
Proceedings of ACEDC'96
PEDC, University of Plymouth, UK

USE OF GENETIC ALGORITHMS TO SOLVE OPTIMAL
REGIONAL WATER QUALITY MANAGEMENT PROBLEMS

C A Coello Coello† & J A Figueroa Gallegos‡
†Department of Computer Science, Tulane University, New Orleans, LA 70118 (USA)
‡Escuela de Ingeniería Civil , UN. A. CH., Apdo. Postal 61, Tuxtla Gutiérrez, Chiapas (México)

ABSTRACT

In this paper we present an approach to optimize the
design of regional branched wastewater systems using
genetic algorithms (GAs). An ad-hoc floating point
representation is used, and a sequential parameter
adjusment is proposed as an alternative to get an
optimal (or at least sub-optimal) answer in a reasonable
amount of time, instead of the traditional trial and error
process used to fine tune the GA parameters. We also
experimented with Gray codes and different mutation
operators for the floating point representation. Our
results are compared to a Random Polyhedron Search
(RPS) technique in an example taken from the
literature. Since this work is intended to be applied in
real-world problems in México, we had to consider
additional constraints on the computer resources
available to develop our software.

INTRODUCTION

Wastewater treatment represents an important segment
of the public budget of any nation concerned with water
qualit y management. It is therefore desirable that the
planning of such wastewater treatment is done on a
regional basis so as to maximize cost and eff iciency
while meeting all the desired objectives of the project.
This implies that we should be able to devise the proper
size and location of the treatment and conveyance
faciliti es of any wastewater treatment system. However,
the problem of regional water qualit y planning is
normally very complex, mainly due to the vast number
of alternative designs which are capable to meet the
desired water qualit y objectives. Since the number of
alternative designs increases rapidly with the size of the
region, the normal trend is to come up with a design
that satisfies the objectives, but that is not optimal, and
in most cases not even sub-optimal. Several approaches
have taken in the past to deal with this problem.
Recently, several mathematical programming
techniques have been used (1):

1) Linearizing the objective function about a guessed
solution (2, 14): It is very straightforward, but not very
satisfactory as it is usually unable to identify good
candidate solutions, even after several attempts. This
makes this technique not very attractive to solve real-
world problems.

2) Ranking the extreme points of the model's feasible
region (3) : In this case, each extreme point represents
a potential optimal solution to the model, which is
solved using Murty's extreme points ranking algorithm
(3). This technique is able to find the optimal, but it is
not very suitable for large-scale problems, as the
number of extreme points (each one representing a
potential optimal solution) is very large.

3) Dynamic programming (4) : This technique is
normally applicable only to unbranched systems (i.e.,
sources of wastewater and potential treatment plan sites
must lie in a linear configuration along the receiving
water such that a single line can be drawn to link the
first with the last source as well as those in between).
Moreover, the computational resources required for this
technique are very high, and it turns out to be generall y
impractical for reali stic models because of the "curse of
dimensionalit y" (5).

4) Mixed integer programming (6) : As with dynamic
programming, this technique can be unsuitable for
solving moderate to large size regional treatment plant
location problems.

5) Heuristic procedures (7, 8) : These techniques are
normally very easy to implement and very simple to
understand. However, it has been argued that they are
not very good to accommodate restrictions on the
capacities of the conveyances and treatment plants and
restrictions on in-stream water qualit y.

6) Use of search techniques : Ong and Adams (1)
formulated the regional treatment plant location
problem such that it could be effectively solved by a
simple search technique. Then, they used the Random
Polyhedron Search (RPS) algorithm (9) to choose a
good solution (presumably, at least suboptimal). This
method is also another heuristic, but powerful enough
as to easil y incorporate all the constraints imposed by
the design, and to converge in a very short period of
time.

DESCRIPTION OF THE PROBLEM

We will consider only the first case mentioned in Ong
and Adams' work (1), in which only the constraints on
plant capacities and inter-plant transfer are considered,
mainly because of space limitations. In the second case,

water quality constraints in the receiving waters are
included (1,10).

The regional wastewater treatment plant location
problem

Given a region with n communities (water sources), we
want to decide what is going to be the number and
location of regional treatment plants and the
assignment of waste sources to the plants such that the
overall cost for the system is minimized. Since, in real-
world applications, the number of possible treatment
sites is finite and is known in advance due to physical
and institutional constraints, there is only a limited (but
normally very large) number of possible alternatives to
choose from.

