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Abstract. In this chapter, we present an overview of the main approaches that have 
been used to solve constrained optimization problems using evolution strategies. 
Furthermore, we propose a novel approach to incorporate constraints into an evolution 
strategy used to solve global optimization problems. This new approach uses a set of 
simple rules to guide the search towards the feasible region and a diversity mechanism 
to maintain good infeasible solutions in the population during all the evolutionary 
process. The approach combines two recombination operators (discrete and 
intermediate) and also adopts a reduced initial stepsize for the mutation operator. The 
new approach is not only simple, but also highly competitive with respect to the 
algorithms more representative of the state-of-the-art in the area.  
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1 INTRODUCTION 

 
Evolution strategies (ES) are a class of evolutionary algorithm (EA) that have been 

found to perform quite well in a wide variety of unconstrained optimization problems. 
When dealing with constrained problems, evolution strategies are normally combined 
with a penalty function whose definition is problem-dependant. In fact, the study of 
alternative mechanisms to incorporate constraints into an evolution strategy have been 
only scarcely studied. 
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In this chapter, we present an overview of the main approaches that have been used 
to solve constrained optimization problems using evolution strategies. Furthermore, we 
propose a novel approach to incorporate constraints into an evolution strategy used to 
solve global optimization problems. The new approach is not only simple, but also 
highly competitive with respect to the algorithms more representative of the state-of-
the-art in the area. 

The chapter is organized as follows. First, we briefly introduce some basic concepts 
related to evolution strategies. We cover aspects such as encoding of the solutions, the 
selection process, types of mutation and recombination operators available and self-
adaptation. Also, we briefly discuss the differences between an evolution strategy and 
any of the two other main evolutionary algorithms in current use (i.e., evolutionary 
programming and genetic algorithms). After that, we provide a taxonomy of constraint-
handling techniques that have been proposed for evolutionary algorithms and we 
discuss the main approaches currently available (e.g., different types of penalty 
functions, the separation of objective and constraints, repair algorithms, etc.). 

As indicated before, the chapter also provides a review of the main approaches used 
to solve constrained optimization problems which are based on an evolution strategy. 
We describe, for example, the Adaptive Segregational Constraint Handling Evolution 
Strategy (ASCHEA), Stochastic Ranking and the Pareto Archive and Dominance 
Selection with Shrinkable Search Space (PAS4).  

After the review of the state-of-the-art techniques, we proceed to describe our 
proposal for a novel approach which exploits the main features of an evolution strategy 
to solve global optimization problems. This new approach uses a set of simple rules to 
guide the search towards the feasible region and a diversity mechanism to maintain 
good infeasible solutions in the population during all the evolutionary process. To 
enhance the search power of the evolution strategy adopted, we propose to combine two 
recombination operators (discrete and intermediate) and also the use of reduced initial 
stepsizes for the mutation operator in order to take advantage of finer movements in the 
search space and inside the feasible region as well. We test our approach in some well-
known benchmark problems. Our proposed approach is also compared with respect to 
other algorithms which are representative of the state-of-the-art in the area. Finally, we 
provide our conclusions and some potential paths for future research. 
 
 
2 THE EVOLUTION STRATEGY 
 

The ES were proposed by Bienert, Rechenberg and Schwefel who used them to solve 
hydrodynamical problems1’2 . The main idea was to allow the evolutionary process to 
evolve, besides the solutions of a problem, the parameters of the algorithm. The first ES 
version was the (1+1)-ES which uses just one individual that is mutated using a 
normally distributed random number with mean zero and an identical stepsize value for 
each decision variable. The best solution between the parent and the offspring is chosen 
and the other one is eliminated. Rechenberg derived a convergence rate theory and 
proposed a rule for changing the stepsize value of mutations in a (1+1)-ES. This is the 
so-called “1/5-success rule” 3. 

The first multimembered ES was the (µ+1)-ES, which was designed by Rechenberg 
and is described in detail by Bäck et al.4. In this approach, “µ” parent solutions 
recombine to generate one offspring. This solution is also mutated and, if it is better, it 
will replace the worst parent solution. Note however that the (µ+1)-ES has not been too 
popular in the literature. However, it provided the transition to the state-of-the-art 
multimembered ES. 
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The (µ+λ)-ES and the (µ,λ)-ES were proposed by Schwefel. In the first one, the best 
“µ” individuals out of the union of the “µ” original parents and their “λ” offspring will 
survive for the next generation. On the other hand, in the (µ,λ)-ES, the best “µ” will be 
selected only from the “λ” offspring.  

The (µ+λ)-ES uses an implicit elitist mechanism and solutions can survive more than 
one generation. Meanwhile, in the (µ,λ)-ES, solutions only survive one generation (this 
is the type of selection traditionally adopted in genetic algorithms5). Instead of the “1/5-
success rule”, each individual includes a stepsize value for each decision variable. 
Moreover, for each combination of two stepsize values, a rotation angle is included. 
These angles are used to perform a correlated mutation. This mutation allows each 
individual to look for a search direction. The stepsize values and the angles of each 
individual are called strategy parameters. They are also recombined and mutated. A 
(µ+λ)-ES or (µ,λ)-ES individual can be seen as follows: ),,)(( θσ

rrvxia , where “i” is the 
number of individual in the population, nℜ∈x  is a vector of “n” decision variables, σr  
is a vector of “n” stepsize values and θ

r
 is a vector of “n(n-1)/2” rotation angles where 

[ ]ππθ ,−∈i . One of the main differences between a genetic algorithm and en evolution 
strategy relies on the way in which a solution is represented (see Figure 1).  
 

 
 

 
 

 

 

 

 

 

 

 

 

Figure 1: Representation of individuals of a genetic algorithm and an evolution strategy.  

 
 
Recombination can be sexual (two parents) or panmictic (more than two parents). 

There are two main types of recombination: (1) Discrete and (2) Intermediate. Both can 
be either sexual or panmictic. Also, Schwefel6 proposed to generalize intermediate 
recombination by allowing arbitrary  weight factors from the interval [0,1] to be used 
anew for each component of the chromosome. For a complete description of the 
recombination operators normally available we provide a list in Table 1 (Refer to Bäck7 
for details). 
 
 
 

 1  0  1  0  0  1 Traditional GA

4.340 12.34  0.02  0.15  0.57 Evolution strategy 

Encoded decision variables 

Decision variables 

σ1σ2 θ1 

Strategy parameters 
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Operation Type of recombination 
Parent_1i or Parent_2i Discrete 
Parent_1i or Parent_Ji Panmictic discrete 

(Parent_1i + Parent_2i)/2 Intermediate 
(Parent_1i + Parent_Ji)/2 Panmictic intermediate 

(1-χ)(Parent_1i )+(χ)(Parent_2i) Generalized intermediate 

 
 
 

offspringi = 
 
 
 (1-χ)(Parent_1i )+(χ)(Parent_Ji) Panmictic generalized 

intermediate 

Table 1: Different recombination operators used in ES. 

