fitness to that chromosome. The building block hy-
pothesis Goldberg(1989) gtates that GAs generate their solutions by
first finding as many building blocks as possible, and then combining
them together to give the highest fitness.

A building
block

A condition under which the combination of good building blocks leads
to reduced fitness, rather than increased fitness. This condition was

Deception proposed by Goldberg as a reason for the failure of GAs on certain
tasks Goldberg(1989)

this population will be a set of chromosomes or strings of characters (letters
and/or numbers) that represent all the possible solutions to the problem.
One aspect that has great importance in the case of the genetic al-
gorithm is the encoding of solutions. Traditionally, a binary encoding has
been adopted, regardless of the type of decision variables of the problem
to be solved Goldbers(1989) Holland provides some theoretical and biolog-
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Table 2. Basic terminology of genetic algorithms (Continuation of Table 1).

Term Definition

A mechanism which ensures that the chromosomes of the highly fit
member(s) of the population are passed on to the next generation with-
out being altered by any genetic operator. The use of elitism guarantees
that the maximum fitness of the population never decreases from one
generation to the next, and it normally produces a faster convergence
of the population. More important yet is the fact that it has been
(mathematically) proven that elitism is necessary in order to be able
to guarantee convergence of a simple genetic algorithm towards the
global optimum Rudolph(1994)

Elitism (or an
elitist strategy)

The interaction between different genes in a chromosome. It is the ex-
tent to which the contribution to fitness of one gene depends on the
values of other genes. Geneticists use this term to refer to a “mask-
ing” or “switching” effect among genes, and a gene is considered to
be “epistatic” if its presence suppresses the effect of a gene at another

Epistasis locus (or position in the chromosome). This concept is closely related
to deception, since a problem with high degree of epistasis is decep-
tive, because building blocks cannot be formed. On the other hand,
problems with little or no epistasis are trivial to solve (hill climbing is
sufficient).

The process of using information gathered from previously visited
points in the search space to determine which places might be prof-
itable to visit next. Hill climbing is an example of exploitation, because
it investigates adjacent points in the search space, and moves in the
direction giving the greatest increase in fitness. Exploitation techniques
are good at finding local minima (or maxima). The GA uses crossover
as an exploitation mechanism.

Exploitation

The process of visiting entirely new regions of a search space, to see
if anything promising may be found there. Unlike exploitation, explo-
ration involves leaps into unknown regions. Random search is an exam-
Exploration ple of exploration. Problems which have many local minima (or max-
ima) can sometimes only be solved using exploration techniques such as
random search. The GA uses mutation as an exploration mechanism.

A potential solution to a problem, and is basically the string of values
A genotype chosen by the user, also called chromosome.

The meaning of a particular chromosome, defined externally by the
A phenotype user.

The name given to the changes in gene/allele frequencies in a popu-
lation over many generations, resulting from chance rather than from
selection. It occurs most rapidly in small populations and can lead to
some alleles to become extinct, thus reducing the genetic variability in
the population.

Genetic drift

A group of individuals which have similar fitness. Normally in mul-
tiobjective and multimodal optimization, a technique called fitness
sharing is used to reduce the fitness of those individuals who are in
the same niche, in order to prevent the population to converge to a
single solution, so that stable sub-populations can be formed, each one
corresponding to a different objective or peak (in a multimodal opti-
mization problem) of the function DebandGoldberg(1989)

A niche
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Fig. 5. Example of the binary encoding traditionally adopted with the genetic algo-
rithm.

Holland(1975) - However, over

ical arguments for using a binary encoding
the years, other types of encodings have been proposed, including the
use of vectors of real numbers and permutations, which lend themselves
as more “natural” encodings for certain types of optimization problems
Michalewicz(1996), Rothlauf(2002)

Once an appropriate encoding has been chosen, we apply a fitness func-
tion to each one of these chromosomes in order to measure the quality of the
solution encoded by the chromosome. Knowing each chromosome’s fitness,
a selection process takes place to choose the individuals (presumably, the
fittest) that will be the parents of the following generation. The most com-
monly used selection schemes are described in Table 3 GotdbergandDeb(1991)

Cross-point Cross-point

i i
1]o[1]o[1[1]o[1] 1]1]1[o]1[1]1]0

1]o[1]o[1[1]1]0
1]1[1]o[1[1]o[1]

Descendants

Fig. 6. Use of a single-point crossover between two chromosomes. Notice that each pair
of chromosomes produces two descendants for the next generation. The cross-point may
be located at the string boundaries, in which case the crossover has no effect and the
parents remain intact for the next generation.

