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Abstract

Evolutionary algorithms have been successfully used to solve problems with

2 or more objective functions (called “multi-objective”) during the last 20 years.
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This field is now called “Evolutionary Multi-Objective Optimization” and has be-

come a very active research area, giving rise to a wide variety of algorithms, tech-

niques to maintain diversity, selection mechanisms, archiving schemes, and ap-

plications, among other important contributions. In this paper, we will provide a

general overview of this area, emphasizing the main research findings that have

shaped the field, as well as its current research trends and its future challenges.

1 Introduction

Problems with two or more objectives (called “multi-objective” or “multi-criteria”)

are very common in engineering and many other disciplines. The solution of such

problems is difficult because their objectives tend to be in conflict with each other,

which makes necessary a new notion of optimality.

In the late XIX century, a notion of optimality was developedfor these problems,

in the context of economics. Later on, such a notion was formally introduced in Oper-

ations Research, originating several methods to solve multi-objective problems. Over

the years, this research area grew until become practicallya separate branch of Opera-

tions Research.

Historically, evolutionary algorithms’ experts first met multi-objective optimization

in the 1960s. However, the first actual algorithmic contribution came until 1985. Since

then, this field (now called “evolutionary multi-objectiveoptimization”, or EMO) has

experienced a significant growth.

This paper presents a general overview of EMO, seen from the perspective of the

key contributions that have shaped this field. The remainderof this paper is organized
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as follows. Section 2 presents some basic concepts requiredto make this paper self-

contained. In Section 3, we describe the origins of multi-objective optimization, and a

brief motivation of the use of evolutionary algorithms in this area. Section 4 describes

the initial period of EMO, which consists of approximately 13 years, and includes

approaches characterized by their simplicity. Section 5 describes the second period,

which includes our current days. Finally, Section 6 provides some of the topics that,

from the author’s perspective, will keep busy to EMO researchers in the next few years.

Some conclusions are drawn in Section 7.

2 Basic Concepts

The emphasis of this paper is the solution of multiobjectiveoptimization problems

(MOPs) of the form:

minimize
��� � ��� � �� � �� � � 	 	 	 � �
 � �� �� (1)

subject to the� inequality constraints:

 � � �� � � � � � �� � � 	 	 	 � � (2)

and the� equality constraints:

�� � �� � � � � � �� � � 	 	 	 � � (3)

where� is the number of objective functions
�� � �� � �. We call

�� � �� � � �� � 	 	 	 � �� ��
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the vector of decision variables. We wish to determine from among the set� of all vec-

tors which satisfy (2) and (3) the particular set of values� �� � � �� � 	 	 	 � � �� which yield the

optimum values of all the objective functions.

2.1 Pareto optimality

It is rarely the case that there is a single point that simultaneously optimizes all the

objective functions. Therefore, we normally look for “trade-offs”, rather than single

solutions when dealing with multiobjective optimization problems. The notion of “op-

timality” is therefore, different. The most commonly adopted notion of optimality is

that originally proposed by Francis Ysidro Edgeworth [23] and later generalized by

Vilfredo Pareto [58]. Although some authors call this notion Edgeworth-Pareto opti-

mality (see for example [68]), we will use the most commonly accepted term: Pareto

optimality.

We say that a vector of decision variables
�� � � � is Pareto optimalif there does not

exist another
�� � � such that

�� � �� � � �� � �� � � for all � � �� 	 	 	 � � and
�� � �� � � �� � �� � �

for at least one� .

