
EVOLUTIONARY ALGORITHMS AND INTELLIGENT TOOLS
 IN ENGINEERING OPTIMIZATION

W. Annicchiarico, J. Périaux, M. Cerrolaza and G. Winter (Eds.)
© CIMNE, Barcelona, Spain 2004

USING EVOLUTION STRATEGIES TO SOLVE
CONSTRAINED OPTIMIZATION PROBLEMS

Efrén Mezura-Montes∗ Arturo Hernández-Aguirre•
Carlos A. Coello Coello∆
Evolutionary Computation Group (EVOCINV) Center of Research in Mathematics
CINVESTAV-IPN CIMAT
Computer Science Section Department of Computer Science
Av. IPN No. 2508, Col. San Pedro Zacatenco A.P. 402, Guanajuato, Gto. C.P. 36000
México D.F., México 07359 Guanajuato, Guanajuato., México
Email: emezura@computación.cs.cinvestav.mx Email: artha@cimat.mx
 ccoello@cs.cinvestav.mx Web page: http://www.cimat.mx/~artha/
Web page: http://www.cs.cinvestav.mx/~EVOCINV

Abstract. In this chapter, we present an overview of the main approaches that have
been used to solve constrained optimization problems using evolution strategies.
Furthermore, we propose a novel approach to incorporate constraints into an evolution
strategy used to solve global optimization problems. This new approach uses a set of
simple rules to guide the search towards the feasible region and a diversity mechanism
to maintain good infeasible solutions in the population during all the evolutionary
process. The approach combines two recombination operators (discrete and
intermediate) and also adopts a reduced initial stepsize for the mutation operator. The
new approach is not only simple, but also highly competitive with respect to the
algorithms more representative of the state-of-the-art in the area.

Key words: Evolution strategies, global optimization, constraint-handling.

1 INTRODUCTION

Evolution strategies (ES) are a class of evolutionary algorithm (EA) that have been

found to perform quite well in a wide variety of unconstrained optimization problems.
When dealing with constrained problems, evolution strategies are normally combined
with a penalty function whose definition is problem-dependant. In fact, the study of
alternative mechanisms to incorporate constraints into an evolution strategy have been
only scarcely studied.

∗ The author acknowledges support from CONACyT through a scholarship to pursue graduate studies at
CINVESTAV-IPN in México City.
• The author acknowledges support from CONCyTEG through project No. 04-02-K117-037 Part 1
∆ The author acknowledges support from CONACyT through project No. 42435-Y

EFREN MEZURA-MONTES et al. / ES To Solve Constrained Problems

In this chapter, we present an overview of the main approaches that have been used
to solve constrained optimization problems using evolution strategies. Furthermore, we
propose a novel approach to incorporate constraints into an evolution strategy used to
solve global optimization problems. The new approach is not only simple, but also
highly competitive with respect to the algorithms more representative of the state-of-
the-art in the area.

The chapter is organized as follows. First, we briefly introduce some basic concepts
related to evolution strategies. We cover aspects such as encoding of the solutions, the
selection process, types of mutation and recombination operators available and self-
adaptation. Also, we briefly discuss the differences between an evolution strategy and
any of the two other main evolutionary algorithms in current use (i.e., evolutionary
programming and genetic algorithms). After that, we provide a taxonomy of constraint-
handling techniques that have been proposed for evolutionary algorithms and we
discuss the main approaches currently available (e.g., different types of penalty
functions, the separation of objective and constraints, repair algorithms, etc.).

As indicated before, the chapter also provides a review of the main approaches used
to solve constrained optimization problems which are based on an evolution strategy.
We describe, for example, the Adaptive Segregational Constraint Handling Evolution
Strategy (ASCHEA), Stochastic Ranking and the Pareto Archive and Dominance
Selection with Shrinkable Search Space (PAS4).

After the review of the state-of-the-art techniques, we proceed to describe our
proposal for a novel approach which exploits the main features of an evolution strategy
to solve global optimization problems. This new approach uses a set of simple rules to
guide the search towards the feasible region and a diversity mechanism to maintain
good infeasible solutions in the population during all the evolutionary process. To
enhance the search power of the evolution strategy adopted, we propose to combine two
recombination operators (discrete and intermediate) and also the use of reduced initial
stepsizes for the mutation operator in order to take advantage of finer movements in the
search space and inside the feasible region as well. We test our approach in some well-
known benchmark problems. Our proposed approach is also compared with respect to
other algorithms which are representative of the state-of-the-art in the area. Finally, we
provide our conclusions and some potential paths for future research.

2 THE EVOLUTION STRATEGY

The ES were proposed by Bienert, Rechenberg and Schwefel who used them to solve
hydrodynamical problems1’2 . The main idea was to allow the evolutionary process to
evolve, besides the solutions of a problem, the parameters of the algorithm. The first ES
version was the (1+1)-ES which uses just one individual that is mutated using a
normally distributed random number with mean zero and an identical stepsize value for
each decision variable. The best solution between the parent and the offspring is chosen
and the other one is eliminated. Rechenberg derived a convergence rate theory and
proposed a rule for changing the stepsize value of mutations in a (1+1)-ES. This is the
so-called “1/5-success rule” 3.

The first multimembered ES was the (µ+1)-ES, which was designed by Rechenberg
and is described in detail by Bäck et al.4. In this approach, “µ” parent solutions
recombine to generate one offspring. This solution is also mutated and, if it is better, it
will replace the worst parent solution. Note however that the (µ+1)-ES has not been too
popular in the literature. However, it provided the transition to the state-of-the-art
multimembered ES.

EVOLUTIONARY ALGORITHMS AND INTELLIGENT TOOLS

The (µ+λ)-ES and the (µ,λ)-ES were proposed by Schwefel. In the first one, the best
“µ” individuals out of the union of the “µ” original parents and their “λ” offspring will
survive for the next generation. On the other hand, in the (µ,λ)-ES, the best “µ” will be
selected only from the “λ” offspring.

The (µ+λ)-ES uses an implicit elitist mechanism and solutions can survive more than
one generation. Meanwhile, in the (µ,λ)-ES, solutions only survive one generation (this
is the type of selection traditionally adopted in genetic algorithms5). Instead of the “1/5-
success rule”, each individual includes a stepsize value for each decision variable.
Moreover, for each combination of two stepsize values, a rotation angle is included.
These angles are used to perform a correlated mutation. This mutation allows each
individual to look for a search direction. The stepsize values and the angles of each
individual are called strategy parameters. They are also recombined and mutated. A
(µ+λ)-ES or (µ,λ)-ES individual can be seen as follows:),,)((θσ

rrvxia , where “i” is the
number of individual in the population, nℜ∈x is a vector of “n” decision variables, σr
is a vector of “n” stepsize values and θ

r
 is a vector of “n(n-1)/2” rotation angles where

[]ππθ ,−∈i . One of the main differences between a genetic algorithm and en evolution
strategy relies on the way in which a solution is represented (see Figure 1).

Figure 1: Representation of individuals of a genetic algorithm and an evolution strategy.

Recombination can be sexual (two parents) or panmictic (more than two parents).

There are two main types of recombination: (1) Discrete and (2) Intermediate. Both can
be either sexual or panmictic. Also, Schwefel6 proposed to generalize intermediate
recombination by allowing arbitrary weight factors from the interval [0,1] to be used
anew for each component of the chromosome. For a complete description of the
recombination operators normally available we provide a list in Table 1 (Refer to Bäck7
for details).

 1 0 1 0 0 1 Traditional GA

4.340 12.34 0.02 0.15 0.57 Evolution strategy

Encoded decision variables

Decision variables

σ1σ2 θ1

Strategy parameters

EFREN MEZURA-MONTES et al. / ES To Solve Constrained Problems

Operation Type of recombination
Parent_1i or Parent_2i Discrete
Parent_1i or Parent_Ji Panmictic discrete

(Parent_1i + Parent_2i)/2 Intermediate
(Parent_1i + Parent_Ji)/2 Panmictic intermediate

(1-χ)(Parent_1i)+(χ)(Parent_2i) Generalized intermediate

offspringi =

 (1-χ)(Parent_1i)+(χ)(Parent_Ji) Panmictic generalized

intermediate

Table 1: Different recombination operators used in ES.