After being selected, crossover takes place. During this stage, the ge-
netic material of a pair of individuals is exchanged in order to create the
population of the next generation. There are three main ways of performing
Crossover:
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Table 3. The basic selection schemes of genetic algorithms.

Scheme Definition

This term is used generically to describe several selection schemes that
choose individuals for birth according to their objective function values
f- In these schemes, the probability of selection p of an individual from
the ¢th class in the t{th generation is calculated as

pig— i

it = <k .
Proportionate Z§=1 m; ¢ fj
Selection

(1)

where k classes exist and the total number of individuals
sums to n. Several methods have been suggested for sam-
pling this probability distribution, including Monte Carlo or
roulette wheel selection DPeJong(1975) = giochastic remainder selec-

tion B""k”(1982)’3”"dle(1981), and stochastic universal selection
Baker(1987),Gre fenstetteandBaker (1989)

In this scheme, proposed by Baker Baker(1985) the population is sorted
from best to worst, and each individual is copied as many times as
it can, according to a non-increasing assignment function, and then
proportionate selection is performed according to that assignment.

Ranking
Selection

The population is shuffled and then is divided into groups of k& elements
from which the best individual (i.e., the fittest) will be chosen. This
process has to be repeated k times because on each iteration only m
parents are selected, where
population size
Tournament Se- m= P

lection
For example, if we use binary tournament selection (k = 2), then we

have to shuffle the population twice, since at each stage half of the
parents required will be selected. The interesting property of this se-
lection scheme is that we can guarantee multiple copies of the fittest
individual among the parents of the next generation.

This is the technique used in Genitor Whitley(1998) \which works indi-
vidual by individual, choosing an offspring for birth according to linear
ranking, and choosing the currently worst individual for replacement.
In steady-state selection only a few individuals are replaced in each
generation: usually a small number of the least fit individuals are re-
placed by offspring resulting from crossover and mutation of the fittest
individuals. This selection scheme is normally used in evolving rule-
based systems in which incremental learning (and remembering what
has already been learned) is important and in which members of the

population collectively (rather than individually) solve the problem at
hand Mitchell(1996)

Steady  State
Selection

(1) Single-point crossover: A position of the chromosome is randomly se-
lected as the crossover point as indicated in Fig. 6.
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Cross-points Cross-points
1]o[1]1]01]0]1] 1]1]1]0]1]1]1]0]

[1]o[1[o]1[1]0]1]

1/1]1[1]o[1[1]0]

Descendants

Fig. 7. Use of a two-point crossover between two chromosomes. In this case the genes
at the extremes are kept, and those in the middle part are exchanged. If one of the
two cross-points happens to be at the string boundaries, a single-point crossover will be
performed, and if both are at the string boundaries, the parents remain intact for the
next generation.

(2) Two-point crossover: Two positions of the chromosome are randomly
selected as to exchange chromosomic material, as indicated in Fig. 7.

Parent 1 Parent 2
[1lofsfofs]afofs]  [afasfofs]s][a]0]

e

‘1‘0‘1‘0‘1‘1‘0‘0‘Child1

Parent 1 Parent 2
[2lofafofafafola]  [a]sfafofa]e]1]o]

[2[22fefala]2]2]ennaz

Fig. 8. Use of 0.5-uniform crossover (i.e., adopting a 50% probability of crossover)
between two chromosomes. Notice how half of the genes of each parent go to each of the
two children. First, the bits to be copied from each parent are selected randomly using
the probability desired, and after the first child is generated, the same values are used
to generate the second child, but inverting the source of procedence of the genes.

(3) Uniform crossover: This operator was proposed by Syswerda
Syswerda(1989) and can be seen as a generalization of the two previ-
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ous crossover techniques. In this case, for each bit in the first offspring
it decides (with some probability p) which parent will contribute its
value in that position. The second offspring would receive the bit from
the other parent. See an example of 0.5-uniform crossover in Fig. 8.
Although for some problems uniform crossover presents several advan-
tages over other crossover techniques S¥swerda(1989) in geperal, one-
point crossover seems to be a bad choice, but there is no clear winner

between two-point and uniform crossover Métchell(1996), Michalewicz(1996)

Mutation points

[1]o]o]1]o1]1]1] originalstring

‘1‘0‘1‘1‘0‘1‘0‘1‘ String after mutation

Fig. 9. An example of mutation using binary representation.