In real-world situations, there are two types of regional
configurations: branched and unbranched. However,
since the unbranched system happens to be a special
case of the branched system, only the last will be
considered in this work. Consider the single branched
system shown in Figure 1. Since the actual direction of
flow (i.e., upstream or downstream) is not known in
advance, it is necessary to include in the model the two
possible conveyances, but keeping in mind that the
solution will have only one (the non-negative value).

Mathematical Formulation. The objective of this
problem is to minimize:

∑ ∑ ∑
= = =

++
6

1

6

1

7

1

)()()(
i i i

iiiiii XCTZCPYCP (1)

where CT is the cost of treatment and CP is the cost of
conveyance, Xi is the amount of wastewater to be
treated at plant i, Yi is the amount of wastewater carried
by the ith section of conveyance (in the direction from
upstream to downstream) and Zi is the amount of
wastewater carried by the ith section of conveyance in
the opposite direction of Yi . This objective is subject to:

1) Flow balance at each source node:

X Y Z S1 1 1 1+ − = (2)
X Z Y Y Z S2 1 1 2 2 2+ − + − = (3)
X Z Y Y Z S3 2 2 3 3 3+ − + − = (4)
X Y Z S4 4 4 4+ − = (5)
X Z Y Y Z S5 4 4 5 5 5+ − + − = (6)
X Z Y Z Y Y S6 3 3 5 5 6 6+ − + − + = (7)
X Z Y S7 6 6 7+ − = (8)

2) Upper and lower bound constraints:

7,,1 0 �=≤≤ iXUX ii (9)

6,,1 0 �=≤≤ iYUY ii (10)

6,,1 0 �=≤≤ iZUZ ii (11)

Random Polyhedron Search

 Ong and Adams (1) use the so-called Random
Polyhedron Search (RPS) algorithm to obtain the
optimal (or at least suboptimal) solution. This
technique is a variant of the Nelder-Mead algorithm
(11), which was adapted to deal with constraints
imposed on the decision variables. What the algorithm
does is to generate a polyhedron of N+1 vertices (where
N=number of independent variables) located within the
feasible region of the model. The decision maker is
required to provide a set of initial trial values and an
initial search range for each of the independent
variables, and the algorithm generates the
corresponding vertices of the polyhedron. Nonfeasible
points are modified with the aid of the constraints
imposed by the system. In its second phase, this
algorithm searches for the optimal solution of the
problem using the method proposed by Nelder and
Mead (11). This algorithm has been successfully
applied to analyze chemical equilibrium processes at
constant temperature and pressure, optimize the
operation of production processes, estimate the
parameters of nonlinear differential equations, optimize
the stream assimilative capacity management, etc.

Use of the Genetic Algorithm

 The genetic algorithm (GA) is a heuristic technique
based on the mechanics of natural selection (12) which
has been used successfully in the past for solving many
optimization problems in different domains (13). We
experimented with the Simple Genetic Algorithm
(SGA) proposed by Goldberg (13), using both binary
and floating point representation.

The traditional representation used by the genetic
algorithms community is the binary scheme according
to which a chromosome is a string of the form
b b bm1 2, , ,K , where b b bm1 2, , ,K are called allele

(either zeros or ones). Since the binary alphabet offers
the maximum number of schemata per bit of
information of any coding (13), its use has became very
popular among scientists. This coding also facilitates
theoretical analysis of the technique and allows elegant
genetic operators. However, since the "implicit
parallelism" property of GAs does not depend on using
bit strings (15) it may be worthwhile to experiment
with larger alphabets and even with new genetic
operators. In particular, for optimization problems in
which the parameters to be adjusted are continuous, a
floating point representation scheme seems a logical
choice. According to this representation scheme, a

chromosome is a string of the form d d dm1 2, , ,K ,

where d d dm1 2, , ,K are digits (numbers between zero
and nine).

One of the advantages of floating point representation
is that it has the property that two points close to each
other in the representation space must also be close in
the problem space, and vice versa (15). This is not
generally true in the binary approach, where the
distance in a representation is normally defined by the
number of different bit positions. However, it is
possible to reduce such discrepancy by using Gray
coding (14,15).