In Table 1, “Parent_1” and “Parent_2” are the parents used for the sexual
recombination. “Parent_J” means a different parent for each gene (variable of the
problem) in the chromosome. “χi” is the weight factor created anew for each decision
variable and used in the generalized recombination. The mutation is calculated in the
following way:

() ()()1,01,0exp iii NN ⋅+⋅′⋅=′ ττσσ (1)

()1,0jjj N⋅+=′ βθθ (2)

()()θσ ′′+=′
rrrrr ,,0 CNxx (3)

where τ and τ ′ are interpreted as “learning rates” and are defined by Schwefel6 as:

() 1
2

−
= nτ and () 1

2
−

=′ nτ and 0873.0≈β .

Some authors use correlated mutation, but this implies an extra computational effort

in order to process the value of each angle and also to rotate the individual. Moreover,
some extra memory space is needed to store all the different angles per individual (the
angles are formed by the combination of all the axis based on the number of decision
variables of the problem). If non-correlated mutation is preferred, the computational
cost and the storage space for each individual gets lower. If a non-correlated mutation is
used, the mutation expressions are:

() ()()1,01,0exp iii NN ⋅+⋅′⋅=′ ττσσ (4)

()1,0iiii Nxx ⋅′+=′ σrr (5)

As can be noted, the genetic operators (recombination and mutation) are applied to the
values of the decision variables as well as the strategy parameters. In this way, the ES is
able to evolve both, the solutions of the problem and its own parameters. This is another
feature that distinguishes ES from other evolutionary computation paradigms. For a
more detailed summary of differences see Table 2. The detailed ES algorithm is shown
in Figure 2.

EVOLUTIONARY ALGORITHMS AND INTELLIGENT TOOLS

 Evolution Strategies7 Genetic Algorithms5 Evolutionary
Programming8

Encoding Real numbers Binary (typically) Real numbers
Self-adaptive Yes No (typically) No (typically)
Mutation Gaussian. Main operator Bit inversions.

Secondary operator
Gaussian (unique
operator)

Recombination Discrete and intermediate.
Secondary operator

1 point, 2 points, n
points. Main operator

None

Selection Deterministic Probabilistic Probabilistic

Table 2: Main differences among evolutionary computation paradigms.

Begin
 t=0
 Create µ random solutions for the initial population.
 Evaluate all µ individuals
 Assign a fitness value to all µ individuals
 For t=1 to MAX_GENERATIONS Do
 Produce λ offspring by recombination of the µ parents
 Mutate each child
 Evaluate all λ offspring
 Assign a fitness value to all λ individuals
 If Selection = “+” Then
 Select the best µ individuals from the µ+λ individuals
 Else
 Select the best µ individuals from the λ individuals
 End If
 End For
End

Figure 2: Detailed ES algorithm.

3 CONSTRAINT HANDLING IN EVOLUTIONARY ALGORITHMS

EAs are unconstrained search techniques. Thus, incorporating constraints into the

fitness function of an EA is an open research area. There is a considerable amount of
research regarding mechanisms that allow EAs to deal with equality and inequality
constraints9’10. Constraint-handling approaches tend to incorporate information about
infeasibility (or distance to the feasible region) into the fitness function in order to guide
the search. In this chapter, we present a classification and descriptions of several
constraint-handling approaches used in EAs.

3.1 Statement of the problem

We are interested in the general nonlinear programming (NLP) problem in which we
want to:

Find xr which optimizes ()xf r (6)

EFREN MEZURA-MONTES et al. / ES To Solve Constrained Problems

Subject to:
() 0≤xg i
r , mi ,,1K=

() 0=xh j
r , pj ,,1 K=

(7)

where xr is the vector of solutions []T

nxxxx Kr
,21 ,= , m is the number of inequality

constraints and p is the number of equality constraints (in both cases, constraints could
be linear or nonlinear). If we denote with F to the feasible region and with S to the
whole search space, then it should be clear that F ⊆ S. For an inequality constraint that
satisfies () 0=xg i

r , we will say that is active at xr ; it is said to be inactive if () 0≤xg i
r .

All equality constraints jh (regardless of the value of xr used) are considered active at

all points of F.

3.2 Penalty function

The most common approach adopted to deal with constrained search spaces is the
use of penalty functions11. When using a penalty function, the amount of constraint
violation is used to punish or “penalize” an infeasible solution so that feasible solutions
are favored by the selection process.

There are two types of penalty functions:

• Exterior: More commonly used in Evolutionary Algorithms. In this case, the
algorithm starts with infeasible solutions and the search will be guided
towards the feasible region of the search space. The penalty value will be low
at the beginning of the search and it will be increased over time (i.e.
iterations). The idea is to allow the search to move towards the feasible
region and, once reached, stay there.

• Interior: Also known as barrier penalties. In this case, the algorithm starts
with a feasible solution (which, for some problems, is not easy or
computationally efficient to get12) and moves inside the feasible region. In
this case, the penalty factor is low in zones far from the boundaries of the
feasible region and it will be high in zones close to the boundaries. This
allows the search to move inside the feasible region trying to locate the global
optimum.

The general formula of a penalty function is the following:

() () 







⋅+⋅±= ∑∑

==

p

j
jj

m

i
ii LcGrxfx

11

rrφ
(8)

where ()xrφ is the expanded objective function to be optimized, Gi and Lj are functions
of the constraints of the problem ()xg r and ()xh r , respectively, and ri y cj are positive
constants called “penalty factors” which determine the severity of the penalty. The most
common form of Gi and Lj is:

[]β)(,0max xgG ii
r= (9)

EVOLUTIONARY ALGORITHMS AND INTELLIGENT TOOLS

γ
)(xhL jj
r= (10)

where β and γ are normally 1 or 2.
The main drawback of penalty functions is that they require a careful fine tuning of the
penalty factors that accurately estimates the degree of penalization to be applied so that
we can approach efficiently the feasible region9,12.

Several approaches have been proposed to avoid this dependency of the values of the
penalty factors. The most known are the following:

• Death Penalty: In this case, infeasible solutions either get a zero fitness

regardless of their amount of constraint violation or are just discarded. This
idea was proposed by Schwefel4.

• Static Penalties: In this case, the penalty factors remain without change
during all the evolutionary process13.

• Dynamic Penalties: The idea of a dynamic penalty approach is to use time
(i.e. the current generation number) to influence the computation of the
penalty factor of an individual14.

• Annealing Penalties: This is a particular case of dynamic penalty functions
based on the idea of simulated annealing15’

• Adaptive Penalties: The aim of adaptive penalties is to use information of
the evolutionary process itself (instead of a pre-defined variation function as
in the case of dynamic penalties) to update the value of the penalty factors16.

• Co-evolutionary penalties: The main idea is to evolve penalty factors in one
subpopulation and in the other one the solutions of the original problem17.

• Segregated genetic algorithm: Proposes a balance between heavy and
moderated penalty factors18.

• Fuzzy Penalties: In this approach, a set of fuzzy rules is used to update the
value of the penalty factors19.

3.3 Special representations and operators

When the traditional representation of solutions (i.e. binary) is not suitable, some
researchers have opted to propose alternative representations and associated operators
suitable for the proposed representation. In most cases, special encodings are adopted to
generate feasible solutions and ad-hoc operators are used to preserve their feasibility
during all the evolutionary process. The main application of this approach is in
problems in which it is extremely difficult to locate at least a single feasible solution, or
in problems in which traditional encodings do not perform well20’21’22

3.4 Repair algorithms

Repair in the context of constraint handling means to make feasible an infeasible
solution. This idea has been widely used in combinatorial optimization, more than in
numerical optimization. Some of the open questions related to repair algorithms are, for
example, if the repaired solution must be inserted in the population or if it should be
used for evaluating fitness23. Another question is how to design efficient and effective
(and even generalizable) repair algorithms. One application of repair algorithms for
numerical optimization was proposed by Michalewicz and his GENOCOP III24. The
aim was to incorporate the original GENOCOP system20 (which handles only linear

EFREN MEZURA-MONTES et al. / ES To Solve Constrained Problems

constraints) and also use two different populations where results in one population
influence evaluations of individuals in the other population. Individuals in the first
population are search points which satisfy linear constraints of the problem. These
solutions are kept as feasible by using special operators. Solutions in the second
population are feasible reference points. Then, solutions from the first population are
repaired in order to be similar to those of the second population. The main drawback of
the approach is that the effort to repair an infeasible solution can become more costly
than the entire algorithm. Also, repair methods are not usually easy to generalize. For
combinatorial optimization, Liepins et al.23 have shown, through an empirical study on a
diverse set of constrained combinatorial optimization problems, that a repair algorithm
can provide better results than other approaches in both speed and performance. Other
area of application of repair algorithms is robotics. Xiao et al.25 used a repair algorithm
to transform an infeasible path of a robot trying to move between two points in the
presence of obstacles, so that the path would become feasible. The difficult part of this
work was the design of the repair operators.