Mutation is another important genetic operator that randomly changes
a gene of a chromosome. If we use a binary representation, a mutation
changes a 0 to 1 and viceversa. An example of how mutation works is
displayed in Fig. 9. This operator allows the introduction of new chromo-
somic material to the population and, from the theoretical perspective, it
assures that—given any population—the entire search space is connected
BucklesandPetry(1992)

If we knew in advance the final solution, it would be trivial to determine
how to stop a genetic algorithm. However, as this is not normally the case,
we have to use one of the two following criteria to stop the GA: either give
a fixed number of generations in advance, or verify when the population
has become homogeneous (i.e., all or most of the individuals have the same
fitness).

Traditionally, genetic algorithms do not have a self-adaptation mecha-
nism. Therefore, one of their main drawbacks is that their parameters tend
to be fine-tuned in an empirical manner (i.e., by trial-and-error).

Some representative applications of genetic algorithms are the following
Goldberg(1989),Fiben(2003),Back(1996) . (ata mining, optimization (structural,
combinatorial, etc.), pattern recognition, and robot motion planning,.
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2.4. Genetic programming

One of the original goals of artificial intelligence (AI) was the automatic
generation of computer programs that could produce a desired task given
a certain input. During several years, such a goal seemed too ambitious
since the size of the search space increases exponentially as we extend the
domain of a certain program and, consequently, any technique will tend to
produce programs that are either invalid or highly inefficient.

Fig. 10. John Koza. He suggested the use of a genetic algorithm with a tree-based
encoding.

Some early evolutionary algorithms were attempted in automatic pro-
gramming tasks, but they were unsuccessful and were severly criticized by
some Al researchers F9¢/(1995) Qver the years, researchers realized that
the key issue for using evolutionary algorithms in automatic programming
tasks was the encoding adopted. In this regard, John Koza %°022(1992) (see
Fig. 10) suggested the use of a genetic algorithm with a tree-based en-
coding. In order to simplify the implementation of such an approach, the
original implementation of this sort of approach (which was called “genetic
programming”) was done under LISP, taking advantage of the fact that
such programming language has a built-in parser.

The tree-encoding adopted by Koza obviously requires of different al-
phabets and specialized operators for evolving randomly generated pro-
grams until they become 100% valid. Note however, that the basic prin-
ciples of this technique may be generalized to any other domain and, in
fact, genetic programming has been used in a wide variety of applications
Koza(1992)

The trees used in genetic programming consist of both functions and
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Fig. 11. An example of a chromosome used in genetic programming,.

terminals. The functions normally adopted are the following K ©2a(1992).

Arithmetic operations (e.g., +, -, X, + )

Mathematical functions (e.g., sine, cosine, logarithms, etc.)
Boolean Operations (e.g., AND, OR, NOT)

Conditionals (IF-THEN-ELSE)

Loops (DO-UNTIL)

Recursive Functions

Any other domain-specific function

T2 zf

Fig. 12. The tree nodes are numbered before applying the crossover operator.

Terminals are typically variables or constants, and can be seen as func-
tions that take no arguments. An example of a chromosome that uses the
functions F={AND, OR, NOT} and the terminals T={A0, Al} is shown
in Fig. 11.

Crossover can be applied by numbering the tree nodes corresponding to
the two parents chosen (see Fig. 12) and (randomly) selecting a point in
each of them such that the subtrees below such point are exchanged (see
Fig. 13, where we assume that the crossover point for the first parent is 2
and for the second is 6). Typically, the sizes of the two parent trees will
be different as in the example previously shown. It is also worth noticing
that if the crossover point is the root of one of the parent trees, then the
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o b

Fig. 13. The two offspring generated after applying the crossover operator.

whole chromosome will become a subtree of the other parent. This allows
the incorporation of subroutines in a program. It is also possible that the
roots of both parents are selected as crossover points. Should that be the
case, the crossover operator will have no effect and the offspring will be
identical to their parents.

Normally, genetic programming implementations impose a limit on the
maximum depth that a tree can reach, as to avoid the generation (as a
byproduct of crossover and mutation) of trees of very large size that could

produce a memory overflow Benzhafetal.(1998)

X (=) ()
5
Ca) o) Caod
Caod Cmd  (uon Can)
Before After
Before After e e

(a) (b)

Fig. 14. An example of mutation in genetic programming (a) and of encapsulation in
genetic programming (b).