In words, this definition says that
�� � is Pareto optimal if there exists no feasible

vector of decision variables
�� � � which would decrease some criterion without caus-

ing a simultaneous increase in at least one other criterion.Unfortunately, this concept

almost always gives not a single solution, but rather a set ofsolutions called thePareto

optimal set. The vectors
�� � correspoding to the solutions included in the Pareto optimal

set are callednondominated. The image of the Pareto optimal set under the objective

functions is calledPareto front.
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3 The Origins of the Field

The Operations Research (OR) community has developed approaches to solve MOPs

since the late 1950s. Currently, a wide variety of mathematical programming tech-

niques designed to solve MOPs are available in the OR literature (see for example

[52, 24]). However, mathematical programming techniques have certain limitations

when tackling MOPs. For example, many of them are susceptible to the shape and/or

continuity of the Pareto front and may not work when the Pareto front is concave or

disconnected. Others require differentiability of the objective functions and the con-

straints. Additionally, an initial point is required to perform a run of a mathematical

programming technique, and the type of search normally performed is such that the

final solution is located relatively close to this initial point. Thus, mathematical pro-

gramming techniques are normally very susceptible to theirinitialization. Also, the

outcome of each run of a mathematical programming techniqueis normally a single

nondominated solution. So, in order to obtain several elements of the Pareto optimal

set, several runs, departing from different initial points, are required [52].

Evolutionary Algorithms (EAs) have been found to be very successful in a vari-

ety of (single-objective) optimization problems [37, 29, 66, 25]. The use of EAs for

solving MOPs seems like a natural choice if we consider some of their main features.

EAs operate on a set of solutions (called “population”), which make us think of the

possibility of finding several members of the Pareto optimalset in a single run of an

EA. Additionally, EAs are also less susceptible to the shapeor continuity of the Pareto

front (i.e., they can easily deal with discontinuous and concave Pareto fronts), and do

not require any information about the derivatives of the objectives or the constraints.
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The first hint regarding the possibility of using evolutionary algorithms to solve

a MOP appears in a PhD thesis from 1967 [60] in which, however,no actual multi-

objective evolutionary algorithm (MOEA) was developed (the multi-objective prob-

lem was restated as a single-objective problem and solved with a genetic algorithm).

Although there is a rarely mentioned attempt to use a geneticalgorithm to solve a

multi-objective optimization problem from 1983 (see [42]), David Schaffer is normally

considered to be the first to have designed a MOEA during the mid-1980s [64, 65].

Schaffer’s approach, calledVector Evaluated Genetic Algorithm (VEGA) consists

of a simple genetic algorithm with a modified selection mechanism. At each gener-

ation, a number of sub-populations were generated by performing proportional selec-

tion according to each objective function in turn. These sub-populations would then

be shuffled together to obtain a new population, on which the GA would apply the

crossover and mutation operators in the usual way. VEGA had anumber of problems,

from which the main one had to do with its inability to retain solutions with accept-

able performance, perhaps above average, but not outstanding for any of the objective

functions. These solutions were perhaps good candidates for becoming nondominated

solutions, but could not survive under the selection schemeof this approach.

4 The Old Days: Naive and Simple Approaches

After VEGA, researchers adopted for several years other naive approaches. The most

popular were thelinear aggregating functions, which consist in adding all the objec-

tive functions into a single value which is directly adoptedas the fitness of an evolu-
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tionary algorithm [22, 26]. This sort of aggregating approaches are, in fact, the oldest

mathematical programming methods used for multi-objective optimization, since they

can be derived from the Kuhn-Tucker conditions for nondominated solutions [50].

Nonlinear aggregating functions were also popular [77, 62, 39, 4], but were severely

criticized despite the fact that they normally do not have the main limitation of linear

aggregating techniques (i.e., nonlinear aggregating functions can normally generate

non-convex portions of the Pareto front, whereas linear aggregating functions cannot).

Lexicographic ordering was another interesting choice. In this case, a single ob-

jective (which is considered the most important) is chosen and optimized without con-

sidering any of the others. Then, the second objective is optimized but without decreas-

ing the quality of the solution obtained for the first objective. This process is repeated

for all the remaining objectives [34]. Lexicographic ordering is still used today, par-

ticularly in applications in which certain objective is known to be more important than

the others (see for example [35, 56]).