3.5 Separation of Constraints and Objectives

Unlike penalty functions which combine the value of the objective function and the
constraints of a problem to assign fitness, these approaches handle constraints and
objectives separately. The most representative are: the use of coevolution by Paredis26,
the approach based on the superiority of feasible points by Deb27 and the use of
multiobjective optimization concepts by Coello & Mezura28.

3.6 Hybrid Methods

Within this category, we consider methods that are coupled with another technique
(another heuristic or a mathematical programming approach) to deal with constrained
spaces: Bilchev & Parmee29 proposed to use Ant System concepts to solve constrained
problems. The use of Lagrangian multipliers to solve constrained problems has been
proposed by some authors like Kim & Myung30. Other ideas adopted to deal with
constrained search spaces are the use of Cultural Algorithms (Chung and Reynolds31)
and Artificial Immune System (Hajela & Lee32).

4 EVOLUTION STRATEGIES TO SOLVE CONSTRAINED PROBLEMS

After a brief description of the different approaches proposed to incorporate the

constraints of a problem into the fitness function of an evolutionary algorithm, we now
focus on those approaches whose search engine is an evolution strategy.

Oyman et al.33 used Deb’s approach27 (listed in Section 3.5), but with an evolution
strategy as a search engine. They compared their approach against a death penalty.
Their approach outperformed the death penalty scheme. However, they tested it using
just three problems (two of them are from the well-known benchmark from
Michalewicz & Schoenauer34). Moreover, they only tested evolution strategies without
a self-adaptation mechanism (hence, they do not use correlated mutation as well). The
authors used a (1+1)-ES, with no recombination operator (the ES adopted is single-
membered), and using different parameters for each test problem with a number of
evaluations of the objective function which oscillated between 331 and 330,491,
depending of the test problem solved. One interesting conclusion found by Oyman et al.
is the importance of defining a correct value for the stepsize used in the mutation
operator. In our proposed approach detailed in the next Section, we also emphasize the

EVOLUTIONARY ALGORITHMS AND INTELLIGENT TOOLS

importance of the definition of the initial stepsize value in a self-adaptive ES.
Hamida & Schoenauer35 proposed the Adaptive Segregational Constraint Handling

Evolutionary Algorithm (ASCHEA). ASCHEA is based on three components:

• An adaptive penalty function: The expression used is:





−
=

otherwise)(penal)(
feasible if)(

)(fitness
xxf

xf
x rr

r
r

(11)

where

∑∑
+==

+ +=
m

qj
j

q

j
j xhxgx

11

)()()(penal rrr αα
(12)

where)(xg j
r+ is the positive part of)(xg j

r and α is the penalty coefficient for all
the constraints of the problem. The penalty factor is adapted according to a
desired ratio of feasible solutions ett argτ and the current ratio in the generation t,

tτ in the following way:

() () ()
() () fact

factett

*t1totherwise
/t1t if argt

αα
ααττ

=+
=+>

(13)

where fact >1 and ett argτ are used-defined parameters and

() 1000*
)(

)(
0

1

1

∑

∑

=

== n

i
i

n

i
i

xV

xf

r

r

α

(14)

where)(xVi

r is the sum of constraint violation of individual i.
• Constraint-driven recombination (crossover): Combine an infeasible solution

with a feasible one and apply it when there is a low number of feasible solutions
with respect to ett argτ . If ettt argττ > , the recombination is performed in the
traditional way.

• Segregational Selection based on feasibility: The aim is to choose a defined
ratio selectτ of feasible solutions based on their fitness to be part of the population
for the next generation. The remaining individuals are selected in the traditional
way (proportional selection) based on their penalized fitness. selectτ is another
user-defined parameter.

In ASCHEA’s new version35, the authors propose to use a penalty factor for each
constraint of the problem. Each factor is adapted independently:

∑∑
+==

+ +=
m

qj
jj

q

j
jj xhxgx

11

)()()(penal rrr αα
(15)

and the adaptation process is now as follows:

EFREN MEZURA-MONTES et al. / ES To Solve Constrained Problems

() () ()
() () fact

factj

jj

jjett

*t1totherwise
/t1t)(if argt

αα
ααττ

=+
=+>

(16)

also, the authors used a niching mechanism to improve the performance of the
algorithm in multimodal functions. Finally, they added both, a dynamic and an adaptive
scheme to decrease the tolerance value used to handle equality constraints. All these
three new mechanisms also add more user-defined parameters, which makes more
difficult to tune them to solve an specific problem. The approach uses a (100+300)-ES
and requires 1,500,000 fitness function evaluations to provide good results in 11
functions of the aforementioned benchmark for constrained evolutionary optimization34.
The authors used standard arithmetical recombination (similar to generalized
intermediate recombination) using a crossover rate (which is not usually adopted when
using an ES). The main drawback of the approach is the definition by the user of several
extra parameters required by the technique.

One of the most competitive approaches found in the literature is the Stochastic
Ranking (SR) by Runarsson & Yao36. The aim of this approach is to balance the
influence of the objective function and the penalty function when assigning fitness to a
solution. SR does not require the definition of a penalty factor. Instead, the selection
process is based on a ranking process and a user-defined parameter called fP that sets
the probability of using only the objective function to compare two solutions when
sorting them. Then, when the solutions are sorted using a bubble-sort like algorithm,
sometimes, depending of the fP value, the comparison between two adjacent solutions
will be performed using only the objective function. The remaining comparisons will be
performed using only the penalty function that consists in this case, of the sum of
constraint violation. The suggested range for the fP value is 5.04.0 << fP . The results
obtained using all the functions of the well-known benchmark from Michalewicz &
Schoenauer34 (plus one test function) are the best reported to date in the literature.
Runarsson & Yao used a (30,200)-ES with 350,000 evaluations of the fitness function.
The authors used panmictic intermediate recombination for the strategy parameters and
they did not use any recombination operator for the decision variables nor correlated
mutation. One drawback of the approach is that the user needs to define the parameter

fP . The sorting algorithm adopted by this approach (assuming minimization) is shown
in Figure 3.

One of the most recent approaches based on an evolution strategy used to solve
constrained problems is the Pareto Archived and dominance Selection with Shrinkable
Search Space (PASSSS or PAS4)37. PAS4 is based on a multiobjective optimization
technique called Pareto Archived Evolution Strategy (PAES) originally proposed by
Knowles & Corne38, whose main feature is the use of an external population, stored in
an adaptive grid, that keeps nondominated solutions found along the evolutionary
process. PAS4 also uses an adaptive grid, but it reduces its size over time in order to
focus the search on the most promising regions of the search space. Besides, PAS4 uses
a shrinking mechanism which performs four tasks:

1. To select the best 15% individuals found in the adaptive grid (these solutions
are feasible or infeasible solutions whose values of violation of each
constraint are the lowest).

2. To find the extreme values of each decision variable from the selected
solutions.

EVOLUTIONARY ALGORITHMS AND INTELLIGENT TOOLS

3. To shrink the feasible space around the potential solutions enclosed in the
hypervolume defined by the bounds found for each decision variable. This
trimming process will be performed using a percentage of shrinking β
defined by the user.

4. These new bounds are used to re-initialize the values for the stepsizes σ for
the mutation operator.

Begin
 For i=1 to N Do
 For j=1 to N-1 Do
 U=random(0,1)
 If ((φ (Ij)= φ (Ij+1) =0) or (u<Pf)) Then
 If (f(Ij) > f(Ij+1)) Then
 swap(Ij, Ij+1)
 End If
 Else
 If (φ (Ij) > φ(Ij+1)) Then
 swap(Ij, Ij+1)
 End If
 End If
 End For
 If (not swap performed) Then
 Break
 End If
 End For
End

Figure 3: Stochastic Ranking sort algorithm. I is an individual of the population. φ (Ij) is the sum of
constraint violation of individual Ij. f(Ij) is the objective function value of individual Ij.