Mutation in genetic programming takes place through a (random) selec-
tion of a certain node tree. The subtree below the chosen node is replaced
by another tree which is randomly generated. Fig. 14a shows an example
of the use of this operator (the mutation point in this example is node 3).

In genetic programming is also possible to protect or “encapsulate” a
certain subtree which we know to contain a good building block, as to
avoid that it is destroyed by the genetic operators. The selected subtree is
replaced by a symbolic name that points to the real location of the subtree.
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Such subtree is separately compiled and linked to the rest of the tree in an
analogous way to the external classes of object oriented languages. Fig. 14b
shows an example of encapsulation in which the right subtree is replaced
by the name (EO).

Finally, genetic programming also provides mechanisms to destroy a
certain percentage of the population such that we can renovate the chro-
mosomic material after a certain number of generations. This mechanism,
called execution, is very useful in highly complex domains in which our
population may not contain a single feasible individual even after a consid-
erably large number of generations.

3. A More General View of Evolutionary Algorithms

Despite the obvious differences and motivations of each of the aforemen-
tioned paradigms, the trend in the last few years has been to decrease the
differences among the paradigms and refer (in generic terms) simply to
evolutionary algorithms when talking about any of them.

In Table 4, the basic components to implement an EA in order
to solve a problem Michalewicz(1996),Eiben(2003) a0 given. Also, it is
shown that EAs differ from traditional search techniques in several ways
BucklesandPetry(1992)

It is worth indicating that the ever-growing popularity of evolutionary
algorithms in a variety of application domains tends to be related to their
good reputation as “optimizers” (either for single-objective or for multi-
objective problems ©syczka(2002),CoelloCoelloetal-(2002))  Thig js remarkable
if we consider that some of them (namely, genetic algorithms) were not
originally proposed for that type of application and that their use in op-
timization tasks has been questioned by some well-established researchers
in the evolutionary computation community P¢/079(1993) ~ Apparently, the
reported success of evolutionary algorithms has resulted sufficiently con-

vincing for practitioners and therefore their popularity Bécketal-(1997)

4. Some Applications in Biometrics

Since their very inception, several researchers have attempted to use evo-
lutionary algorithms for tasks related to
pattern recognition, image processing, classification and machine learning
Cavicchio(1970),Cornett(1972),Trellue(1973),Fitzpatricketal.(1984),Stadnyk(1987),Wilson(1985),Englander(1985)
However, most of this early work was mainly focused on the algorithmic
development aspect rather than on an specific application. Thus, for some
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Basic components to implement an EA and particular features of an EA.

Requirements of an EA

Particular features of an EA

(1)

A representation of the potential so-
lutions to the problem. The selection
of an appropriate encoding scheme
tends to be crucial for the good per-
formance of an EA Rothlauf(2002)

A way to create an initial popula-
tion of potential solutions (this is nor-
mally done randomly, but determin-
istic approaches can also be used).

An evaluation function that plays the
role of the environment, rating solu-
tions in terms of their “fitness”. The

EAs do not require problem spe-
cific knowledge to carry out a search.
However, if such knowledge is avail-
able, it can be easily incorporated as
to make the search more efficient.

EAs use stochastic instead of deter-
ministic operators and appear to be
robust in noisy environments.

EAs are conceptually simple and easy

chapterll-revised

definition of a good fitness function
is also vital for having a good perfor-
mance.

to implement.
e EAs have a wide applicability.

e EAs are relatively simple to paral-

(4) A selection procedure that chooses
lelize.

the parents that will reproduce.

e EAs operate on a population of po-
tential solutions at a time. Thus, they
are less susceptible to false attractors
(i-e., local optima).

(5) Evolutionary operators that alter the
composition of children (normally,
crossover and mutation).

(6) Values for various parameters that
the evolutionary algorithm uses (pop-
ulation size, probabilities of applying
evolutionary operators, etc.).

time, there was relatively little research on the development of evolutionary
algorithms for specific biometric applications. This situation has changed in
the last few years Soldeketal-(1997) " although the use of other soft computing
techniques such as neural networks is still more common than the use of
evolutionary algorithms HuengandY an(1997)

Next, we will review a few case studies in this area which aim to provide
a general picture of the type of research being conducted nowadays. A
summary of these case studies is provided in Table 5.