Despite all these early efforts, the direct incorporation of the concept of Pareto

optimality into an evolutionary algorithm was first hinted by David E. Goldberg in his

seminal book on genetic algorithms [37]. Goldberg suggested the use of nondominated

ranking and selection to move a population toward the Paretofront in a multiobjective

optimization problem. This mechanism was calledPareto ranking. The basic idea

is to find the set of strings in the population that are Pareto nondominated by the rest

of the population. These strings are then assigned the highest rank and eliminated

from further contention. Another set of Pareto nondominated strings are determined

from the remaining population and are assigned the next highest rank. This process
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continues until the population is suitably ranked. Goldberg also suggested the use of

some kind of niching technique to keep the GA from convergingto a single point on

the front [15]. A niching mechanism such as fitness sharing [38] would allow the EA to

maintain individuals all along the nondominated frontier.The basic expression adopted

in fitness sharing is the following:

� �� �� � �
����
���

� � � �	
�� �� � � �� � ����� �
� � otherwise

(4)

where� � �, � �� indicates the distance between solutions� and � , and����� �
is the niche radius (or sharing threshold). By using this parameter, the fitness of the

individual � is modified as:

��	 �
������ � � �� �� � (5)

where� is the number of individuals that are located in the neighborhood of the

�-th individual.

Goldberg did not provide an actual implementation of his procedure, but practically

all the MOEAs developed after the publication of his book were influenced by his ideas.

BesidesVEGA, the most remarkable MOEAs from the early days of evolution-

ary multi-objective optimization are: the Nondominated Sorting Genetic Algorithm

(NSGA) [67], the Niched-Pareto Genetic Algorithm (NPGA) [40], and the Multi-

Objective Genetic Algorithm (MOGA) [30].

During this early period, few researchers reported comparative studies among dif-

ferent MOEAs, since the main focus was to introduce new approaches which were
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normally compared to single-objective EAs. However, thosewho compared VEGA,

NSGA, NPGA and MOGA unanimously agreed on the superiority ofMOGA, followed

by the NPGA, the NSGA, and VEGA (which every other MOEA could outperform)

[10, 72]. These early days were characterized by the design of simple (and even naive)

algorithms, the lack of a methodology to validate them, and the lack of a benchmark

that other researchers could use as a reference. Comparisons were visual in most cases

and most problems tackled were bi-objective.

One of the most remarkable outcomes of these early days was the development

of the first scheme to incorporate user’s preferences into a MOEA, which is due to

Masahiro Tanaka [69]. The incorporation of user’s preferences into a MOEA is a topic

commonly disregarded in the evolutionary multi-objectiveoptimization literature (even

today), but it’s a very important issue when dealing with real-world applications [9]. It

is normally the case that in real-world problems, the entirePareto front is not needed,

but only a portion of it. So, if we knew the sort of trade-offs that the user requires,

it would be possible to magnify the portions of the Pareto front that the user is more

interested on.

Another important event during these early days was the publication of the first

survey of the field. Fonseca and Fleming published such a survey in the journalEvolu-

tionary Computationin 1995 [31]. Less known are two other important contributions

from Carlos M. Fonseca that was made in those days: (1) proposed the first perfor-

mance measure that did not require the true Pareto front of the problem beforehand

(he called it “attainment surfaces”) [32], and (2) he was thefirst to suggest a way of

modifying the Pareto dominance relationship in order to handle constraints [33].
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5 The Second Period: The Growing Pains

Towards the end of the 1990s, things started to change regarding the trends in evolu-

tionary multi-objective optimization. However, the changes were so fast, and some of

them are still not fully absorbed by researchers working in this field.