The authors used a (150+200)-ES with 350,000 evaluations of the objective function

to solve the extended benchmark of Michalewicz & Schoenauer34. They applied discrete
crossover on the decision variables and intermediate crossover on the strategy
parameters, and did not use correlated mutation. The main drawback of the approach is
that it requires the definition by the user of several parameters. Furthermore, the
implementation of PAS4 is far from being simple.

5 A MULTIMEMBERED EVOLUTION STRATEGY TO SOLVE
CONSTRAINED PROBLEMS

In this section we present a novel approach which exploits the features of an

evolution strategy in order to solve global optimization problems with constraints.
Motivated by the fact that the most recent and competitive approaches to solve
constrained optimization problems are based on an Evolution Strategy (e.g. Stochastic
Ranking36 and ASCHEA35) we hypothesized the following:

1. The self-adaptation mechanism of an ES helps to sample the search space well
enough as to reach the feasible region reasonably fast.

2. The simple addition of feasibility rules to an ES should be enough to guide the
search in such a way that the global optimum can be approached efficiently.

EFREN MEZURA-MONTES et al. / ES To Solve Constrained Problems

Thus, based on these ideas, we implemented a generic ES-based approach to solve
constrained optimization problems. Then, we performed an empirical study in which we
varied the type of selection (“+” or “,”) and the type of mutation (noncorrelated or
correlated)39. We also implemented a variation of a (µ+1)-ES with the “1/5 successful
rule” to adapt on-line the sigma value. Constraints were handled using rules based on
feasibility similar to those used by Deb27 and shown below:

1. A feasible solution is always preferred over an infeasible one.
2. Between 2 feasible solutions, the one with the best value of the objective

function is preferred.
3. Between 2 infeasible solutions, the one with the lowest amount of constraint

violation is preferred.

From our ES’s comparative study, the best results were provided by the variation of a
(µ+1)-ES39 in which one child created from µ mutations of the current solution
competes against it and the best one is selected as the new current solution. The use of
correlated mutation showed no positive impact on the performance of the ES. However,
the approach presented premature convergence in some test functions. Therefore, a
(1+λ)-ES was proposed40, which improved the robustness and quality of the previous
ES proposed. In this version, a diversity mechanism was added. Its function was to
maintain infeasible solutions with a good value of the objective function.

Both aforementioned approaches provided good results. However, their exploratory
power to sample large search spaces was limited because they are single-membered ES.
Therefore, our more recent approach is based on a (µ+λ)-ES which is called a Simple
Multimembered Evolution Strategy (SMES). The detailed features of our approach are
described next.

5.1 Diversity mechanism

With an idea similar to that used in the (1+λ)-ES version, we allow infeasible
solutions to remain in the population. However, unlike this previous approach, where
the best parent based only on the objective function (regardless of its feasibility) can
survive, in this new approach we allow the infeasible individual with the best value of
the objective function and with the lowest amount of constraint violation to survive for
the next generation. This solution (called by us the best infeasible solution) can be
chosen either from the parents or the offspring population, with 50% probability. This
process of allowing this solution to survive for the next generation happens 3 times
every 100 during the same generation. However, it is a desired behavior because a few
copies of this solution will allow its recombination with several solutions in the
population, especially with feasible ones. Recombining feasible solutions with
infeasible solutions in promising areas (based on the good value of the objective
function) and close to the boundary of the feasible region will allow the ES to reach
global optimum solutions located precisely on the boundary of the feasible region of the
search space (which are normally the most difficult solutions to reach). Following the
idea of allowing just a few infeasible solutions (one in the case of the (1+λ)-ES
approach), we allow the best infeasible solution to be copied into the population for the
next generation just 3 times for every 100 attempts. This works in the following way:
When the deterministic replacement is used to form the population for the next
generation in an ES, the best individuals from the union of parents and offspring are
selected based on the comparison mechanism previously indicated (in a deterministic
way). The process will pick feasible solutions with a better value of the objective
function first, followed by infeasible solutions with a lower value of constraint

EVOLUTIONARY ALGORITHMS AND INTELLIGENT TOOLS

violation. However, 3 times from every 100 picks, the best infeasible solution is copied
in the population for the next generation. The pseudocode is listed in Figure 4.

Based on the empirical evidence observed in the previous version of the approach40
where we used a population of 3 offspring, we decided to use a small number of copies
of the best infeasible solutions for the next generation of our approach. For values larger
than 3, the quality and robustness of our approach tend to decrease. It is worth
remarking that in the case where no infeasible solutions are found in the population, a
random solution is copied to the population for the next generation. Therefore, it is
possible, at any given generation, to have an entirely feasible parents population.
However, the mechanism will allow, when the offspring are generated, to have
infeasible individuals again.

Function population for next generation()
Begin
 For i=1 to µ Do
 If flip(0.97) Then
 Select the best individual based on the comparison mechanism
 from the union of the parents and offspring population,
 add it to the population for the next generation and delete
 it from this union.
 Else
 If flip(0.5) Then
 Select the best infeasible individual from the parents
 population and add it to the population for the next
 generation.
 Else
 Select the best infeasible individual from the offspring
 population and add it to the population for the next
 generation.
 End If
 End If
 End For
End

Figure 4: Pseudocode of the generation of the population for the next generation with the diversity
mechanism incorporated. flip(P) is a function that returns TRUE with probability P.

5.2 Combined recombination

We use panmictic recombination, but with a combination of the discrete and
intermediate recombination operators. Each gene in the chromosome can be processed
with any of these two recombination operators with 50% probability. This operator is
applied to both, strategy parameters (sigma values) and decision variables of the
problem. The pseudocode is shown in Figure 5. Note that we use intermediate
recombination by just computing the average between the values of the variable of each
parent (as originally proposed by Schwefel6).

EFREN MEZURA-MONTES et al. / ES To Solve Constrained Problems

Function combined recombination()
Begin
 Select mate 1 from the parents population
 For i=1 to NUMBER_OF_VARIABLES Do
 Select mate 2 from the parents population
 If flip(0.5) Then
 If flip(0.5) Then
 childi = mate _1i

 Else
 childi = mate _2i

 End If
 Else
 childi = (mate_1i + mate_2i) / 2
 End If
 End For
End

Figure 5: Pseudocode of the panmictic combined (discrete-intermediate) recombination operator used by
our approach. flip(P) is a function that returns TRUE with probability P.

5.3 Reduction of the initial stepsize of the ES

The previous versions of our algorithm were based on a variation of a (µ + 1)-ES39
and a (1 + λ)-ES40. These approaches do not use a population of solutions and employ
the most simple scheme of an ES where only one sigma value is used for all the
decision variables. We observed that when this sigma value was close to zero, the
previous approaches were capable of reaching the global optimum, or at least improve
the value of the final solution. Therefore, in our new approach based on a
multimembered ES, we decided to favor finer movements in the search space. We
experimented with just a percentage of the quantity obtained by the formula proposed
by Schwefel7. We initialize the sigma values (we use one for each decision variable) for
each individual in the initial population with only a 40% of the value obtained by the
following formula (where n is the number of decision variables):








 ∆
×=

n
xi

i 4.0)0(σ
(17)

where ix∆ is approximated with the expression (suggested by Runarsson & Yao36),

l
i

u
ii xxx −≈∆ , where l

i
u
i xx − are the upper and lower bounds of the decision variable i.

Summarizing, our approach works over a simple multimembered evolution strategy:

(µ+λ)-ES. The only modifications introduced are the reduction of the initial stepsize of
the sigma values, the panmictic combined (discrete-intermediate) recombination and the
changes to the original deterministic replacement of the ES (made by sorting the
solutions with respect to the comparison mechanism based on feasibility discussed at
the beginning of this section), allowing the best infeasible solution, from either the
parents or the offspring population, to remain in the next generation. The details of our
approach are presented in Figure 6.