In Table 1, “Parent_1” and “Parent_2” are the parents used for the sexual 
recombination. “Parent_J” means a different parent for each gene (variable of the 
problem) in the chromosome. “χi” is the weight factor created anew for each decision 
variable and used in the generalized recombination. The mutation is calculated in the 
following way: 

 

( ) ( )( )1,01,0exp iii NN ⋅+⋅′⋅=′ ττσσ  (1) 

( )1,0jjj N⋅+=′ βθθ  (2) 

( )( )θσ ′′+=′
rrrrr ,,0 CNxx  (3) 

 
where τ  and  τ ′ are interpreted as “learning rates” and are defined by Schwefel6 as: 

( ) 1
2

−
= nτ  and ( ) 1

2
−

=′ nτ  and 0873.0≈β . 
 
Some authors use correlated mutation, but this implies an extra computational effort 

in order to process the value of each angle and also to rotate the individual. Moreover, 
some extra memory space is needed to store all the different angles per individual (the 
angles are formed by the combination of all the axis based on the number of decision 
variables of the problem). If non-correlated mutation is preferred, the computational 
cost and the storage space for each individual gets lower. If a non-correlated mutation is 
used, the mutation expressions are: 

 

( ) ( )( )1,01,0exp iii NN ⋅+⋅′⋅=′ ττσσ  (4) 

( )1,0iiii Nxx ⋅′+=′ σrr  (5) 

 
As can be noted, the genetic operators (recombination and mutation) are applied to the 
values of the decision variables as well as the strategy parameters. In this way, the ES is 
able to evolve both, the solutions of the problem and its own parameters. This is another 
feature that distinguishes ES from other evolutionary computation paradigms. For a 
more detailed summary of differences see Table 2. The detailed ES algorithm is shown 
in Figure 2. 
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 Evolution Strategies7 Genetic Algorithms5 Evolutionary 
Programming8 

Encoding Real numbers Binary (typically) Real numbers 
Self-adaptive Yes No (typically) No (typically) 
Mutation Gaussian. Main operator Bit inversions.  

Secondary operator 
Gaussian (unique 
operator) 

Recombination Discrete and intermediate. 
Secondary operator 

1 point, 2 points, n 
points. Main operator 

None 

Selection Deterministic Probabilistic Probabilistic 

Table 2: Main differences among evolutionary computation paradigms. 

 
Begin 
     t=0 
     Create µ random solutions for the initial population. 
     Evaluate all µ individuals 
     Assign a fitness value to all µ individuals 
     For t=1 to MAX_GENERATIONS Do 
          Produce λ offspring by recombination of the µ parents 
          Mutate each child 
          Evaluate all λ offspring 
          Assign a fitness value to all λ individuals 
          If Selection = “+” Then 
               Select the best µ individuals from the µ+λ individuals 
          Else 
               Select the best µ individuals from the λ individuals 
          End If 
     End For 
End 

 
Figure 2: Detailed ES algorithm. 

3 CONSTRAINT HANDLING IN EVOLUTIONARY ALGORITHMS 

 
EAs are unconstrained search techniques. Thus, incorporating constraints into the 

fitness function of an EA is an open research area. There is a considerable amount of 
research regarding mechanisms that allow EAs to deal with equality and inequality 
constraints9’10. Constraint-handling approaches tend to incorporate information about 
infeasibility (or distance to the feasible region) into the fitness function in order to guide 
the search. In this chapter, we present a classification and descriptions of several 
constraint-handling approaches used in EAs. 

3.1 Statement of the problem 

We are interested in the general nonlinear programming (NLP) problem in which we 
want to: 

 
Find xr  which optimizes ( )xf r  (6) 
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Subject to: 
( ) 0≤xg i
r ,  mi ,,1K=  

( ) 0=xh j
r ,  pj ,,1 K=  

(7) 

 
where xr  is the vector of solutions [ ]T

nxxxx Kr
,21 ,=  , m is the number of inequality 

constraints and p is the number of equality constraints (in both cases, constraints could 
be linear or nonlinear). If we denote with F to the feasible region and with S to the 
whole search space, then it should be clear that F ⊆ S. For an inequality constraint that 
satisfies ( ) 0=xg i

r , we will say that is active at xr ; it is said to be inactive if ( ) 0≤xg i
r . 

All equality constraints jh  (regardless of the value of xr  used) are considered active at 

all points of F. 

3.2 Penalty function 

The most common approach adopted to deal with constrained search spaces is the 
use of penalty functions11. When using a penalty function, the amount of constraint 
violation is used to punish or “penalize” an infeasible solution so that feasible solutions 
are favored by the selection process.  

There are two types of penalty functions: 
 

• Exterior: More commonly used in Evolutionary Algorithms. In this case, the 
algorithm starts with infeasible solutions and the search will be guided 
towards the feasible region of the search space. The penalty value will be low 
at the beginning of the search and it will be increased over time (i.e. 
iterations). The idea is to allow the search to move towards the feasible 
region and, once reached, stay there. 

• Interior: Also known as barrier penalties. In this case, the algorithm starts 
with a feasible solution (which, for some problems, is not easy or 
computationally efficient to get12) and moves inside the feasible region. In 
this case, the penalty factor is low in zones far from the boundaries of the 
feasible region and it will be high in zones close to the boundaries. This 
allows the search to move inside the feasible region trying to locate the global 
optimum. 

 
The general formula of a penalty function is the following: 
 

( ) ( ) 







⋅+⋅±= ∑∑

==

p

j
jj

m

i
ii LcGrxfx

11

rrφ  
(8) 

 
 

where ( )xrφ  is the expanded objective function to be optimized, Gi and Lj are functions 
of the constraints of the problem ( )xg r  and ( )xh r , respectively, and ri y cj are positive 
constants called “penalty factors” which determine the severity of the penalty. The most 
common form of Gi and Lj is: 
 

[ ]β)(,0max xgG ii
r=  (9) 
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γ
)(xhL jj
r=  (10) 

 
where β and γ are normally 1 or 2.  
The main drawback of penalty functions is that they require a careful fine tuning of the 
penalty factors that accurately estimates the degree of penalization to be applied so that 
we can approach efficiently the feasible region9,12. 

Several approaches have been proposed to avoid this dependency of the values of the 
penalty factors. The most known are the following: 

 
• Death Penalty: In this case, infeasible solutions either get a zero fitness 

regardless of their amount of constraint violation or are just discarded. This 
idea was proposed by Schwefel4. 

• Static Penalties: In this case, the penalty factors remain without change 
during all the evolutionary process13. 