In 1998, Eckart Zitzler proposed a MOEA called Strength Pareto Evolutionary Al-

gorithm (SPEA) [82]. An extended version of this work was published in 1999in the

IEEE Transactions on Evolutionary Computation[83]. This paper is particularly im-

portant, because it contains several elements that gave thefirst indications of the new

period coming. First, SPEA popularized the notion of using elitism in MOEAs. The

idea of retaining the nondominated solutions found along the evolutionary process (the

notion of elitism in evolutionary multi-objective optimization) wasn’t new (see for ex-

ample [41, 57]). However, it was until the publication of SPEA that the use of elitism

started to become common.1 To retain the nondominated solutions previously found,

SPEA uses an archive that is called theexternal nondominated set). At each genera-

tion, nondominated individuals are copied to the external nondominated set. For each

individual in this external set, astrengthvalue is computed. This strength is similar

to the ranking value of MOGA [30], since it is proportional tothe number of solu-

tions to which a certain individual dominates. In SPEA, the fitness of each member of

the current population is computed according to the strengths of all external nondom-

inated solutions that dominate it. The fitness assignment process of SPEA considers

both closeness to the true Pareto front and even distribution of solutions at the same

1In fact, the use of elitism is a theoretical requirement in order to guarantee convergence of a MOEA and
therefore its importance [61].
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time. Thus, instead of using niches based on distance, Pareto dominance is used to

ensure that the solutions are properly distributed along the Pareto front. Although this

approach does not require a niche radius, its effectivenessrelies on the size of the ex-

ternal nondominated set. In fact, since the external nondominated set participates in

the selection process of SPEA, if its size grows too large, itmight reduce the selection

pressure, thus slowing down the search. Because of this, theauthors decided to adopt

a clustering technique that prunes the contents of the external nondominated set so that

its size remains below a certain threshold [53].

Another important aspect of the paper on SPEA is the introduction of two per-

formance measures to allow a comparison of different MOEAs.The notion of using

standard test functions was also indicated in the paper (Zitzler adopted 0/1 knapsack

problems). This same idea was later developed by Kalyanmoy Deb and by Zitzler him-

self (in collaboration with other researchers), who provided different methodologies to

construct multi-objective test functions [13, 19, 78, 20].

5.1 Performance Measures

Performance measures are, with no doubt, an important topicin evolutionary multi-

objective optimization. Thus, we will discuss next a littlebit about their development.

In a paper from 2000, Zitzler et al., summarized the three most important aspects that

we aimed to assess when measuring the performance of a MOEA [78]:

1. Maximize the number of elements of the Pareto optimal set found.

2. Minimize the distance of the Pareto front produced by our algorithm with respect

to the global Pareto front (assuming we know its location).
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3. Maximize the spread of solutions found, so that we can havea distribution of

vectors as smooth and uniform as possible.

Note however, that some of these aspects require that we knowbeforehand the

exact location of the true Pareto front. This is certainly not possible in most real-

world problems. Another interesting issue was that, given the nature of the three above

aspects, it is unlikely that a single performance measure can assess such aspects at the

same time. In other words, assessing the performance of a MOEA is also a MOP!

Performance measures were later studied by David A. Van Veldhuizen who empir-

ically identified several of their main weaknesses [72, 74].Several researchers realized

that most performance measures were biased. In other words,some times they provided

results that didn’t correspond to what we could see from the graphical representation

of the results. Ironically, many researchers went back to the graphical comparisons

when suspected that something was wrong with the numerical results produced from

applying the performance measures available.