EVOLUTIONARY ALGORITHMS AND INTELLIGENT TOOLS

Figure 6: Algorithm of our (µ+λ)-ES (SMES). The thick boxes indicate the three modifications made to
the original ES

5.4 A graphical example

A graphical example of the expected behavior of the approach can be found in Figure
7. We used a 2-dimensional test problem g08, which is a problem easy to solve by the
approach; it requires about 5400 evaluations of the objective function (18 generations)
to reach the global optimum, but it helps to visualize how our approach works. The
definition of this problem is the following:

Maximize:
() ()

()21
3
1

21
3 2sin2sin

)(
xxx

xx
xf

+
=

ππr (18)

Subject to: 01)(2
2
11 ≤+−= xxxg r

 () 041)(2
212 ≤−+−= xxxg r

where 0 ≤ x1 ≤ 10 and 0 ≤ x2 ≤ 10. The global optimum is located at x* = (1.2279713,

Create “µ” random solutions p(1)
with reduced initial stepsize

t=1

Evaluate p(t)

l=0

Apply combined crossover to create
one new solution (l)

Mutate new solution(l)

l=l+1

 l=”λ”

t=t+1

p(t)=replace best “µ” from the
“µ+λ” solutions

t=TMAX Final population

Diversity
mechanism

yes

yes

no

no

EFREN MEZURA-MONTES et al. / ES To Solve Constrained Problems

4.2453733) where f(x*) = 0.095825.

Figure 7: Graphs showing the population behavior using our proposed (µ+λ)-ES. “◊” points are feasible
solutions, “+” points are infeasible ones. The dashed line represents constraint g1(x) of the problem and

the dotted line represents constraint g2(x).

As it can be observed, in generation 1 there are a few feasible as well as several

infeasible solutions. The behavior of the approach can be observed in generation 3,
where there are more feasible solutions than those in generation 1 and there are also
infeasible solutions surrounding the feasible region. In this way, helped by the
combined crossover and the finer mutation movements the feasible region is sampled
well-enough as to find promising areas (three areas in the example). This is shown in
generation 6, where there is still an infeasible solution in the population. It is worth
noticing that this infeasible solution is close to the area where the global optimum is
located; this can be seen in generation 10 where the infeasible solution has disappeared
but the approach has found the vicinity of the constrained global optimum. Our
algorithm has converged to the constrained global optimum in generation 18.

5.5 Experimental results

To evaluate the performance of the proposed approach we used the 13 test functions
commonly adopted to test constraint handling techniques36. Their expressions can be
found elsewhere36. We performed 30 independent runs for each test function. The
learning rates values were calculated using the formulas proposed by Schwefel6 and
discussed in Section 2.

EVOLUTIONARY ALGORITHMS AND INTELLIGENT TOOLS

The initial values for the stepsizes were calculated using equation 17. In the
experiments, the following parameters were used:

• (100+300)-ES
• Number of generations = 800.
• Number of objective function evaluations = 240,000.

The combined recombination operator was used both for the decision variables of the
problem and for the strategy parameters (sigma values). Note that we do not use
correlated mutation39. To deal with equality constraints, a dynamic mechanism
originally proposed in ASCHEA35 and used in some of our previous work40 is adopted.
The tolerance value ε is decreased with respect to the current generation using the
following expression:

() ()
00195.1

1
t

t j
j

ε
ε =+ (19)

Statistical Results of the Simple Multimembered Evolution Strategy (SMES)

Problem Optimal Best Mean Median Worst St. Dev.
g01 -15.000 -15.000 -15.000 -15.000 -15.000 0
g02 0.803619 0.803601 0.785238 0.792549 0.751322 1.67E-2
g03 1.000 1.000 1.000 1.000 1.000 2:09E-4
g04 -30665.539 -30665.539 -30665.539 -30665.539 -30665.539 0
g05 5126.498 5126.599 5174.492 5160.198 5304.167 50.06E+0
g06 -6961.814 -6961.814 -6961.284 -6961.814 -6952.482 1.85E+0
g07 24.306 24.327 24.475 24.426 24.843 1.32E-1
g08 0.095825 0.095825 0.095825 0.095825 0.095825 0
g09 680.63 680.632 680.643 680.642 680.719 1.55E-2
g10 7049.25 7051.903 7253.047 7253.603 7638.366 136.02E+0
g11 0.75 0.75 0.75 0.75 0.75 1.52E-4
g12 1.000 1.000 1.000 1.000 1.000 0
g13 0.053950 0.053986 0.166385 0.061873 0.468294 1.77E-1

Table 3 : Statistical results obtained by our SMES for the 13 test functions over 30 independent runs.
A result in boldface indicates that the global optimum (or best known solution) was reached.

The initial ε0 was set to 0.001. Note that the use of the value 1.00195 in equation 19
causes the allowable tolerance for the equality constraints to go from 0.001 (initial
value) to 0.0004 (final value) given the number of iterations adopted by our approach (if
more iterations are performed, this value will tend to zero). For problem g13, ε0 was set
to a much larger value (3.0), because in this case it is very difficult to generate feasible
solutions during the initial generations of our approach. Thus, by using a large tolerance
value, more individuals will be able to satisfy the equality constraints and will serve as
reference solutions that the algorithm will improve over time. Given that this larger
value is adopted, we also changed the constant decreasing value. So, instead of using
1.00195, we adopt, in this case, a value of 1.0145. Such a value causes the allowable
equality constraint violation to go from 3.0 (initial value) to 0.00003 (final value) given
the number of iterations adopted by our approach. Note that the final allowable
tolerance is smaller in this case, despite the initial larger value. As a matter of fact, we
recommend to use this second setup for the tolerance of the equality constraints in
problems in which no feasible solutions can be found by our algorithm when using a
small initial ε0. Additionally, for problems g03 and g13 the initial stepsize required a
more dramatic decrease. They were defined as 0.01 (just a 5% instead of the 40% used
for the other test functions) for g03 and 0.05 (2.5%) for g13. Those two test functions

EFREN MEZURA-MONTES et al. / ES To Solve Constrained Problems

seem to provide better results with very smooth movements. It is important to note that
those two problems share the following features: moderately high dimensionality (five
or more decision variables), nonlinear objective function, one or more equality
constraints, and moderate size of the search space (based on the range of the decision
variables). Those common features suggest that for these types of problems, finer
movements provide a better sampling of the search space using an evolution strategy.
The statistical results of our SMES are summarized in Table 3.

As described in Table 3, our approach was able to find the global optimum in seven
test functions (g01, g03, g04, g06, g08, g11 and g12) and it found solutions very close
to the global optimum in the remaining six (g02, g05, g07, g09, g10, g13). Furthermore,
we compared these results with respect to three state-of-the-art techniques previously
discussed (Stochastic Ranking (SR)36, ASCHEA35 and PAS4 37). The best result found
by each approach is compared in Table 4. Analogously, in Tables 5 and 6 the mean and
worst values are compared.

5.6 Discussion of results

With respect to SR, our approach was able to find a “better” best result in functions
g02 and g10. In addition, it found a “similar” best solution in seven problems (g01, g03,
g04, g06, g08, g11 and g12). Slightly “better” best results were found by SR in the
remaining functions (g05, g07, g09 and g13). Our approach found “better” mean and
worst results in four test functions (g02, g06, g09 and g10). It also provided “similar”
mean and worst results in six functions (g01, g03, g04, g08, g11 and g12). Finally, SR
found again “better” mean and worst results in function g05, g07 and g13.

Compared against ASCHEA, the SMES found “better” best solutions in three
problems (g02, g07 and g10) and it found “similar” best results in six functions (g01,
g03, g04, g06, g08, g11). ASCHEA found slightly “better” best results in function g05
and g09. Additionally, our approach found “better” mean results in four problems (g01,
g02, g03 and g07) and it found “similar” mean results in three functions (g04, g08 and
g11). ASCHEA surpassed our mean results in four functions (g05, g06, g09 and g10).
We did not compare the worst results because they were not available for ASCHEA.
Also, we did not perform comparisons with respect to ASCHEA using functions g12
and g13 for the same reason.