• Dynamic Penalties: The idea of a dynamic penalty approach is to use time 
(i.e. the current generation number) to influence the computation of the 
penalty factor of an individual14. 

• Annealing Penalties: This is a particular case of dynamic penalty functions 
based on the idea of simulated annealing15’  

• Adaptive Penalties: The aim of adaptive penalties is to use information of 
the evolutionary process itself (instead of a pre-defined variation function as 
in the case of dynamic penalties) to update the value of the penalty factors16. 

• Co-evolutionary penalties: The main idea is to evolve penalty factors in one 
subpopulation and in the other one the solutions of the original problem17. 

• Segregated genetic algorithm: Proposes a balance between heavy and 
moderated penalty factors18. 

• Fuzzy Penalties: In this approach, a set of fuzzy rules is used to update the 
value of the penalty factors19. 

3.3 Special representations and operators 

When the traditional representation of solutions (i.e. binary) is not suitable, some 
researchers have opted to propose alternative representations and associated operators 
suitable for the proposed representation. In most cases, special encodings are adopted to 
generate feasible solutions and ad-hoc operators are used to preserve their feasibility 
during all the evolutionary process. The main application of this approach is in 
problems in which it is extremely difficult to locate at least a single feasible solution, or 
in problems in which traditional encodings do not perform well20’21’22 

 

3.4 Repair algorithms 

Repair in the context of constraint handling means to make feasible an infeasible 
solution. This idea has been widely used in combinatorial optimization, more than in 
numerical optimization. Some of the open questions related to repair algorithms are, for 
example, if the repaired solution must be inserted in the population or if it should be 
used for evaluating fitness23. Another question is how to design efficient and effective 
(and even generalizable) repair algorithms. One application of repair algorithms for 
numerical optimization was proposed by Michalewicz and his GENOCOP III24. The 
aim was to incorporate the original GENOCOP system20 (which handles only linear 
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constraints) and also use two different populations where results in one population 
influence evaluations of individuals in the other population. Individuals in the first 
population are search points which satisfy linear constraints of the problem. These 
solutions are kept as feasible by using special operators. Solutions in the second 
population are feasible reference points. Then, solutions from the first population are 
repaired in order to be similar to those of the second population. The main drawback of 
the approach is that the effort to repair an infeasible solution can become more costly 
than the entire algorithm. Also, repair methods are not usually easy to generalize. For 
combinatorial optimization, Liepins et al.23 have shown, through an empirical study on a 
diverse set of constrained combinatorial optimization problems, that a repair algorithm 
can provide better results than other approaches in both speed and performance. Other 
area of application of repair algorithms is robotics. Xiao et al.25 used a repair algorithm 
to transform an infeasible path of a robot trying to move between two points in the 
presence of obstacles, so that the path would become feasible. The difficult part of this 
work was the design of the repair operators. 

3.5 Separation of Constraints and Objectives 

Unlike penalty functions which combine the value of the objective function and the 
constraints of a problem to assign fitness, these approaches handle constraints and 
objectives separately. The most representative are: the use of coevolution by Paredis26, 
the approach based on the superiority of feasible points by Deb27 and the use of 
multiobjective optimization concepts by Coello & Mezura28. 

3.6 Hybrid Methods 

Within this category, we consider methods that are coupled with another technique 
(another heuristic or a mathematical programming approach) to deal with constrained 
spaces: Bilchev & Parmee29 proposed to use Ant System concepts to solve constrained 
problems. The use of Lagrangian multipliers to solve constrained problems has been 
proposed by some authors like Kim & Myung30. Other ideas adopted to deal with 
constrained search spaces are the use of Cultural Algorithms (Chung and Reynolds31) 
and Artificial Immune System (Hajela & Lee32).  
 

4 EVOLUTION STRATEGIES TO SOLVE CONSTRAINED PROBLEMS 

 
After a brief description of the different approaches proposed to incorporate the 

constraints of a problem into the fitness function of an evolutionary algorithm, we now 
focus on those approaches whose search engine is an evolution strategy.  

Oyman et al.33 used Deb’s approach27 (listed in Section 3.5), but with an evolution 
strategy as a search engine. They compared their approach against a death penalty. 
Their approach outperformed the death penalty scheme. However, they tested it using 
just three problems (two of them are from the well-known benchmark from 
Michalewicz & Schoenauer34). Moreover, they only tested evolution strategies without 
a self-adaptation mechanism (hence, they do not use correlated mutation as well). The 
authors used a (1+1)-ES, with no recombination operator (the ES adopted is single-
membered), and using  different parameters for each test problem with a number of 
evaluations of the objective function which oscillated between 331 and 330,491, 
depending of the test problem solved. One interesting conclusion found by Oyman et al. 
is the importance of defining a correct value for the stepsize used in the mutation 
operator. In our proposed approach detailed in the next Section, we also emphasize the 
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importance of the definition of the initial stepsize value in a self-adaptive ES.  
Hamida & Schoenauer35 proposed the Adaptive Segregational Constraint Handling 

Evolutionary Algorithm (ASCHEA). ASCHEA is based on three components: 
 

• An adaptive penalty function: The expression used is: 
 





−
=

otherwise)(penal)(
feasible if)(

)(fitness
xxf

xf
x rr

r
r  

(11) 

 
where  

∑∑
+==

+ +=
m

qj
j

q

j
j xhxgx

11

)()()(penal rrr αα  
(12) 

where )(xg j
r+ is the positive part of )(xg j

r and α is the penalty coefficient for all 
the constraints of the problem. The penalty factor is adapted according to a 
desired ratio of feasible solutions ett argτ and the current ratio in the generation t, 

tτ in the following way: 

( ) ( ) ( )
( ) ( ) fact

factett

*t1totherwise
/t1t if argt

αα
ααττ

=+
=+>

 
(13) 

 
where fact >1 and ett argτ  are used-defined parameters and  

( ) 1000*
)(

)(
0

1

1

∑

∑

=

== n

i
i

n

i
i

xV

xf

r

r

α  

(14) 

 
where )(xVi

r  is the sum of constraint violation of individual i. 
• Constraint-driven recombination (crossover): Combine an infeasible solution 

with a feasible one and apply it when there is a low number of feasible solutions 
with respect to ett argτ . If  ettt argττ > , the recombination is performed in the 
traditional way. 

• Segregational Selection based on feasibility: The aim is to choose a defined 
ratio selectτ  of feasible solutions based on their fitness to be part of the population 
for the next generation. The remaining individuals are selected in the traditional 
way (proportional selection) based on their penalized fitness. selectτ  is another 
user-defined parameter.  