To convert a binary number b = mbbb ,,, 21
� into

a Gray code number g = mggg ,,, 21
� , where m

denotes the number of bits, we can use the two
following procedures (15):

procedure Binary-to-Gray
begin

g b1 1=
for k = 2 to m do

g b XOR bk k k= −1
end

procedure Gray-to-Binary
begin

value g= 1

b value1 =
for k = 2 to m do

begin
if gk = 1 then value = NOT value
b valuek =
end

end

The Gray code representation has the property that any
two points next to each other in the problem space
differ by only one bit (15). In other words, an increase
of one step in the parameter value corresponds to a
change of a single bit in the code. This is a well known
technique used to reduce the distance of two points in
the problem space, and it is argued to bring some
benefits because of its adjacency property, and the small
perturbation caused by many single mutations.
However, the use of Gray codes didn' t help much in this
particular application, as we will see in the results.

It is interesting to notice that even when the
mathematical formulation of this problem seems very
easy to incorporate into the GA, it turns out that in
practice, the GA has problems handling too many
constraints using a simple penalty function of the form:

fitness
Cost penalty viol

=
× × +

1

1(())

where Cost is given by equation (1), penalty is a value
to be determined empirically, and viol is the maximum
error accumulated from equations (2) to (8).

To help the GA to improve its performance, we decided
to add the following part of the solution strategy
proposed by Ong and Adams (1) into the GA' s
evaluation function:

if S X1 1 0− < Y Z S X1 1 1 10= = − and
S X1 1 0− = Y Z1 10 0= = and
S X1 1 0− > Y S X Z1 1 1 1 0= − = and

if S Y Z X2 1 1 2 0+ − − < Y2 0= and

Z S Y Z X2 2 1 1 2= + − −
S Y Z X2 1 1 2 0+ − − = Y Z2 20 0= = and

S Y Z X2 1 1 2 0+ − − > Y S Y Z X2 2 1 1 2= + − −

and Z2 0=

The values of Yi and Zi for i=3 to 6 are calculated in a
similar manner.

This incorporates certain knowledge about the domain,
because those equations correspond to equilibrium
conditions that we know must be satisfied in order to
generate a valid solution.

We worked with a simple genetic algorithm (14)
implemented in Turbo Pascal 7, using Kent Porter' s
technique (16) for dynamic memory management. Our
implementation included two-point crossover,
traditional mutation, binary tournament selection and a
population size of 450 chromosomes. The length of
each chromosome was 44 when using binary
representation, and only 14 when using floating point
representation. The mutation was the only operator that
had to be redefined for using floating point
representation. Instead of negating the corresponding
bit (as when using binary representation), the gene
selected to mutate was replaced by a random digit (a
number between 0 and 9). Each GA ran for 200
generations using the methodology described next to
adjust its parameters.

Selecting the Parameters of the GA

 One of the main problems when using GAs is how to
choose the most appropriate parameters values (i.e., the
population size, maximum number of generations,
mutation and crossover rate). This is normally a trial
and error process which takes a considerable amount of
time. Based on our experience, we can say that it turns
out to be harder to fine tune the parameters of the GA
when a floating point representation is used.

Nodes Cost function
From To ($106)

1 2 (. .)0 026830 0 0017890 1 1− Y Y
2 1 (. .)0 032196 0 0021468 1 1− Z Z
2 3 (. .)0 080490 0 0053670 2 2− Y Y
3 2 (. .)0 096588 0 0064404 2 2− Z Z
3 6 (. .)0 067075 0 0044725 3 3− Y Y
6 3 (. .)0 080490 0 0053670 3 3− Z Z
4 5 (. .)0 053660 0 0035780 4 4− Y Y
5 4 (. .)0 064392 0 0042936 4 4− Z Z
5 6 (. .)0 080490 0 0053670 5 5− Y Y
6 5 (. .)0 096588 0 0064404 5 5− Z Z
6 7 (. .)0 134150 0 0089450 6 6− Y Y
7 6 (. .)0 160980 0 0107340 6 6− Z Z

Table 1 - cost function for wastewater conveyance

This is a very problematic situation since, as we will
see in the comparison of results, floating point
representation produces better results than binary
representation. Obviously, any optimization system will
not be very useful if its outcomes are completely
unpredictable. After a lot of experimentation, we came
out with a systematic empirical process that seems to be
able to generate optimal (or at least suboptimal)
solutions in a reasonable amount of time. However, we
don' t have yet any theoretical support of its reliability,

even though the empirical evidence is quite solid, since
we have used several times in the past (17, 18, 19). The
method is the following:

• Choose a certain value for the random numbers
seed and make it a constant.

• Make constants also the population size and the
maximum number of generations (we used 450
chromosomes and 200 generations, respectively).