4.1. Fingerprint compression

Grasemann and Miikulainen GrasemannandMiikulainen(2005) hroposed a co-
evolutionary genetic algorithm based on a technique known as Enforced
Sub-Populations GomezandMiikulainen(1999) 4nd on a mathematical technique
called Lifting to find wavelets that are specially adapted to a particular class
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Table 5. Applications of evolutionary algorithms in biometrics.

Biometric Technique of EA

lightgray.75 light Physiological biometrics
In GrasemannandMiikulainen(2005), a coevolutionary genetic al-
gorithm proposed based on Enforced Sub-Populations technique
GomezandMiikulainen(1999) and on a mathematical technique called
Lifting to find wavelets that are specially adapted to a particular class
of images.

Other researchers have also worked on the use of evolutionary al-
gorithms for solving other related problems such as optimizing the
alignment of a pair of fingerprint images Hanyetal.(2000) | gstimation of

the ridges in fingerprints Ahmedetal-(1999) 4n4 fingerprint classification
Qietal.(1998)

Fingerprints

In HoandHuang(2001) "5 genetic algorithm-based approach have been
proposed for facial modeling from an uncalibrated face image using a
flexible generic parameterized facial model.

Face Other researchers have also used evolutionary algorithms for related
problems, such as human face detection Y okocandHagiwara(1996) ay¢0-
mated face recognition TellerandVeloso(lQQB),Huang(1998), and human
posture estimation Reindersetal.(1992) among others.

In Kharmaetal.(2003) "5 cooperative coevolutionary genetic algorithm is
used for hand-based feature selection. The outcome of the approach is
a number of good (i.e., tight and well-separated) clusters which exist
in the smallest possible feature space.

Palmprints

lightgray.75 light Behavioral biometrics

In ?, genetic programming has been adopted for handwritten character
recognition. Fitness function consists of the weighted sum of errors
produced by each of the programs generated (zero-argument functions,
which consists of the features to be extracted from the images that are
presented as test cases). Each program also receives a penalty when
there is a lack of diversity.

Other researchers have also used evolutionary algorithms for related
problems, such as unsupervised learning in handwritten character
recognition tasks Moritaetal.(2003) " Jesign of a voting system to select
from among multiple classifiers adopted for cursive handwritten text

recognition GinterandBunke(2004) ' and interpretation of characters for
ebooks Leungetal.(2004)

Signature

In Y“‘de’“’(QOO‘l), a combination of a support vector machine and a
Keystroke genetic algorithm is used for keystroke dynamics identity verification.
dynamics The authors also propose the use of an ensemble model based on feature

selection to alleviate the defficiencies of a small training data set.

In Ganchevetal-(2004) 5 |gcally recurrent probabilistic neural network
was adopted for speaker verification. The approach is based on a three-
step training procedure, from which the third step was done with differ-
ential evolution (an evolutionary algorithm that is highly competitive
for numerical optimization tasks in which the decision variables are
real numbers).

Voice

[lex] height
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of images. This approach was tested in the fingerprint domain against stan-
dard wavelets (including a winner of a competition held by the FBI in the
early 1990s) to find the best wavelet fingerprint compression. The evolution-
ary algorithm outperformed the algorithm used by the FBI, which attracted
a lot of attention from the media and from the evolutionary computation
community, because this was a clear example of how an evolutionary design
can outperform a human design.

Enforced sub-populations refers to an approach in which a number of
populations of individual neurons (from a neural network) are evolved in
parallel. In the evaluation phase, this approach repeatedly selects one neu-
ron from each subpopulation to form candidate neural networks. The fitness
of a particular neuron is the average fitness of all the neural networks in
which it participated. This same idea was used in this work, but evolv-
ing different wavelets instead. These wavelets are constructed using the
so-called lifting step Sweldens(1996) which is a finite filter that can generate
new filter pairs from existing pairs.

To validate the approach, the authors used 80 available images. The size
of each image was 300 by 300 pixels, at 500 dpi resolution. Each of them
was used once as a test image and 79 times as part of the training set. In the
experiments performed, the best wavelet found after each generation was
used to compress the test image. It turns out that after only 50 generations,
the evolutionary algorithm was able to produce results that outperformed
the wavelets used by the FBI. Overall, the evolutionary algorithm intro-
duced between a 15% and a 20% decrease in the space requirements for
the same image quality. This is very significant if we consider that the FBI
has over 50 million fingerprint cards on file and has recently started to
store them electronically (the FBI is currently digitizing and compressing
between 30,000 and 50,000 new cards every day).