In ASCHEA’s new version35, the authors propose to use a penalty factor for each 
constraint of the problem. Each factor is adapted independently:  

∑∑
+==

+ +=
m

qj
jj

q

j
jj xhxgx

11

)()()(penal rrr αα  
(15) 

 
and the adaptation process is now as follows: 
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( ) ( ) ( )
( ) ( ) fact

factj

jj

jjett

*t1totherwise
/t1t)( if argt

αα
ααττ

=+
=+>

 
(16) 

 
 
also, the authors used a niching mechanism to improve the performance of the 
algorithm in multimodal functions. Finally, they added both, a dynamic and an adaptive 
scheme to decrease the tolerance value used to handle equality constraints. All these 
three new mechanisms also add more user-defined parameters, which makes more 
difficult to tune them to solve an specific problem. The approach uses a (100+300)-ES 
and requires 1,500,000 fitness function evaluations to provide good results in 11 
functions of the aforementioned benchmark for constrained evolutionary optimization34. 
The authors used standard arithmetical recombination (similar to generalized 
intermediate recombination) using a crossover rate (which is not usually adopted when 
using an ES). The main drawback of the approach is the definition by the user of several 
extra parameters required by the technique.  

One of the most competitive approaches found in the literature is the Stochastic 
Ranking (SR) by Runarsson & Yao36. The aim of this approach is to balance the 
influence of the objective function and the penalty function when assigning fitness to a 
solution. SR does not require the definition of a penalty factor. Instead, the selection 
process is based on a ranking process and a user-defined parameter called fP  that sets 
the probability of using only the objective function to compare two solutions when 
sorting them. Then, when the solutions are sorted using a bubble-sort like algorithm, 
sometimes, depending of the fP  value, the comparison between two adjacent solutions 
will be performed using only the objective function. The remaining comparisons will be 
performed using only the penalty function that consists in this case, of the sum of 
constraint violation. The suggested range for the fP  value is 5.04.0 << fP . The results 
obtained using all the functions of the well-known benchmark from Michalewicz & 
Schoenauer34 (plus one test function) are the best reported to date in the literature. 
Runarsson & Yao used a (30,200)-ES with 350,000 evaluations of the fitness function. 
The authors used panmictic intermediate recombination for the strategy parameters and 
they did not use any recombination operator for the decision variables nor correlated 
mutation. One drawback of the approach is that the user needs to define the parameter 

fP . The sorting algorithm adopted by this approach (assuming minimization) is shown 
in Figure 3.  

One of the most recent approaches based on an evolution strategy used to solve 
constrained problems is the Pareto Archived and dominance Selection with Shrinkable 
Search Space (PASSSS or PAS4)37. PAS4 is based on a multiobjective optimization 
technique called Pareto Archived Evolution Strategy (PAES) originally proposed by 
Knowles & Corne38, whose main feature is the use of an external population, stored in 
an adaptive grid, that keeps nondominated solutions found along the evolutionary 
process. PAS4 also uses an adaptive grid, but it reduces its size over time in order to 
focus the search on the most promising regions of the search space. Besides, PAS4 uses 
a shrinking mechanism which performs four tasks:  

1. To select the best 15% individuals found in the adaptive grid (these solutions 
are feasible or infeasible solutions whose values of violation of each 
constraint are the lowest). 

2. To find the extreme values of each decision variable from the selected 
solutions.  
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3. To shrink the feasible space around the potential solutions enclosed in the 
hypervolume defined by the bounds found for each decision variable. This 
trimming process will be performed using a percentage of shrinking β 
defined by the user.  

4. These new bounds are used to re-initialize the values for the stepsizes σ for 
the mutation operator.   

 
Begin 
     For i=1 to N Do 
          For j=1 to N-1 Do 
               U=random(0,1) 
               If (  (φ (Ij)= φ (Ij+1) =0)   or (u<Pf) ) Then 
                     If (  f(Ij) >  f(Ij+1)  ) Then 
                          swap(Ij, Ij+1) 
                     End If 
                Else 
                     If (  φ (Ij) > φ(Ij+1)  ) Then 
                          swap(Ij, Ij+1) 
                     End If 
               End If 
          End For 
          If (not swap performed) Then 
               Break 
          End If 
     End For 
End 

Figure 3: Stochastic Ranking sort algorithm. I is an individual of the population. φ (Ij) is the sum of 
constraint violation of individual Ij. f(Ij) is the objective function value of individual Ij. 

 
The authors used a (150+200)-ES  with 350,000 evaluations of the objective function 

to solve the extended benchmark of Michalewicz & Schoenauer34. They applied discrete 
crossover on the decision variables and intermediate crossover on the strategy 
parameters, and did not use correlated mutation. The main drawback of the approach is 
that it requires the definition by the user of several parameters. Furthermore, the 
implementation of PAS4 is far from being simple.  

 

5 A MULTIMEMBERED EVOLUTION STRATEGY TO SOLVE 
CONSTRAINED PROBLEMS 

 
In this section we present a novel approach which exploits the features of an 

evolution strategy in order to solve global optimization problems with constraints. 
Motivated by the fact that the most recent and competitive approaches to solve 
constrained optimization problems are based on an Evolution Strategy (e.g. Stochastic 
Ranking36 and ASCHEA35) we hypothesized the following: 

1. The self-adaptation mechanism of an ES helps to sample the search space well 
enough as to reach the feasible region reasonably fast.  

2. The simple addition of feasibility rules to an ES should be enough to guide the 
search in such a way that the global optimum can be approached efficiently.  
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Thus, based on these ideas, we implemented a generic ES-based approach to solve 
constrained optimization problems. Then, we performed an empirical study in which we 
varied the type of selection (“+” or “,”) and the type of mutation (noncorrelated or 
correlated)39. We also implemented a variation of a (µ+1)-ES with the “1/5 successful 
rule” to adapt on-line the sigma value. Constraints were handled using rules based on 
feasibility similar to those used by Deb27 and shown below:  

 
1. A feasible solution is always preferred over an infeasible one. 
2. Between 2 feasible solutions, the one with the best value of the objective 

function is preferred. 
3. Between 2 infeasible solutions, the one with the lowest amount of constraint 

violation is preferred.  
 

From our ES’s comparative study, the best results were provided by the variation of a 
(µ+1)-ES39 in which one child created from µ mutations of the current solution 
competes against it and the best one is selected as the new current solution. The use of 
correlated mutation showed no positive impact on the performance of the ES. However, 
the approach presented premature convergence in some test functions. Therefore, a 
(1+λ)-ES was proposed40, which improved the robustness and quality of the previous 
ES proposed. In this version, a diversity mechanism was added. Its function was to 
maintain infeasible solutions with a good value of the objective function.  

Both aforementioned approaches provided good results. However, their exploratory 
power to sample large search spaces was limited because they are single-membered  ES. 
Therefore, our more recent approach is based on a (µ+λ)-ES which is called a Simple 
Multimembered Evolution Strategy (SMES). The detailed features of our approach are 
described next. 