Although slowly, researchers started to proposed a different type of performance

measures that considered not one algorithm at a time, but two[32, 83]. These per-

formance measures were called “binary” (in contrast to those that assess performance

of a single algorithm at a time, which were called “unary”). The first formal studies

of performance assessment measures were published in 2002 [47, 81], and we soon

found out what was wrong with some of them: Unary performancemeasures are not

compliant with Pareto dominance and, therefore, are not reliable for assessing perfor-

mance [81, 84]. Not everything is lost, however, since binary performance measures

can overcome this limitation [80, 84].
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5.2 Archiving

We have already mentioned the use of an external archive in SPEA, which made pop-

ular this form of elitism. The main motivation for adopting amechanism of this sort

is the fact that a solution that is nondominated with respectto its current population

is not necessarily nondominated with respect to all the populations that are produced

by an evolutionary algorithm. Thus, the use of such a type of mechanism guarantees

that the solutions that we will report to the user are nondominated with respect to every

other solution that our algorithm has produced. An archive is the most intuitive way

of retaining all the nondominated solutions found along a run of a MOEA. If a solu-

tion that wishes to enter the archive is dominated by its contents, then it is not allowed

to enter. Conversely, if a solution dominates anyone storedin the file, the dominated

solution must be deleted. Note however, that the use of this external file raises several

questions:

� Is there any interaction between the main population and theexternal archive

(also called “secondary population”)?

� Do we impose bounds on the size of the external archive? If so,what do we do

when the archive is full?

These and some other issues related to external archives (also called “elite” archives)

have been studied both from an empirical and from a theoretical perspective (see for

example [45, 28]).

An interesting aspect of external archives is that they havealso serve as inspira-

tion for the development of new MOEAs. The most remarkable example is the Pareto
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Figure 1: Graphical illustration of the adaptive grid used by PAES.

Archived Evolution Strategy (PAES) [48]. This algorithm consists of a (1+1) evolu-

tion strategy (i.e., a single parent that generates a singleoffspring) in combination with

a historical archive that records the nondominated solutions previously found. This

archive is used as a reference set against which each mutatedindividual is being com-

pared. An interesting aspect of this algorithm is the procedure used to maintain diver-

sity which consists of a crowding procedure that divides objective space in a recursive

manner. Each solution is placed in a certain grid location based on the values of its

objectives (which are used as its “coordinates” or “geographical location”) as indicated

in Figure 1. A map of such grid is maintained, indicating the number of solutions that

reside in each grid location. Since the procedure is adaptive, no extra parameters are

required (except for the number of divisions of the objective space). The adaptive grid

of PAES has been adopted (with some variations) by several other modern MOEAs
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(see for example [12, 11, 7]).

5.3 The NSGA-II

Inspired on some findings from the single-objective optimization literature, some re-

searchers realized that elitism could also be introduced ina MOEA using a plus selec-

tion (i.e., to select from the union of parents and offspring). The issue here was how

to impose a total order (rather than a partial order) on the population of a MOEA, such

that an absolute ranking could be found for the selection of this sort of approach to be

effective. Kalyanmoy Deb and his students found a solution in the selection mechanism

of the Nondominated Sorting Genetic Algorithm II (NSGA-II) [14, 18]. In the NSGA-

II, for each solution one has to determine how many solutionsdominate it and the set

of solutions to which it dominates. The NSGA-II estimates the density of solutions

surrounding a particular solution in the population by computing the average distance

of two points on either side of this point along each of the objectives of the problem.

This value is the so-calledcrowding distance. During selection, the NSGA-II uses a

crowded-comparison operator which takes into consideration both the nondomination

rank of an individual in the population and its crowding distance (i.e., nondominated

solutions are preferred over dominated solutions, but between two solutions with the

same nondomination rank, the one that resides in the less crowded region is preferred).

Due to its clever mechanisms, the NSGA-II is much more efficient (computation-

ally speaking) than its predecessor, and its performance isso good, that it has be-

come very popular in the last few years, becoming a landmark against which other

multi-objective evolutionary algorithms have to be compared. Note however, that the
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NSGA-II has some scalability problems (when the number of objectives is increased,

its crowding mechanism does not work as well as expected).