4.2. Facial modeling

Ho and Huang HeendHuang(2001) nroposed a genetic algorithm-based ap-
proach for facial modeling from an uncalibrated face image using a flexible
generic parameterized facial model (FGPFM). The authors adopted the so-
called “Intelligent Genetic Algorithm” IGA Hoetal-(1999) (which they had
previously proposed) to tackle this problem. The approach of the authors
consists in:

(a) Considering that the microstructural information can be expressed us-
ing the structural FGPFM with representative facial features that can
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be found in the image.

(b) The reconstruction procedure is considered as a block function of
FGPFM where the input parameters are the 3D face-centered coor-
dinates of a set of control points.

(¢) Once these control points are given, the 3D facial model that we aim to
find is determined based on the topological and geometrical descriptions
of FGPFM.

So, the problem of reconstructing the 3D facial model is transformed
into the problem of

How to acquire 3D control points that are sufficiently accurate as to
provide the desired model.

This gives raise to a large parameter optimization problem that is solved
using the IGA. The fitness function adopted considers two criteria for eval-
uating the quality of the facial model:

(a) The projection of the facial model from some viewpoint must coincide
with the features in the given face image, and

(b) The facial model must adhere to the generic knowledge of human faces
accepted by the human perception.

An interesting aspect of this work is that the authors adopt a coarse-to-
fine approach to solve the problem. This refers to a solution process that
consists of several stages and that combines:

A global (coarse) search, and
A local (fine) search.

The approach was validated by performing several experiments in which
synthetic face images and actual face images were analyzed. The results
showed that the approach was robust and provided very good results with
respect to other techniques based on genetic algorithms.

4.3. Hand Image Classification

Kharma et al. Kharmaetal.(2003) ;156 3 genetic algorithm with a cooperative
co-evolutionary scheme for dynamic clustering and feature selection. Coop-
erative coevolution refers to the simultaneous evolution of two populations
whose fitnesses are coupled (i.e., the fitness of one population depends on
the fitness of the other one). The authors use this sort of scheme to inte-
grate dynamic clusting with hand-based feature selection. For the feature
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extraction task, the authors considered two types of features: (1) geometric
(finger width, finger height, finger circumference, finger angle, finger base
length and plam aspect ratio), and (2) statistical (central moments, Fourier
descriptors and Zernike moments). The authors optimized three quantities:
(1) the set of features used for clustering, (2) the cluster centers, and (3) the
total number of clusters. In the scheme adopted, a number of cluster cen-
ters are initially proposed. Then, a point (input pattern) is assigned to the
cluster whose center is closest to the point, and the points are re-assigned
to the new clusters based on their distance from the new cluster centers.
This process is repeated until the locations of the cluster centers stabilize.
Two populations are adopted: one of cluster centers and another one of
dimension selections). During the process, the less discriminatory features
are eliminated, which leaves a more efficient subset for further use. So, the
outcome of the approach is a number of good (i.e., tight and well-separated)
clusters which exist in the smallest possible feature space.

In order to validate this approach, the authors used 100 hand images and
84 normalized features. The results were found to be quite promising, since
the average hand misplacement rate was 0.0580 with a standard deviation
of 2.044, and half of the original 84 features adopted were eliminated during
the evolutionary process. However, results were not compared to any other
type of approach.

4.4. Handwritten character recognition

Teredesai et al. * adopted genetic programming in handwritten character
recognition. Traditionally, active pattern recognition involves the use of an
active heuristic function (e.g., a neural network PudaandHart(1973)) which
adaptively determines:

The length of the feature vector, and
The features themselves

used to classify an input pattern. The outputs of this stage are:

The confidence values and
The separability values.

Then, in a postprocessing stage, decision making takes place, based on
the output from the classification stage. This is followed by an iterative
search process in which sub images of finer resolution are fed to the classi-
fication process until reaching a level of confidence that is satisfactory (or
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until we run out of time). Contrasting this traditional process, Teredesai et
al. 7 proposed to eliminate the iterative search process and focused instead
on searching for the areas in the image that have maximum separability
information. They proposed two possible ways of achieving this goal:

(a) Use only those features from the feature set that provide maximum
separability, and

(b) Generate a new set of features that represents the image data in a
manner that provides a better classification accuracy.