5.1 Diversity mechanism 

With an idea similar to that used in the (1+λ)-ES version, we allow infeasible 
solutions to remain in the population. However, unlike this previous approach, where 
the best parent based only on the objective function (regardless of its feasibility) can 
survive, in this new approach we allow the infeasible individual with the best value of 
the objective function and with the lowest amount of constraint violation to survive for 
the next generation. This solution (called by us the best infeasible solution) can be 
chosen either from the parents or the offspring population, with 50% probability. This 
process of allowing this solution to survive for the next generation happens 3 times 
every 100 during the same generation. However, it is a desired behavior because a few 
copies of this solution will allow its recombination with several solutions in the 
population, especially with feasible ones. Recombining feasible solutions with 
infeasible solutions in promising areas (based on the good value of the objective 
function) and close to the boundary of the feasible region will allow the ES to reach 
global optimum solutions located precisely on the boundary of the feasible region of the 
search space (which are normally the most difficult solutions to reach). Following the 
idea of allowing just a few infeasible solutions (one in the case of the (1+λ)-ES 
approach), we allow the best infeasible solution to be copied into the population for the 
next generation just 3 times for every 100 attempts. This works in the following way: 
When the deterministic replacement is used to form the population for the next 
generation in an ES, the best individuals from the union of parents and offspring are 
selected based on the comparison mechanism previously indicated (in a deterministic 
way). The process will pick feasible solutions with a better value of the objective 
function first, followed by infeasible solutions with a lower value of constraint 
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violation. However, 3 times from every 100 picks, the best infeasible solution is copied 
in the population for the next generation. The pseudocode is listed in Figure 4.  

Based on the empirical evidence observed in the previous version of the approach40  
where we used a population of 3 offspring, we decided to use a small number of copies 
of the best infeasible solutions for the next generation of our approach. For values larger 
than 3, the quality and robustness of our approach tend to decrease. It is worth 
remarking that in the case where no infeasible solutions are found in the population, a 
random solution is copied to the population for the next generation. Therefore, it is 
possible, at any given generation, to have an entirely feasible parents population. 
However, the mechanism will allow, when the offspring are generated, to have 
infeasible individuals again. 

 
Function population for next generation() 
Begin 
     For i=1 to µ Do 
          If  flip(0.97)  Then 
                Select the best individual based on the comparison mechanism 
                from the union of the parents and offspring population, 
                add it to the population for the next generation and delete 
                it from this union.                 
          Else 
                If  flip(0.5)  Then 
                         Select the best infeasible individual from the parents 
                         population and add it to the population for the next 
                         generation. 
                Else 
                         Select the best infeasible individual from the offspring 
                         population and add it to the population for the next 
                         generation. 
                End If 
          End If 
     End For 
End 

Figure 4: Pseudocode of the generation of the population for the next generation with the diversity 
mechanism incorporated. flip(P) is a function that returns TRUE with probability P. 

5.2 Combined recombination 

We use panmictic recombination, but with a combination of the discrete and 
intermediate recombination operators. Each gene in the chromosome can be processed 
with any of these two recombination operators with 50% probability. This operator is 
applied to both, strategy parameters (sigma values) and decision variables of the 
problem. The pseudocode is shown in Figure 5. Note that we use intermediate 
recombination by just computing the average between the values of the variable of each 
parent (as originally proposed by Schwefel6). 
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Function combined recombination()  
Begin 
     Select mate 1 from the parents population 
     For i=1 to NUMBER_OF_VARIABLES Do 
          Select mate 2 from the parents population 
          If  flip(0.5)  Then 
               If  flip(0.5)  Then 
                    childi = mate _1i 

               Else 
                    childi = mate _2i 

               End If 
          Else 
                    childi = (mate_1i + mate_2i) / 2 
          End If 
     End For 
End 

Figure 5: Pseudocode of the panmictic combined (discrete-intermediate) recombination operator used by 
our approach. flip(P) is a function that returns TRUE with probability P. 

5.3 Reduction of the initial stepsize of the ES 

The previous versions of our algorithm were based on a variation of a (µ + 1)-ES39 
and a (1 + λ)-ES40. These approaches do not use a population of solutions and employ 
the most simple scheme of an ES where only one sigma value is used for all the 
decision variables. We observed that when this sigma value was close to zero, the 
previous approaches were capable of reaching the global optimum, or at least improve 
the value of the final solution. Therefore, in our new approach based on a 
multimembered ES, we decided to favor finer movements in the search space. We 
experimented with just a percentage of the quantity obtained by the formula proposed 
by Schwefel7. We initialize the sigma values (we use one for each decision variable) for 
each individual in the initial population with only a 40% of the value obtained by the 
following formula (where n is the number of decision variables): 



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i 4.0)0(σ  
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where  ix∆  is approximated with the expression (suggested by Runarsson & Yao36), 

l
i

u
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i
u
i xx −  are the upper and lower bounds of the decision variable i. 

 
Summarizing, our approach works over a simple multimembered evolution strategy: 

(µ+λ)-ES. The only modifications introduced are the reduction of the initial stepsize of 
the sigma values, the panmictic combined (discrete-intermediate) recombination and the 
changes to the original deterministic replacement of the ES (made by sorting the 
solutions with respect to the comparison mechanism based on feasibility discussed at 
the beginning of this section), allowing the best infeasible solution, from either the 
parents or the offspring population, to remain in the next generation. The details of our 
approach are presented in Figure 6. 
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Figure 6: Algorithm of our (µ+λ)-ES (SMES). The thick boxes indicate the three modifications made to 
the original ES 

5.4 A graphical example 

A graphical example of the expected behavior of the approach can be found in Figure 
7. We used a 2-dimensional test problem g08, which is a problem easy to solve by the 
approach; it requires about 5400 evaluations of the objective function (18 generations) 
to reach the global optimum, but it helps to visualize how our approach works. The 
definition of this problem is the following:  
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where 0 ≤ x1 ≤ 10 and 0 ≤ x2 ≤ 10. The global optimum is located at x* = (1.2279713, 
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4.2453733) where f(x*) = 0.095825. 
 

  

  

 
Figure 7: Graphs showing the population behavior using our proposed (µ+λ)-ES. “◊” points are feasible 
solutions, “+” points are infeasible ones. The dashed line represents constraint g1(x) of the problem and 

the dotted line represents constraint g2(x). 

 
As it can be observed, in generation 1 there are a few feasible as well as several 

infeasible solutions. The behavior of the approach can be observed in generation 3, 
where there are more feasible solutions than those in generation 1 and there are also 
infeasible solutions surrounding the feasible region. In this way, helped by the 
combined crossover and the finer mutation movements the feasible region is sampled 
well-enough as to find promising areas (three areas in the example). This is shown in 
generation 6, where there is still an infeasible solution in the population. It is worth 
noticing that this infeasible solution is close to the area where the global optimum is 
located; this can be seen in generation 10 where the infeasible solution has disappeared 
but the approach has found the vicinity of the constrained global optimum. Our 
algorithm has converged to the constrained global optimum in generation 18. 