Comparison of the best solution found

Problem Optimal SR36 ASCHEA35 PAS4 37 SMES
g01 -15.000 -15.000 -15.0 -14.9998 -15.000
g02 0.803619 0.803515 0.785 0.80346 0.803601
g03 1.000 1.000 1.0 1.000 1.000
g04 -30665.539 30665.539 -30665.5 -30665.530 -30665.539
g05 5126.498 5126.497 5126.5 5126.52 5126.599
g06 -6961.814 -6961.814 -6961.81 -6961.810 -6961.814
g07 24.306 24.307 24.3323 24.33060 24.327
g08 0.095825 0.095825 0.095825 0.095825 0.095825
g09 680.63 680.630 680.630 680.630 680.632
g10 7049.25 7054.316 7061.13 7059.84 7051.903
g11 0.75 0.75 0.75 0.75 0.75
g12 1.000 1.000 NA 1.000 1.000
g13 0.053950 0.053957 NA 0.053950 0.053986

Table 4 : Comparison of the best solutions found by the Stochastic Ranking (SR), ASCHEA, PAS4
and our SMES. NA = Not available. A result in boldface indicates either that the global optimum (or

best known solution) was reached or a better solution was found by the corresponding approach.

EVOLUTIONARY ALGORITHMS AND INTELLIGENT TOOLS

Comparison of the mean solution found
Problem Optimal SR36 ASCHEA35 PAS4 37 SMES

g01 -15.000 -15.000 -14.84 -14.88731 -15.000
g02 0.803619 0.781975 0.59 0.79901 0.785238
g03 1.000 1.000 0.99989 1.000 1.000
g04 -30665.539 30665.539 -30665.5 -30665.530 -30665.539
g05 5126.498 5128.881 5141.65 5180.15545 5174.492
g06 -6961.814 -6875.940 -6961.81 -6961.810 -6961.284
g07 24.306 24.374 24.66 24.57961 24.475
g08 0.095825 0.095825 0.095825 0.095825 0.095825
g09 680.63 680.656 680.641 680.63243 680.643
g10 7049.25 7559.192 7193.11 7366.9965 7253.047
g11 0.75 0.75 0.75 0.75 0.75
g12 1.000 1.000 NA 1.000 1.000
g13 0.053950 0.057006 NA 0.22022 0.166385

Table 5 : Comparison of the mean solutions found by the Stochastic Ranking (SR), ASCHEA, PAS4
and our SMES. NA = Not available. A result in boldface indicates either that the global optimum (or

best known solution) was reached or a better solution was found by the corresponding approach.

Comparison of the worst solution found
Problem Optimal SR36 ASCHEA35 PAS4 37 SMES

g01 -15.000 -15.000 NA -12.4477 -15.000
g02 0.803619 0.726288 NA -0.78548 0.751322
g03 1.000 1.000 NA -1.000 1.000
g04 -30665.539 30665.539 NA -30665.530 -30665.539
g05 5126.498 5142.472 NA 5558.7 5304.167
g06 -6961.814 -6350.262 NA -6961.81 -6952.482
g07 24.306 24.642 NA 25.3666 24.843
g08 0.095825 0.095825 NA -0.095825 0.095825
g09 680.63 680.763 NA 680.6360 680.719
g10 7049.25 8835.655 NA 7803.11 7638.366
g11 0.75 0.75 NA 0.75 0.75
g12 1.000 1.000 NA 1.000 1.000
g13 0.053950 0.216915 NA 0.44512 0.468294

Table 6 : Comparison of the worst solutions found by the Stochastic Ranking (SR), ASCHEA, PAS4
and our SMES. NA = Not available. A result in boldface indicates either that the global optimum (or

best known solution) was reached or a better solution was found by the corresponding approach.

Our SMES provided “better” best results than PAS4 in six functions (g01, g02, g04,
g06, g07 and g10) and it found “similar” best results in four problems (g03, g08, g11
and g12). In the remaining three, PAS4 surpassed our best result (g05, g09 and g13). In
addition, the SMES found “better” mean results in six functions (g01, g04, g05, g07,
g10 and g13) and it found “similar” mean results for four problems (g03, g08, g11 and
g12). PAS4 provided better mean results in the remaining three (g02, g06 and g09).
Finally, the SMES found a “better” worst result in five functions (g01, g04, g05, g07
and g10), it found “similar” worst solutions in other four (g03, g08, g11 and g12). PAS4
found better worst solutions in the remaining four problems (g02, g06, g09 and g13).

As we can see, our approach showed a very competitive performance with respect to
these three state-of-the-art approaches. SMES can deal with moderately constrained
problems (g04), highly constrained problems, problems with low (g06, g08), moderated

EFREN MEZURA-MONTES et al. / ES To Solve Constrained Problems

(g09) and high (g01, g02, g03, g07) dimensionality, with different types of combined
constraints (linear, nonlinear, equality and inequality) and with very large (g02), very
small (g05 and g13) or even disjoint (g12) feasible regions. Also, the algorithm is able
to deal with large search spaces (based on the intervals of the decision variables) and
with a very small feasible region (g10). Furthermore, the approach can find the global
optimum in problems where such optimum lies on the boundaries of the feasible region
(g01, g02, g04, g06, g07, g09). This behavior suggests that the mechanism of
maintaining the best infeasible solution helps the search to sample the boundaries
between the feasible and infeasible regions.

The computational cost (measured in terms of the number of fitness function
evaluations (FFE) performed by any approach) is lower for the SMES than for others
with respect to which it was compared. This is an additional (and important) advantage,
mainly if we wish to use this approach for solving real-world problems. The SMES
performed 240,000 FFE, the Stochastic Ranking and PAS4 performed 350,000 FFE, and
ASCHEA required 1,500,000 FFE.

It is also worth mentioning that the SMES had some problems to find consistently
good results in presence of more than one nonlinear equality constraints (g05 and g13).
This issue deserves a more in-depth analysis in the future.

5.7 Finding the strength of the SMES

Once we corroborated the effectiveness of our approach, it became particularly
relevant to identify the key component (or combination of them) that was mainly
responsible for the good performance of our algorithm. For that sake, we designed two
experiments.

1. Cross-validation of our ES’ mechanisms: We tested our SMES using each of
its mechanisms (diversity mechanism, combined recombination and stepsize
reduction) separately and combining them in pairs, in order to recognize which
of them was mandatory. It is important to note that removing the diversity
mechanism implies disallowing the best infeasible solution to remain in the
population for the next generation of the algorithm. The comparison mechanism
based on feasibility remains in all cases in order to guide the search to the
feasible region of the search space.

2. ES against GA: Our second experiment consisted on implementing a real-coded
GA with the same combined recombination and the same diversity mechanism
used in our SMES. Here, we wanted to see if the use of a GA instead of an ES
would make any significant difference in terms of performance.

The parameters used in these experiments are exactly the same used in the
experiments described in Section 5.5. Thus, the number of evaluations of the objective
function is also the same (240,000). We performed 30 independent runs for each
different version of the algorithm (with different combination of mechanisms) and also
for the version using the GA.

In Table 7 we present the version which provided the best results (from the cross
validation experiments). Also, we present the results provided by the approach but
using a GA instead of a ES. For the sake of the GA experiment, we tested different
mutation operators for real-coded GAs and non-uniform mutation provided the best
results. Furthermore, we intended that the GA used the same features of the ES (except
for the self-adaptive mutation which we hypothesized was the main strength of our ES-
based approach). Finally, the same dynamic mechanism to handle the tolerance for
equality constraints was employed. The parameters used by our real-coded GA were the
following:

EVOLUTIONARY ALGORITHMS AND INTELLIGENT TOOLS

• Population size: 200
• Maximum number of generations: 1200
• Crossover rate: 0:8
• Mutation rate: 0:6
• Number of objective function evaluations: 240,000 (the same performed by our

SMES).