5.4 Relaxed Forms of Dominance

More recently, some researchers have proposed the use of relaxed forms of Pareto dom-

inance as a way of regulating convergence of a MOEA [49]. Laumanns et al. [51] pro-

posed a relaxed form of dominance for multi-objective evolutionary algorithms called

�-dominance. This mechanism acts as an archiving strategy toensure both properties

of convergence towards the Pareto-optimal set and properties of diversity among the

solutions found. The idea is to use a set of boxes to cover the Pareto front, where the

size of such boxes is defined by a user-defined parameter (called�). Within each box,

we only allow a single nondominated solution to be retained (e.g., the one closest to

the lower lefthand corner). Thus, by using a large value of�, the use can accelerate

convergence, while sacrificing the quality of the Pareto front obtained. In contrast, if

a high-quality of the front is required, then a small value of� must be adopted. The

definition of �, is then, quite important. However, it’s not straightforward to find the

most appropriate value of� when nothing is known in advance about the shape of the

Pareto front. Also, to correlate the number of nondominatedsolutions desired with the

value of� chosen is not easy, and normally some preliminary runs are required in or-

der to estimate the appropriate value. This makes difficult to compare approaches that

adopt� with respect to MOEAs that do not use this concept. Finally, the use of this

mechanism naturally eliminates the extreme points of the Pareto front, which may be

undesirable in some cases.
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Several modern MOEAs have adopted the concept of�-dominance (see for example

[16, 55, 17, 63]). Its limitations have also been recently addressed by some researchers

(see for example [75]).

6 The Future of the Field

Many problems still remain to be solved, but they require a higher investment of time

than the small problems that were solved during the last ten years. For example, we

still do not know what are the actual sources of difficulty that make it hard for a modern

MOEA to solve a MOP.

The issue of how to deal with many-objective problems is alsoworth exploring.

Some current research has revealed that a more careful analysis of the Pareto domi-

nance relation is required when dealing with problems that have more than three ob-

jectives [59].

New algorithms can be designed, but they require fresh ideasrather than small

(and little innovative) changes to existing approaches, which is a common pattern in

much of the research that we see nowadays. A few steps in this direction (with nice

ideas) have been undertaken with the design of MOEAs that arebased on performance

measures (see for example [79, 27]). The algorithmic efficiency that share most modern

MOEAs should now evolve into new algorithms in which the number of fitness function

evaluations is minimized. The use of surrogate techniques is a possible choice (see for

example [46, 44, 76]), but it is not the only one (see for example [70]) and much more

work in this direction is expected within the next few years.
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Parameter control is another issue that certainly deservesattention. Self-adaptation

in the context of MOEAs is a very interesting topic that very few researchers have

addressed in the specialized literature (see for example [71, 1]).

Twenty years after its inception, evolutionary multi-objective optimization still

looks like a healthy research area. However, things are different now of what used

to be ten or fifteen years ago. Today, we can say that there is a certainestablishment

that makes necessary to know more about performance measures, test functions and

parameters fine-tuning. So, the field may seem less friendly to newcomers than in the

old days, but that is only a sign of certain maturity. Ironically, more than ever, we need

this “new blood” to challenge the establishment and proposenew ideas that can keep

this field alive for a long time.

7 Conclusions

This paper does not intend to serve as a survey,2 but more like a summary of achieve-

ments that have shaped this field. Due to space limitations, other interesting topics,

such as applications of MOEAs were omitted (see [6], for moreon this topic). Also,

we didn’t mention anything about the (now so popular) multi-objective extensions of

other meta-heuristics such as artificial immune systems [5,43], the ant colony [21, 36],

scatter search, and particle swarm optimization [8, 54].

This paper, however, aims to motivate other researchers to get interested in the

field. Hopefully, these newcomers will bring their diverse backgrounds into this area,

2Surveys are available in [3, 73, 2].
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proposing new ideas, relating our ideas to concepts in otherfields, and challenging

what we believe to be the foundations of this area.

As more and more papers get published in this field,3 we see more work done

by analogy, and less new ideas. We need more significant contributions and more

challenging ideas that can constitute trends for others to follow.
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