5.5 Experimental results 

To evaluate the performance of the proposed approach we used the 13 test functions 
commonly adopted to test constraint handling techniques36. Their expressions can be 
found elsewhere36. We performed 30 independent runs for each test function. The 
learning rates values were calculated using the formulas proposed by Schwefel6 and 
discussed in Section 2. 
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The initial values for the stepsizes were calculated using equation 17. In the 
experiments, the following parameters were used: 

• (100+300)-ES 
• Number of generations = 800. 
• Number of objective function evaluations = 240,000. 

The combined recombination operator was used both for the decision variables of the 
problem and for the strategy parameters (sigma values). Note that we do not use 
correlated mutation39. To deal with equality constraints, a dynamic mechanism 
originally proposed in ASCHEA35 and used in some of our previous work40 is adopted. 
The tolerance value ε is decreased with respect to the current generation using the 
following expression: 

 

( ) ( )
00195.1

1
t

t j
j

ε
ε =+  (19) 

 
Statistical Results of the Simple Multimembered Evolution Strategy (SMES) 

Problem Optimal Best Mean Median Worst St. Dev. 
g01  -15.000 -15.000 -15.000 -15.000 -15.000 0 
g02  0.803619 0.803601 0.785238 0.792549 0.751322 1.67E-2 
g03  1.000 1.000 1.000 1.000 1.000 2:09E-4 
g04  -30665.539 -30665.539 -30665.539 -30665.539 -30665.539 0 
g05  5126.498 5126.599 5174.492 5160.198 5304.167 50.06E+0 
g06  -6961.814 -6961.814 -6961.284 -6961.814 -6952.482 1.85E+0 
g07  24.306 24.327 24.475 24.426 24.843 1.32E-1 
g08  0.095825 0.095825 0.095825 0.095825 0.095825 0 
g09  680.63 680.632 680.643 680.642 680.719 1.55E-2 
g10  7049.25 7051.903 7253.047 7253.603 7638.366 136.02E+0 
g11  0.75 0.75 0.75 0.75 0.75 1.52E-4 
g12  1.000 1.000 1.000 1.000 1.000 0 
g13  0.053950 0.053986 0.166385 0.061873 0.468294 1.77E-1 

Table 3 : Statistical results obtained by our SMES for the 13 test functions over 30 independent runs. 
A result in boldface indicates that the global optimum (or best known solution) was reached. 

The initial ε0 was set to 0.001. Note that the use of the value 1.00195 in equation 19 
causes the allowable tolerance for the equality constraints to go from 0.001 (initial 
value) to 0.0004 (final value) given the number of iterations adopted by our approach (if 
more iterations are performed, this value will tend to zero). For problem g13, ε0 was set 
to a much larger value (3.0), because in this case it is very difficult to generate feasible 
solutions during the initial generations of our approach. Thus, by using a large tolerance 
value, more individuals will be able to satisfy the equality constraints and will serve as 
reference solutions that the algorithm will improve over time. Given that this larger 
value is adopted, we also changed the constant decreasing value. So, instead of using 
1.00195, we adopt, in this case, a value of 1.0145. Such a value causes the allowable 
equality constraint violation to go from 3.0 (initial value) to 0.00003 (final value) given 
the number of iterations adopted by our approach. Note that the final allowable 
tolerance is smaller in this case, despite the initial larger value. As a matter of fact, we 
recommend to use this second setup for the tolerance of the equality constraints in 
problems in which no feasible solutions can be found by our algorithm when using a 
small initial ε0. Additionally, for problems g03 and g13 the initial stepsize required a 
more dramatic decrease. They were defined as 0.01 (just a 5% instead of the 40% used 
for the other test functions) for g03 and 0.05 (2.5%) for g13. Those two test functions 
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seem to provide better results with very smooth movements. It is important to note that 
those two problems share the following features: moderately high dimensionality (five 
or more decision variables), nonlinear objective function, one or more equality 
constraints, and moderate size of the search space (based on the range of the decision 
variables). Those common features suggest that for these types of problems, finer 
movements provide a better sampling of the search space using an evolution strategy. 
The statistical results of our SMES are summarized in Table 3. 

As described in Table 3, our approach was able to find the global optimum in seven 
test functions (g01, g03, g04, g06, g08, g11 and g12) and it found solutions very close 
to the global optimum in the remaining six (g02, g05, g07, g09, g10, g13). Furthermore, 
we compared these results with respect to three state-of-the-art techniques previously 
discussed (Stochastic Ranking (SR)36, ASCHEA35 and PAS4 37). The best result found 
by each approach is compared in Table 4. Analogously, in Tables 5 and 6 the mean and 
worst values are compared. 

5.6 Discussion of results 

With respect to SR, our approach was able to find a “better” best result in functions 
g02 and g10. In addition, it found a “similar” best solution in seven problems (g01, g03, 
g04, g06, g08, g11 and g12). Slightly “better” best results were found by SR in the 
remaining functions (g05, g07, g09 and g13). Our approach found “better” mean and 
worst results in four test functions (g02, g06, g09 and g10). It also provided “similar” 
mean and worst results in six functions (g01, g03, g04, g08, g11 and g12). Finally, SR 
found again “better” mean and worst results in function g05, g07 and g13. 

Compared against ASCHEA, the SMES found “better” best solutions in three 
problems (g02, g07 and g10) and it found “similar” best results in six functions (g01, 
g03, g04, g06, g08, g11). ASCHEA found slightly “better” best results in function g05 
and g09. Additionally, our approach found “better” mean results in four problems (g01, 
g02, g03 and g07) and it found “similar” mean results in three functions (g04, g08 and 
g11). ASCHEA surpassed our mean results in four functions (g05, g06, g09 and g10). 
We did not compare the worst results because they were not available for ASCHEA. 
Also, we did not perform comparisons with respect to ASCHEA using functions g12 
and g13 for the same reason.  