• Loop the mutation and crossover rates from 0.1 to
0.9 at increments of 0.1 (this is actually a nested
loop. This implies that 81 runs are necessary.

• For each run, update two files. One contains only
the final costs, and the other has a summary that
includes, besides the cost, the corresponding
values of the design parameters and the mutation
and crossover rates used.

• When the whole process ends up, the file with the
costs is sorted in ascending order, and the smallest
value is searched in the other file (or the greatest,
if we are maximizing), returning the corres-
ponding design parameters as the final answer.

Figure 1 - Schematic diagram of a single branched system.

i 1 2 3 4 5 6 7
Si 0.3 0.2 2.1 0.7 0.1 2.5 0.7

Table 2 - Wastewater generated at each source

Notice that in this process, the population is not erased
or reinitialized, but instead is re-used with new
parameters. This is some sort of dynamic adjustment of

parameters that turns out to work very well with both
representation schemes, but that due to the size of the
increments, seems to favor the floating point
representation.

Since each run is completely independent from the
others, we can run all these processes in parallel, so
that the total execution time will be practically the same
required for a single run (about 58 seconds in an IBM
PC DX/2 running at 66 MHz and with a mathematical
coprocessor).

An Example

Consider the hypothetical problem formulated by
Deininger and Su (14), and solved by Ong and Adams
(1,10). Briefly, they considered a region which contains
seven communities located along a river and its
tributary (Figure 1). There are 7 potential sites
available for the construction of wastewater treatment
plants. The objective is to find the size and location of
wastewater treatment plants and the interconnecting
conveyance system which will minimize the total cost.
The required information to solve this problem is the
following (1,5):

(a) The cost function for wastewater conveyance is
shown in Table 1.

(b) Cost function for treatment plants:

CT X X X ii i i i() (. .) , ,= − =0 5036 0 0227 1 7 K

(c) The amount of wastewater generated at each source
is given in Table 2.

(d) The upper bounds for the decision variables are
shown in Table 3. XUi is the maximum amount of
wastewater that is permitted to be treated at plant i (due
to physical and/or water quality constraints), YUi is the
maximum amount of wastewater that can be carried by
the ith section of conveyance in the direction of Yi (due
to physical constraints, if any), and ZUi is the
maximum amount of wastewater that can be carried by
the ith section of conveyance in the opposite direction
of YUi .

COMPARISON OF RESULTS

The results obtained by the RPS algorithm and the GA
are compared in Table 4. The GA was used both with
binary (B) and floating point representation (FP). We
also tried binary Gray coding (G) and floating point
representation with a normalized mutation operator
(FP-N), in which the current value of the gene selected
would be altered by an integer between -1 and 1,
passing by zero, depending on the random number
generated. Also, following the advise of Michalewicz

(15), we implemented a non-uniform mutation
operator. This new operator is defined as follows (15) :

if m
t
v vvs ,,1

�= is a chromosome (t is the

generation number) and the element vk was selected for
this mutation, the result is a vector

mk
t
v vvvs ,,,, '

1
1

��=+
, where





−∆−
−∆+

=
1, isdigit random a if),(

0, isdigit random a if),('

LBvtv

vUBtv
v

kk

kk
k

and LB and UB are lower and upper domain bounds of
the variable vk (0 and 9, in our case). The function
∆(,)t y returns a value in the range [0,y] such that the
probabilit y of ∆(,)t y being close to 0 increases as t
increases. This property causes this operator to search
the space uniformly initiall y (when t is small), and very
locall y at later stages; thus increasing the probabilit y of
generating the new number closer to its successor than
a random choice. We used the same function suggested
by Michalewicz (15):













−⋅=∆







 −

b

T

t

ryyt
1

1),(

where r is a random number from [0..1], T is the
maximal generation number, and b is a system
parameter determining the degree of dependency on
iteration number (we used b=5, as suggested by
Michalewicz (15)). Our results using floating point
representation with non-uniform mutation (FP-NU) are
also shown in Table 4, and as you will see they turn out
to be the same than when using the normalized
mutation operator mentioned before.

As you can see, the use of floating point representation
with a mutation operator that generated digits provided
the best results, only compared to those produced with
the RPS algorithm.

The optimal configuration generated by the GA (and
the RPS algorithm) is shown in Figure 2.

i 1 2 3 4 5 6 7
XUi 4.8 4.8 5.9 4.0 4.0 6.6 6.6
YUi 0.3 0.5 2.6 0.7 0.8 5.9 —
ZUi 6.3 6.1 4.0 5.9 5.8 0.7 —

Table 3 - Upper bounds for the decision variables

The convergence graph of the GA that produced the
best results is shown in Figure 3. As you can see, it is
not until the last twenty generations that we were able
to obtain the best solution, which by the way, is the
global optimum, according to Ong and Adams (1).