Statistical Results for the cross validation experiments and the GA test
 Best Mean Worst

P Optimal Rec. &
Stepsize

GA Rec. &
Stepsize

GA Rec. &
Stepsize

GA

g01 -15.000 -15.000 -14.440 -15.000 -14.236 -15.000 -14.015
g02 0.803619 0.803592 0.796231 0.798786 0.788588 0.785255 0.779140
g03 1.000 1.000 0.990 1.000 0.976 0.999 0.956
g04 -30665.539 -30665.42 -30626.05 -30661.10 -30590.45 -30647.48 -30567.10
g05 5126.498 5216.998 - 5158.739 - 5201.935 -
g06 -6961.814 -6961.814 -6952.472 -6961.814 -6872.204 -6961.814 -6784.255
g07 24.306 24.343 31.097 24.474 34.980 24.789 38.686
g08 0.095825 0.095825 0.095825 0.095825 0.095799 0.095825 0.095723
g09 680.63 680.631 685.994 680.637 692.064 680.664 698.297
g10 7049.25 7062.754 9079.770 7193.887 10003.225 7368.333 11003.533
g11 0.75 0.75 0.75 0.752 0.75 0.767 0.752
g12 1.000 1.000 1.000 1.000 1.000 1.000 0.999
g13 0.053950 0.058037 0.134057 0.247404 - 0.466266 -

Table 7 : Statistical results obtained by the best combination of mechanisms of the SMES and the GA
experiment for the 13 test functions over 30 independent runs. “-“ means no feasible solutions were
found. A result in boldface indicates that the global optimum (or best known solution) was reached

It is worth mentioning that the version with only the combined recombination
(without stepsize reduction and also without diversity mechanism) provided the best
results (based on quality and robustness) among the versions with only one active
mechanism. However, this version with only the combined recombination was clearly
surpassed by the version with the combined recombination and also the stepsize
reduction (which is shown in Table 7). These results suggest that the combined
recombination is the dominant mechanism, which is assisted by the fine mutation
movements provided by the reduction of the initial stepsize.

It is clear that the results provided by this version with only the combined
recombination and the stepsize reduction are indeed very competitive compared with
respect to the complete version of the SMES (with the three mechanisms active). The
main question that arose at this point was: what is the role of the diversity mechanism in
the success of our approach? In order to answer this question, we compared the results
of the version with combined recombination and stepsize reduction against the version
with the three mechanisms (from Tables 7 and 3 respectively) . From this comparison
we observed that our approach provides results of a better quality when using the
diversity mechanism. However, the price paid for this higher quality of results is a slight
decrease in robustness. Also, the overall results (providing competitive results in all 13
test functions) are better when the diversity mechanism is incorporated into our SMES.
It is also worth reminding that the goal of the diversity mechanism is to allow the search
to generate solutions in the boundaries of the feasible region (which is something
critical when dealing with constraints that are active in the global optimum). Hence, the
use of such diversity mechanism seems a logical choice for dealing with active
constraints.

EFREN MEZURA-MONTES et al. / ES To Solve Constrained Problems

Finally, for the case of the version of the approach using a GA both the quality and
robustness of the results provided by the GA are significantly poorer than those
obtained with the evolution strategy in all the test functions adopted. The exceptions are
g08, g11 and g12, in which the GA was able to find competitive results. These results
highlight the strong influence (positive in this case) of using a more adequate search
engine, in our case an ES over a GA. Therefore, the results seem to confirm our initial
hypothesis about the usefulness of an ES to sample constrained search spaces in a more
appropriate way.

6 CONCLUSIONS

In this chapter, we presented a review of constraint handling techniques which are

based on an evolution strategy as a search engine to solve global optimization problems
in the presence of constraints. After a brief introduction to evolution strategies, we
provided a review of constraint handling techniques used in evolutionary algorithms.
Afterwards, we focused on the techniques proposed to deal with constrained search
spaces which are based on an evolution strategy. Besides, we proposed a novel
approach which exploits the features of an evolution strategy to solve constrained
optimization problems, we called it a Simple Multimembered Evolution Strategy
(SMES). The approach was based on three modifications to the original evolution
strategy algorithm: (1) a diversity mechanism which allows infeasible solutions close to
the feasible region of the search space and with a good value of the objective function to
remain in the population for the next generation. This infeasible solution is called the
“best infeasible solution”. The aim is to have a few copies of the best infeasible solution
(either from the parent or the offspring population) in the population at each stage of the
evolutionary process. (2) A combined panmictic (discrete-intermediate) recombination
operator applied to the decision variables of the problem an the strategy parameters as
well. The goal is to improve the exploitation feature of the operator and to allow
infeasible solutions to combine with feasible ones in order to sample the boundaries of
the feasible region. And (3) a reduction of the initial stepsize of the mutation operator.
The objective is to favor finer movements in the search space. The combination of these
three mechanisms provided competitive results with respect to three state-of-the-art
approaches also based on an evolution strategy. Furthermore, we performed
experiments in order to know which mechanism (or combination of them) was the main
responsible of the good performance of the SMES. This analysis suggested that the
dominant mechanism was the combined recombination, which is assisted by the finer
movements of the mutation operator (due to the reduction of the initial stepsize) to
provide competitive results. It was also found in this study that the diversity mechanism
helps the SMES to provide results with a better quality but decreasing slightly its
robustness. Finally, we empirically showed that the use of a genetic algorithm with the
same mechanisms used in the evolution strategy decreases considerably the quality and
robustness of the approach. This result suggests that the use of an evolution strategy is
more suitable to solve this set of constrained problems. As a final conclusion we can
state that the choice of the search engine and the genetic operators used to solve
constrained optimization problems seems to be more important than the constraint
handling mechanism.

EVOLUTIONARY ALGORITHMS AND INTELLIGENT TOOLS

7 FUTURE WORK

As future paths of research we want to use other genetic operators commonly

adopted in evolution strategies like the derandomized self-adaptation proposed by
Hansen and Ostermeier41. Furthermore, we want to experiment with other
recombination operators like panmictic generalized intermediate recombination. The
aim will be to reduce the number of evaluations required to approximate the global
optimum.

8 REFERENCES

[1] Ingo Rechenberg., “Cybernetic solution path of an experimental problem”, Royal
Aircraft Establishment, Library Translation No. 1122, Farnborough, Hants, UK,
August (1965).

[2] H.P. Schwefel, “Projekt MHD-Staustrahlrohr: Experimentelle Optimierung einer
zweiphasendüse”, Teil I. Technical Report Technischer Bericht 11.034/68, 35,
AEG Forschungsinstitut, Berlin, (1968).

[3] Ingo Rechenberg, “Evolutionsstrategie: Optimierung technischer Systeme nach
Prinzipien der biologischen Evolution”, Frommann-Holzboog, Stuttgart, (1973).

[4] Thomas Bäck, Frank Hoffmeister, and Hans-Paul Schwefel., “A Survey of
Evolution Strategies”., In R.K. Belew and L.B. Booker, editors, Proceedings of the
Fourth International Conference on Genetic Algori thms, pages 2-9, San Mateo,
California, Morgan Kaufmann Publishers (1991)

[5] David E. Goldberg, Genetic Algorithms in Search, Optimization and Machine
Learning, Addison-Wesley Publishing Co., Reading, Massachusetts, (1989).

[6] Hans-Paul Schwefel, Evolution and Optimization Seeking, John Wiley & Sons,
New York, (1995).

[7] Thomas Bäck, Evolutionary Algorithms in Theory and Practice, Oxford University
Press, New York, (1996).

[8] Lawrence J. Fogel, Intelligence Through Simulated Evolution. Forty years of
Evolutionary Programming, John Wiley & Sons, New York, (1999).

[9] Carlos A. Coello Coello, “Theoretical and Numerical Constraint Handling
Techniques used with Evolutionary Algorithms: A Survey of the State of the Art,
Computer Methods in Applied Mechanics and Engineering, 191(11-12):1245-1287,
January (2002).

[10] Zbigniew Michalewicz and Marc Schoenauer, “Evolutionary Algorithms for
Constrained Parameter Optimization Problems”, Evolutionary Computation, 4(1):1-
32, (1996).

[11] Jon T. Richardson, Mark R. Palmer, Gunar Liepins, and Mike Hilliard, “Some
Guidelines for Genetic Algorithms with Penalty Functions”. In J. David Schaffer,
editor, Proceedings of the Third International Conference on Genetic Algorithms
(ICGA-89), pages 191-197, San Mateo, California, June, George Mason University,
Morgan Kaufmann Publishers, (1989)

[12] Alice E. Smith and David W. Coit. “Constraint Handling Techniques: Penalty
Functions”, In Thomas Bäck, David B. Fogel, and Zbigniew Michalewicz, editors,
Handbook of Evolutionary Computation, chapter C 5.2. Oxford University Press
and Institute of Physics Publishing, (1997).