 
Comparison of the best solution found 

Problem Optimal SR36 ASCHEA35 PAS4 37 SMES 
g01  -15.000 -15.000 -15.0 -14.9998 -15.000 
g02  0.803619 0.803515 0.785 0.80346 0.803601 
g03  1.000 1.000 1.0 1.000 1.000 
g04  -30665.539 30665.539 -30665.5 -30665.530 -30665.539 
g05  5126.498 5126.497 5126.5 5126.52 5126.599 
g06  -6961.814 -6961.814 -6961.81 -6961.810 -6961.814 
g07  24.306 24.307 24.3323 24.33060 24.327 
g08  0.095825 0.095825 0.095825 0.095825 0.095825 
g09  680.63 680.630 680.630 680.630 680.632 
g10  7049.25 7054.316 7061.13 7059.84 7051.903 
g11  0.75 0.75 0.75 0.75 0.75 
g12  1.000 1.000 NA 1.000 1.000 
g13  0.053950 0.053957 NA 0.053950 0.053986 

Table 4 : Comparison of the best solutions found by the Stochastic Ranking (SR), ASCHEA, PAS4 
and our  SMES. NA = Not available. A result in boldface indicates either that the global optimum (or 

best known solution) was reached or a better solution was found by the corresponding approach. 
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Comparison of the mean solution found 
Problem Optimal SR36 ASCHEA35 PAS4 37 SMES 

g01  -15.000 -15.000 -14.84 -14.88731 -15.000 
g02  0.803619 0.781975 0.59 0.79901 0.785238 
g03  1.000 1.000 0.99989 1.000 1.000 
g04  -30665.539 30665.539 -30665.5 -30665.530 -30665.539 
g05  5126.498 5128.881 5141.65 5180.15545 5174.492 
g06  -6961.814 -6875.940 -6961.81 -6961.810 -6961.284 
g07  24.306 24.374 24.66 24.57961 24.475 
g08  0.095825 0.095825 0.095825 0.095825 0.095825 
g09  680.63 680.656 680.641 680.63243 680.643 
g10  7049.25 7559.192 7193.11 7366.9965 7253.047 
g11  0.75 0.75 0.75 0.75 0.75 
g12  1.000 1.000 NA 1.000 1.000 
g13  0.053950 0.057006 NA 0.22022 0.166385 

Table 5 : Comparison of the mean solutions found by the Stochastic Ranking (SR), ASCHEA, PAS4 
and our  SMES. NA = Not available. A result in boldface indicates either that the global optimum (or 

best known solution) was reached or a better solution was found by the corresponding approach. 

 

Comparison of the worst solution found 
Problem Optimal SR36 ASCHEA35 PAS4 37 SMES 

g01  -15.000 -15.000 NA -12.4477 -15.000 
g02  0.803619 0.726288 NA -0.78548 0.751322 
g03  1.000 1.000 NA -1.000 1.000 
g04  -30665.539 30665.539 NA -30665.530 -30665.539 
g05  5126.498 5142.472 NA 5558.7 5304.167 
g06  -6961.814 -6350.262 NA -6961.81 -6952.482 
g07  24.306 24.642 NA 25.3666 24.843 
g08  0.095825 0.095825 NA -0.095825 0.095825 
g09  680.63 680.763 NA 680.6360 680.719 
g10  7049.25 8835.655 NA 7803.11 7638.366 
g11  0.75 0.75 NA 0.75 0.75 
g12  1.000 1.000 NA 1.000 1.000 
g13  0.053950 0.216915 NA 0.44512 0.468294 

Table 6 : Comparison of the worst solutions found by the Stochastic Ranking (SR), ASCHEA, PAS4 
and our  SMES. NA = Not available. A result in boldface indicates either that the global optimum (or 

best known solution) was reached or a better solution was found by the corresponding approach. 

Our SMES provided “better” best results than PAS4 in six functions (g01, g02, g04, 
g06, g07 and g10) and it found “similar” best results in four problems (g03, g08, g11 
and g12). In the remaining three, PAS4 surpassed our best result (g05, g09 and g13). In 
addition, the SMES found “better” mean results in six functions (g01, g04, g05, g07, 
g10 and g13) and it found “similar” mean results for four problems (g03, g08, g11 and 
g12). PAS4 provided better mean results in the remaining three (g02, g06 and g09). 
Finally, the SMES found a “better” worst result in five functions (g01, g04, g05, g07 
and g10), it found “similar” worst solutions in other four (g03, g08, g11 and g12). PAS4 
found better worst solutions in the remaining four problems (g02, g06, g09 and g13).  

As we can see, our approach showed a very competitive performance with respect to 
these three state-of-the-art approaches. SMES can deal with moderately constrained 
problems (g04), highly constrained problems, problems with low (g06, g08), moderated 
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(g09) and high (g01, g02, g03, g07) dimensionality, with different types of combined 
constraints (linear, nonlinear, equality and inequality) and with very large (g02), very 
small (g05 and g13) or even disjoint (g12) feasible regions. Also, the algorithm is able 
to deal with large search spaces (based on the intervals of the decision variables) and 
with a very small feasible region (g10). Furthermore, the approach can find the global 
optimum in problems where such optimum lies on the boundaries of the feasible region 
(g01, g02, g04, g06, g07, g09). This behavior suggests that the mechanism of 
maintaining the best infeasible solution helps the search to sample the boundaries 
between the feasible and infeasible regions.  

The computational cost (measured in terms of the number of fitness function 
evaluations (FFE) performed by any approach) is lower for the SMES than for others 
with respect to which it was compared. This is an additional (and important) advantage, 
mainly if we wish to use this approach for solving real-world problems. The SMES 
performed 240,000 FFE, the Stochastic Ranking and PAS4 performed 350,000 FFE, and 
ASCHEA required 1,500,000 FFE.  

It is also worth mentioning that the SMES had some problems to find consistently 
good results in presence of more than one nonlinear equality constraints (g05 and g13). 
This issue deserves a more in-depth analysis in the future.  

 

5.7 Finding the strength of the SMES  

Once we corroborated the effectiveness of our approach, it became particularly 
relevant to identify the key component (or combination of them) that was mainly 
responsible for the good performance of our algorithm. For that sake, we designed two 
experiments. 

1. Cross-validation of our ES’ mechanisms: We tested our SMES using each of 
its mechanisms (diversity mechanism, combined recombination and stepsize 
reduction) separately and combining them in pairs, in order to recognize which 
of them was mandatory. It is important to note that removing the diversity 
mechanism implies disallowing the best infeasible solution to remain in the 
population for the next generation of the algorithm. The comparison mechanism 
based on feasibility remains in all cases in order to guide the search to the 
feasible region of the search space. 

2. ES against GA: Our second experiment consisted on implementing a real-coded 
GA with the same combined recombination and the same diversity mechanism 
used in our SMES. Here, we wanted to see if the use of a GA instead of an ES 
would make any significant difference in terms of performance. 

The parameters used in these experiments are exactly the same used in the 
experiments described in Section 5.5. Thus, the number of evaluations of the objective 
function is also the same (240,000). We performed 30 independent runs for each 
different version of the algorithm (with different combination of mechanisms) and also 
for the version using the GA. 