FUTURE WORK

We are still running a lot of different experiments to try
to minimize the parameters of the GA. We are running
different strategies to help the GA converge in a shorter
amount of time with smaller populations. For example,
we are trying to eliminate duplicates in our population,
and to use elitism (i.e., to keep the best individual in
each generation without crossing it with any other
chromosome), but the results found so far have not been
very encouraging. We have successfully solved several
examples found in the literature and we are looking
ahead to solve real-word problems within the next few
months.

We are interested in using other techniques for
adjusting the parameters of the GA, such as fuzzy logic.

Also, we would like to experiment with other GA
operators, such as different types of mutation operators,
and some forms of restricted crossover. Furthermore,
we want to try some other alternative representation
schemes. For example, we are interested in using a
binary representation of the IEEE formats of 8, 16 and
32 bits, to represent floating point numbers.

We are also working in the second case of this problem
(1), in which more variables are introduced and the
search space and the CPU time required considerably
increase.

Finally, we are interested in using other powerful
heuristic techniques, such as Tabu Search (20, 21),
probably in combination with the GA.

Method RPS GA (B) GA (FP) GA (G) GA (FP-N) GA (FP-NU)
x1 0.00 0.10 0.00 0.40 0.00 0.00
x2 0.00 0.00 0.00 0.00 0.00 0.00
x3 0.00 0.00 0.00 0.40 0.00 0.00
x4 0.00 0.30 0.00 0.00 0.00 0.00
x5 0.00 0.00 0.00 0.10 0.00 0.00
x6 6.60 6.20 6.60 5.70 5.90 5.90
x7 0.00 0.00 0.00 0.00 0.70 0.70
y1 0.30 0.20 0.30 0.00 0.30 0.30
y2 0.50 0.40 0.50 0.10 0.50 0.50
y3 2.60 2.50 2.60 1.80 2.60 2.60
y4 0.70 0.40 0.70 0.70 0.70 0.70
y5 0.80 0.50 0.80 0.70 0.80 0.80
y6 0.00 0.00 0.00 0.00 0.00 0.00
z1 0.00 0.00 0.00 0.10 0.00 0.00
z2 0.00 0.00 0.00 0.00 0.00 0.00
z3 0.00 0.00 0.00 0.00 0.00 0.00
z4 0.00 0.00 0.00 0.00 0.00 0.00
z5 0.00 0.00 0.00 0.00 0.00 0.00
z6 0.70 0.70 0.70 0.70 0.00 0.00

Cost ($106) 2.73009 2.792489 2.73009 2.893132 2.810168 2.810168
Table 4 - Comparison of results

Figure 2 - The optimal configuration for the given hypothetical region (case 1).

Convergence of the GA using floating point representation

Generation

0

0.5

1

1.5

2

2.5

3

3.5

4

0 20 40 60 80 100 120 140 160 180 200

Figure 3 - Convergence of the GA using floating point representation (FP) with a mutation operator that generates
random digits.

CONCLUSIONS

We have shown a successful application of a genetic
algorithm to a numerical optimization problem which
is highly non-linear. We have seen how, even when the
specifications of this problem seem very simple and
straightforward, the shape of its search space is very
difficult for the GA to track. We have proposed the use
of a very simple floating point representation, together
with a systematic parameter fine tuning procedure, to

deal with this kind of problems. Our preliminary results
seem to indicate that floating point representation is not
only faster, but also better in terms of the quality of
solutions that it may find. This representation is
particularly important for large domains where binary
representation would require excessively long strings.
Also, this representation is intuitively closer to the
problem space, and is easier to design for it specific
operators that incorporate knowledge about the domain,
as we did in this application. This is very important

when we have a lot of complex constraints, li ke in this
case.

The main goal of this on-going research is to produce a
computer program able to generate optimal (or at least
sub-optimal) designs of regional branched wastewater
treatment systems in a reasonable amount of time. Such
tool would be very useful in real-world applications in
the state of Chiapas, in which there is a great need of
such wastewater treatment plants. So far, our prototype
seems to work well , but there is still a lot of room for
improvement, and issues such as convergence time and
limitations on the computer resources available have to
be taken into account, considering that this work has
been developed in México.