These two tasks are tightly coupled and the authors propose to use
genetic programming to decouple them. The most interesting aspect of the
proposal is the fitness function adopted. Such fitness function consists of
the weighted sum of errors produced by each of the programs generated.
The “programs” are really zero-argument functions, which consist of the
features to be extracted from the images that are presented as test cases.
Each program also receives a penalty when there is a lack of diversity
(i-e., poor accuracy of the classifiers is penalized). So, the authors were
evolving features that provided maximum separability, but at the same
time, were trying to achieve (through the penalty function adopted) a better
classification accuracy.

The proposed approach was validated using several datasets which in-
cluded the NIST handwritten digit sets, and the CEDAR-Digit data set
(which has more noisy data). The NIST data set consists of 159,228 images
in the training set, and 53,300 images in the test set. The CEDAR-digit
data set consists of 7,245 images in the training set and 2,711 images in the
test set. The CEDAR-digit data set is more challenging, because it contains
more noisy data with images that were incorrectly recognized or rejected
even by the current recognizers based on the K-nearest neighbor rule and
neural networks. The proposed approach was compared with respect to a
traditional passive classifier. The results indicated that the GP-based ap-
proach was able to outperform the traditional passive classifier, achieving
an accuracy of 97.1% using a very low number of features.

4.5. Keystroke Dynamics Identity Verification

Yu and Cho YuandCho(2004) ygeq a combination of a support vector ma-
chine (SVM) and a genetic algorithm (GA) for keystroke dynamics iden-
tity verification. It has been known at least since the 1980s that a user’s
keystroke pattern is highly repeatable and distinct from that of other users
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Gainesetal (1980) Thyg, it is possible to collect a user’s timing vectors and

use them to build a model that discriminates the owner from possible im-
posters.

The authors adopted a SVM for novelty detection and a GA-wrapper
feature selection approach to automatically select a relevant subset of fea-
tures, while ignoring the rest. The authors argue that the use of a SVM
only requires about 1/1000 of the training time that a neural network would
require. The authors also propose the use of an ensemble model based on
feature selection to alleviate the defficiencies of a small training data set.
A wrapper approach tries many different sets of features by building a
model using a learning algorithm, and then chooses the one with the best
performance measure. Feature subset selection is basically an optimization
problem, and the GA is used for that sake. On the other hand, the SVM is
adopted as the base learner for the wrapper approach. The fitness function
of the GA combines three different criteria: (1) the accuracy of the novelty
detector, (2) the learning time and (3) the dimension reduction ratio. Thus,
the GA deals with a population of SVMs which employ different feature
subsets. At early stages of the evolutionary process, the candidate solutions
or SVMs usually show a high level of diversity, but a low accuracy. At later
stages of the search, the behavior is the opposite: there is less diversity and
a higher accuracy. In order to deal with the problem of having insufficient
data (something common within a keystroke dynamics identity verifica-
tion system), the authors made a trade-off between diversity and accuracy
by selecting diverse candidates from the population immediately before it
converges. Such candidates are used to create an ensemble.

The proposed approach was validated using 21 different password-typing
patterns and results were compared with respect to the use of neural net-
works, two other SVM-based techniques and a random feature ensemble ap-
proach. Although the proposed approach presented a similar performance
as the others, its time requirements were considerably lower.

4.6. Voice Recognition

Ganchev et al. Ganchevetal.(2004) yg0d g Jocally recurrent probabilistic neural
network for the process of speaker verification. The use of a locally recurrent
probabilistic scheme aims to exploit the inter-frame correlation among the
feature vectors extracted from successive speech frames. The approach is
based on a three-step training procedure. The first training step creates
the actual topology of the network. The second training step involves the
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computation of a smoothing parameter for each class. In the third step, the
weights of the locally recurrent layer are computed. For this sake, a type of
evolutionary algorithm called “differential evolution” F7ice(1999) j5 adopted
(this is done by minimizing an error function).

The proposed approach was validated using a text-independent speaker
verification system previously developed by the same authors, which uses
probabilistic neural networks Genchevetal.(2002) Thyg the aim was to assess
the improvements introduced by the new approach. The authors used data
from POLYCOST (a telephone-speech database for speaker recognition)
Hennebertetal.(2000) fo1 their study. The results indicated that the proposed
approach presented a relative reduction of the error rate of more than 28%
with respect to the original scheme.

5. Some possible research directions

Despite the evident popularity of approaches such as statistical methods
and other soft computing techniques (e.g., neural networks) in biometrics
Kungetal.(2004) " the yge of evolutionary algorithms has attracted a growing
interest in the last few years. However, there are still many possible research
directions that may be worth exploring in this area. A few of them are briefly
discussed in Tables 6 and 7.