In Table 7 we present the version which provided the best results (from the cross 
validation experiments). Also, we present  the results provided by the approach but 
using a GA instead of a ES. For the sake of the GA experiment, we tested different 
mutation operators for real-coded GAs and non-uniform mutation provided the best 
results. Furthermore, we intended that the GA used the same features of the ES (except 
for the self-adaptive mutation which we hypothesized was the main strength of our ES-
based approach). Finally, the same dynamic mechanism to handle the tolerance for 
equality constraints was employed. The parameters used by our real-coded GA were the 
following: 
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• Population size: 200 
• Maximum number of generations: 1200 
• Crossover rate: 0:8 
• Mutation rate: 0:6 
• Number of objective function evaluations: 240,000 (the same performed by our 

SMES). 
 

Statistical Results for the cross validation experiments and the GA test 
 Best Mean Worst 

P Optimal Rec. & 
Stepsize 

GA Rec. & 
Stepsize 

GA Rec. & 
Stepsize 

GA 

g01  -15.000 -15.000 -14.440 -15.000 -14.236 -15.000 -14.015 
g02  0.803619 0.803592 0.796231 0.798786 0.788588 0.785255 0.779140 
g03  1.000 1.000 0.990 1.000 0.976 0.999 0.956 
g04  -30665.539 -30665.42 -30626.05 -30661.10 -30590.45 -30647.48 -30567.10 
g05  5126.498 5216.998 - 5158.739 - 5201.935 - 
g06  -6961.814 -6961.814 -6952.472 -6961.814 -6872.204 -6961.814 -6784.255 
g07  24.306 24.343 31.097 24.474 34.980 24.789 38.686 
g08  0.095825 0.095825 0.095825 0.095825 0.095799 0.095825 0.095723 
g09  680.63 680.631 685.994 680.637 692.064 680.664 698.297 
g10  7049.25 7062.754 9079.770 7193.887 10003.225 7368.333 11003.533 
g11  0.75 0.75 0.75 0.752 0.75 0.767 0.752 
g12  1.000 1.000 1.000 1.000 1.000 1.000 0.999 
g13  0.053950 0.058037 0.134057 0.247404 - 0.466266 - 

Table 7 : Statistical results obtained by the best combination of mechanisms of the SMES and the GA 
experiment for the 13 test functions over 30 independent runs. “-“ means no feasible solutions were 
found. A result in boldface indicates that the global optimum (or best known solution) was reached 

It is worth mentioning that the version with only the combined recombination 
(without stepsize reduction and also without diversity mechanism) provided the best 
results (based on quality and robustness) among the versions with only one active 
mechanism. However, this version with only the combined recombination was clearly 
surpassed by the version with the combined recombination and also the stepsize 
reduction (which is shown in Table 7). These results suggest that the combined 
recombination is the dominant mechanism, which is assisted by the fine mutation 
movements provided by the reduction of the initial stepsize.  

It is clear that the results provided by this version with only the combined 
recombination and the stepsize reduction are indeed very competitive compared with 
respect to the complete version of the SMES (with the three mechanisms active). The 
main question that arose at this point was: what is the role of the diversity mechanism in 
the success of our approach? In order to answer this question, we compared the results 
of the version with combined recombination and stepsize reduction against the version 
with the three mechanisms (from Tables 7 and 3 respectively) . From this comparison 
we observed that our approach provides results of a better quality when using the 
diversity mechanism. However, the price paid for this higher quality of results is a slight 
decrease in robustness. Also, the overall results (providing competitive results in all 13 
test functions) are better when the diversity mechanism is incorporated into our SMES. 
It is also worth reminding that the goal of the diversity mechanism is to allow the search 
to generate solutions in the boundaries of the feasible region (which is something 
critical when dealing with constraints that are active in the global optimum). Hence, the 
use of such diversity mechanism seems a logical choice for dealing with active 
constraints. 
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Finally, for the case of the version of the approach using a GA both the quality and 
robustness of the results provided by the GA are significantly poorer than those 
obtained with the evolution strategy in all the test functions adopted. The exceptions are 
g08, g11 and g12, in which the GA was able to find competitive results. These results 
highlight the strong influence (positive in this case) of using a more adequate search 
engine, in our case an ES over a GA. Therefore, the results seem to confirm our initial 
hypothesis about the usefulness of an ES to sample constrained search spaces in a more 
appropriate way. 

 

6 CONCLUSIONS 

 
In this chapter, we presented a review of constraint handling techniques which are 

based on an evolution strategy as a search engine to solve global optimization problems 
in the presence of constraints. After a brief introduction to evolution strategies, we 
provided a review of constraint handling techniques used in evolutionary algorithms. 
Afterwards, we focused on the techniques proposed to deal with constrained search 
spaces which are based on an evolution strategy. Besides, we proposed a novel 
approach which exploits the features of an evolution strategy to solve constrained 
optimization problems, we called it a Simple Multimembered Evolution Strategy 
(SMES). The approach was based on three modifications to the original evolution 
strategy algorithm: (1) a diversity mechanism which allows infeasible solutions close to 
the feasible region of the search space and with a good value of the objective function to 
remain in the population for the next generation. This infeasible solution is called the 
“best infeasible solution”. The aim is to have a few copies of the best infeasible solution 
(either from the parent or the offspring population) in the population at each stage of the 
evolutionary process. (2) A combined panmictic (discrete-intermediate) recombination 
operator applied to the decision variables of the problem an the strategy parameters as 
well. The goal is to improve the exploitation feature of the operator and to allow 
infeasible solutions to combine with feasible ones in order to sample the boundaries of 
the feasible region. And (3) a reduction of the initial stepsize of the mutation operator. 
The objective is to favor finer movements in the search space. The combination of these 
three mechanisms provided competitive results with respect to three state-of-the-art 
approaches also based on an evolution strategy. Furthermore, we performed 
experiments in order to know which mechanism (or combination of them) was the main 
responsible of the good performance of the SMES. This analysis suggested that the 
dominant mechanism was the combined recombination, which is assisted by the finer 
movements of the mutation operator (due to the reduction of the initial stepsize) to 
provide competitive results. It was also found in this study that the diversity mechanism 
helps the SMES to provide results with a better quality but decreasing slightly its 
robustness. Finally, we empirically showed that the use of a genetic algorithm with the 
same mechanisms used in the evolution strategy decreases considerably  the quality and 
robustness of the approach. This result suggests that the use of an evolution strategy is 
more suitable to solve this set of constrained problems. As a final conclusion we can 
state that the choice of the search engine and the genetic operators used to solve 
constrained optimization problems seems to be more important than the constraint 
handling mechanism.  
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7 FUTURE WORK 

 
As future paths of research we want to use other genetic operators commonly 

adopted in evolution strategies like the derandomized self-adaptation proposed by 
Hansen and Ostermeier41. Furthermore, we want to experiment with other 
recombination operators like panmictic generalized intermediate recombination. The 
aim will be to reduce the number of evaluations required to approximate the global 
optimum.  
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