We still have a lot of work to do, before we may claim
that the GA is a highly-reliable numerical optimization
technique, and several problems remain open for
research in future. However, we hope that in the next
few years we can be able to control this technique in
such a way that we may produce designs and to solve
complex real-world optimization problems using this
old mechanism that Nature has been using in our planet
for milli ons of years.

REFERENCES

1. Ong, S. L., and Adams, B. J., 1987,
' Application of an eff icient search technique
for solving optimal regional water qualit y
management problems' , Civil Engineering
Systems, Vol. 4, September, 131-141.

2. Converse, A. O., 1972, "Optimum number and
location of treatment plants", Journal of Water
Pollution Contr. Fed., 44, 1629-1636.

3. Murty, K. G., 1971, ' Solving the fixed charge
problem by ranking the extreme points' ,
Operations Research, 3, 479-484.

4. Sniedovich, M., 1992, ' Dynamic
Programming' , M. Dekker, New York, U.S.A.

5. Bellman, R., 1957, ' Dynamic Programming' ,
Princeton University Press, Princeton, New
Jersey, U.S.A.

6. Adams, B. J., 1981, ' Discussion of least-cost
optimization for areawide wastewater
management using mixed integer
programming' , in Jenkings, S. H. (Editor),
Water Pollution Research and Development,
Part 4, IAWPRC.

7. Jarvis, J. J., Rardin, R. L., Urger, V. E.,
Moore, R. W. and Schimpeler, C. C., 1981,
' Optimal design of regional wastewater system:
a fixed-charge network flow model' ,
Operations Research, 26, 538-550.

8. Voutchkov, N., 1993, ' Heuristic screening
methodology for regional wastewater-
treatment planning' , Journal of Environmental
Engineering, 119, July/August, 603-614.

9. Ong, S. L., and Adams, B. J., 1984, ' Random
polyhedron search = a nonlinear optimization
algorithm' , Journal of Advanced Management
Studies, 161-179.

10. Ong, S. L., Adams, Barry J., 1990, ' Capacity
Expansion for Regional Wastewater Systems' ,
Journal of Environmental Engineering, Vol.
116, No. 3, May/June, 542-560.

11. Nelder, J. A., and Mead, R. A., 1964, ' Simplex
method for function minimization' , Computer
Journal, 7, 308-313.

12. Holland, J. H., 1975, ' Adaptation in Natural
and Artificial Systems' , University of
Michigan Press.

13. Goldberg, D. E., 1989, ' Genetic Algorithms in
Search, Optimization and Machine Learning' ,
Addison-Wesley Publishing Co.

14. Deininger, R. A., 1965, ' Water qualit y
management: the planning of economically
optimum pollution control systems' , First
Annual Water Resources Conference, Chicago,
American Water Resources Association.

15. Michalewicz, Z., 1992, ' Genetic Algorithms +
Data Structures = Evolution Programs' ,
Springer-Verlag, second edition.

16. Porter, K., 1988, ' Handling Huge Arrays' , Dr.
Dobb' s Journal of Software Tools for the
Professional Programmer, Vol. 13, No. 3, 60-
63.

17. Coello, Carlos, Alonso Farrera, F., 1995, ' Use
of Genetic Algorithms for the Optimal Design
of Reinforced Concrete Beams' , Computer
Aided Optimum Design of Structures IV.
Structural Optimization. Edited by S.
Hernández, M. El-Sayed & C. A. Brebbia,
Computational Mechanics Pub., Southampton,
UK, 209-216.

18. Coello, Carlos A., Alonso Farrera, F., 1995,
' Optimal Design of Axiall y Loaded Non-
prismatic Columns via Genetic Algorithms' ,
Sixth International Conference on Computing
in Civil and Building Engineering, Berlin,
Germany, Edited by Peter Jan Pahl and
Heinrich Werner, Vol. 1, A. A. Balkema,
Rotterdam, Netherlands, 691-696.

19. Coello, Carlos A., Christiansen, Alan D.,
Alonso Farrera, F., 1995, ' Use of Genetic
Algorithms for Multiobjective Optimization of
of Counterweight Balancing of Robot Arms' ,
TAI' 95, IEEE Computer Society Press, USA.

20. Glover, Fred, 1989, ' Tabu Search - Part I' ,
ORSA Journal on Computing, 1 (3): 190-206.

21. Glover, Fred, 1990, ' Tabu Search - Part II ' ,
ORSA Journal on Computing, 2:4-32.