6. Conclusions

This chapter has provided a short (and very general) introduction to evo-
lutionary algorithms, including the historical roots of its main paradigms,
their original motivation and some of their applications. Then, we analyzed
a few case studies on the use of evolutionary algorithms to solve problems
in biometrics.

In the final part of the chapter, we provided some of the possible research
paths that we consider that could be pursued within the next few years. A
wide variety of tasks involved in biometrics tasks can be solved (and have
been solved in the past) using evolutionary algorithms (e.g., classification,
feature extraction and pattern recognition), which opens a lot of research
paths that have been only scarcely explored. Thus, we believe that the
use of evolutionary algorithms (perhaps in combination with other soft
computing techniques) in biometrics will significantly increase within the
next few years.
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Table 6. Possible research directions in the use of evolutionary algorithms in biometrics

Direction Strategy

Multiobjective optimization refers to the simultaneous optimization
of two or more objective functions which are commonly in conflict
with each other CoelloCoelloetal (2002) Dye to the multiobjective na-
ture of many real-world problems, it is very likely that the use of
multiobjective optimization techniques becomes more popular in bio-
metrics Moritaetal.(2003) Among the possible techniques to solve mul-
tiobjective optimization problems, evolutionary algorithms present
several advantages over traditional mathematical programming tech-
niques Miettinen(1998),Ehrgott(2005) Ror example, evolutionary algo-
rithms have a population-based nature which allows them to gener-
ate several elements of the Pareto optimal set in one run. Addition-
ally, evolutionary algorithms do not require an initial search point
(as is the case of most mathematical programming techniques) and

are less sensitive to the shape and continuity of the Pareto front
CoelloCoelloetal.(2002),Deb(2001)

Multiobjective
Optimization

As we saw before, the use of tree-encodings in a genetic algorithm (the
so-called “genetic programming”) is a powerful aid for automated pro-
gramming. Such type of encoding is also very useful for classification
and data mining tasks Freitas(1997),Teredasaietal.(2001) Consequently,
the use of genetic programming in biometrics, although not widely
spread yet, is expected to considerably grow in the next few years. It
is worth indicating, however, that the use of a more complex encod-
ing, while allowing tackling more complex problems, also involves a
higher computational cost (this applies to multiobjective optimization
as well). Thus, the use of parallel computing seems an obvious choice
in these cases Talay(2005)

Use of Genetic
Programming
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Table 7. Possible research directions in .....(Continuation of Table 6).

Direction Strategy

In recent years, other biologically-inspired metaheuristics have become
increasingly popular in a wide variety of applications Corneetal.(1999)
It is expected that several of these approaches are eventually adopted
in biometric applications. Representative examples of these new meta-
heuristics are the following:

(a) Particle Swarm Optimization: Proposed by Kennedy and Eber-
hart KennedyandEbe’rhart(1995),Kennedy(2001), this metaheuristic sim-
ulates the movements of a group (or population) of birds which aim
to find food. The approach can be seen as a distributed behav-
ioral algorithm that performs (in its more general version) multidi-
mensional search. In the simulation, the behavior of each individ-
ual is affected by either the best local (i.e., within a certain neigh-
borhood) or the best global individual. The approach uses then the
concept of population and a measure of performance similar to the
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Use of Alterna-
tive
Metaheuristics

(c) The Ant System: This is a metaheuristic inspired by colonies
of real ants,
which deposit a chemical substance on the ground called pheromone
DorigoandDiCaro(1999),Colornietal.(1992),Dorigoetal.(1996), DorigoandStitzle(2004)
This substance influences the behavior of the ants: they tend to take
those paths where there is a larger amount of pheromone. Pheromone
trails can thus be seen as an indirect communication mechanism among
ants. From a computer science perspective, the ant system is a multi-
agent system where low level interactions between single agents (i.e.,
artificial ants) result in a complex behavior of the entire ant colony.
The ant system was originally proposed for the traveling salesman
problem (TSP), and most of the current applications of the algo-
rithm require the problem to be reformulated as one in which the goal
is to find the optimal path of a graph. A way to measure the dis-
tances between nodes is also required in order to apply the algorithm
Dorigo(1991) Despite this limitation, this approach has been found to

be very successful in a variety of combinatorial optimization problems
DorigoandDiCaro(1999),Bonabeuetal.(1999), DorigoandStiitzle(2004)
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