[13] A. Homaifar, S. H. Y. Lai, and X. Qi, “Constrained Optimization via Genetic
Algorithms”, Simulation, 62(4):242–254, (1994).

[14] J. Joines and C. Houck. “On the use of non-stationary penalty functions to solve
nonlinear constrained optimization problems with Gas”. In David Fogel, editor,

EFREN MEZURA-MONTES et al. / ES To Solve Constrained Problems

Proceedings of the first IEEE Conference on Evolutionary Computation, pages
579–584, Orlando, Florida, IEEE Press. (1994).

[15] Zbigniew Michalewicz and Naguib F. Attia, “Evolutionary Optimization of
Constrained Problems”, In Proceedings of the 3rd Annual Conference on
Evolutionary Programming, pages 98–108. World Scientific, (1994).

[16] Raziyeh Farmani and Jonathan A. Wright, “Self-Adaptive Fitness Formulation for
Constrained Optimization”. IEEE Transactions on Evolutionary Computation,
7(5):445—455, October (2003).

[17] Carlos A. Coello Coello, “Use of a Self-Adaptive Penalty Approach for
Engineering Optimization Problems”, Computers in Industry, 41(2):113–127,
January (2000).

[18] Rodolphe G. Le Riche, Catherine Knopf-Lenoir, and Raphael T. Haftka, “A
Segregated Genetic Algorithm for Constrained Structural Optimization”, In Larry J.
Eshelman, editor, Proceedings of the Sixth International Conference on Genetic
Algorithms (ICGA-95), pages 558–565, San Mateo, California, July, University of
Pittsburgh, Morgan Kaufmann Publishers, (1995)

[19] Baolin Wu and Xinghuo Yu, “Fuzzy Penalty Function Approach for Constrained
Function Optimization with Evolutionary Algorithms”, In Proceedings of the 8th
International Conference on Neural Information Processing, pages 299–304,
Shanghai, China, November, Fudan University Press (2001).

[20] Zbigniew Michalewicz, Genetic Algorithms + Data Structures = Evolution
Programs, Springer-Verlag, third edition, (1996).

[21] Marc Schoenauer and Zbigniew Michalewicz, “Evolutionary Computation at the
Edge of Feasibility”. In H.-M. Voigt,W. Ebeling, I. Rechenberg, and H.-P.
Schwefel, editors, Proceedings of the Fourth Conference on Parallel Problem
Solving from Nature (PPSN IV), pages 245–254, Heidelberg, Germany, September,
Berlin, Germany, Springer-Verlag, (1996)

[22] Slawomir Koziel and Zbigniew Michalewicz, “Evolutionary Algorithms,
Homomorphous Mappings, and Constrained Parameter Optimization”,
Evolutionary Computation, 7(1):19–44, 1999.

[23] Gunar E. Liepins and W. D. Potter, “A Genetic Algorithm Approach to Multiple-
Fault Diagnosis”, In Lawrence Davis, editor, Handbook of Genetic Algorithms,
chapter 17, pages 237–250. Van Nostrand Reinhold, New York, New York, 1991.

[24] Zbigniew Michalewicz and G. Nazhiyath, “Genocop III: A co-evolutionary
algorithm for numerical optimization with nonlinear constraints”, In David B.
Fogel, editor, Proceedings of the Second IEEE International Conference on
Evolutionary Computation, pages 647–651, Piscataway, NJ, IEEE Press. (1995)

[25] Jing Xiao, Zbigniew Michalewicz, and Krzysztof Trojanowski. “Adaptive
Evolutionary Planner/Navigator for Mobile Robots”, IEEE Transactions on
Evolutionary Computation, 1(1):18–28, (1997).

[26] J. Paredis. “Co-evolutionary Constraint Satisfaction”, In Proceedings of the 3rd
Conference on Parallel Problem Solving from Nature, pages 46–55, New York,
Springer Verlag, (1994)

[27] Kalyanmoy Deb. “An Efficient Constraint Handling Method for Genetic
Algorithms”, Computer Methods in Applied Mechanics and Engineering,
186(2/4):311–338, (2000).

[28] Carlos A. Coello Coello and Efrén Mezura-Montes. Handling Constraints in
Genetic Algorithms Using Dominance-Based Tournaments. In I.C. Parmee, editor,
Proceedings of the Fifth International Conference on Adaptive Computing in
Design and Manufacture (ACDM’2002), volume 5, pages 273–284, University of

EVOLUTIONARY ALGORITHMS AND INTELLIGENT TOOLS

Exeter, Devon, UK, April, Springer-Verlag. (2002)

[29] George Bilchev and Ian C. Parmee, “Constrained and Multi-Modal Optimisation
with an Ant Colony Search Model”, In Ian C. Parmee and M. J. Denham, editors,
Proceedings of 2nd International Conference on Adaptive Computing in
Engineering Design and Control. University of Plymouth, UK, March (1996).

[30] J.-H. Kim and H. Myung. “Evolutionary programming techniques for constrained
optimization problems”, IEEE Transactions on Evolutionary Computation, 1:129–
140, July (1997).

[31] Chan-Jin Chung and Robert G. Reynolds, “A Testbed for Solving Optimization
Problems Using Cultural Algorithms”, In Lawrence J. Fogel, Peter J. Angeline, and
Thomas Bäck, editors, Evolutionary Programming V: Proceedings of the Fifth
Annual Conference on Evolutionary Programming, pages 225–236, Cambridge,
Massachusetts, MIT Press, March, (1996)

[32] P. Hajela and J. Lee, “Constrained Genetic Search via Schema Adaptation. An
Immune Network Solution”, Structural Optimization, 12:11–15, (1996).

[33] Ahmet Irfan Oyman, Kalyanmoy Deb, and Hans-Georg Beyer, “An Alternative
Constraint Handling Method for Evolution Strategies”, In Proceedings of the
Congress on Evolutionary Computation 1999 (CEC’99), volume 1, pages 612–619,
Piscataway, New Jersey, IEEE Service Center, July (1999)

[34] Zbigniew Michalewicz and Marc Schoenauer, “Evolutionary Algorithms for
Constrained Parameter Optimization Problems”, Evolutionary Computation,
4(1):1–32, (1996).

[35] Sana Ben Hamida and Marc Schoenauer, “ASCHEA: New Results Using Adaptive
Segregational Constraint Handling”, In Proceedings of the Congress on
Evolutionary Computation 2002 (CEC’2002), volume 1, pages 884–889,
Piscataway, New Jersey, IEEE Service Center, May (2002).

[36] Thomas P. Runarsson and Xin Yao. “Stochastic Ranking for Constrained
Evolutionary Optimization”, IEEE Transactions on Evolutionary Computation,
4(3):284–294, September (2000).

[37] Arturo Hernández-Aguirre, Salvador Botello-Rionda, and Carlos A. Coello Coello,
“PASSSS: An Implementation of a Novel Diversity Strategy for Handling
Constraints”. In Proceedings of the Congress on Evolutionary Computation 2004
(CEC'2004), volume 1, pages 403-410, Piscataway, New Jersey, Portland, Oregon,
USA, IEEE Service Center. June (2004)

[38] Joshua D. Knowles and David W. Corne, “Approximating the Nondominated Front
Using the Pareto Archived Evolution Strategy”, Evolutionary Computation,
8(2):149–172, (2000).

[39] Efrén Mezura-Montes and Carlos A. Coello Coello. “A Simple Evolution Strategy
to Solve Constrained Optimization Problems”. In Erick Cantú-Paz et al., editors,
Proceedings of the Genetic and Evolutionary Computation Conference
(GECCO’2003), pages 640–641, Heidelberg, Germany, Chicago, Illinois, Springer
Verlag. Lecture Notes in Computer Science Vol. 2723, July (2003).

[40] Efrén Mezura-Montes and Carlos A. Coello Coello. “Adding a Diversity
Mechanism to a Simple Evolution Strategy to Solve Constrained Optimization
Problems”. In Proceedings of the Congress on Evolutionary Computation 2003
(CEC’2003), volume 1, pages 6–13, Piscataway, New Jersey, Canberra, Australia,
IEEE Service Center, December (2003).

[41] Nikolaus Hansen and Andreas Ostermeier, “Completely Derandomized Self-
Adaptation in Evolution Strategies”, Evolutionary Computation, 9(2):159–195,
(2001).

