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Abstract. Multimodal multiobjective optimization (MMMOO) can be
perceived as the combination of multiobjective optimization (MOO) and
multimodal optimization (MMO). The performance of an MMMOO me-
thod should be thus assessed from both perspectives, leading to the
prevalence of dual-metric indicators in the existing literature. This study
first analyzes the ideal outcome of MMMOO for informed decision-making
to determine the prerequisites of a theoretically and practically sound
performance indicator. Then, it critically evaluates existing indicators,
especially those that intend to measure success from the MMO per-
spective. Subsequently, it introduces Aggregated Partial Hypervolumes
(APHVs) as a novel overall parametric performance indicator that not
only addresses the drawbacks of existing ones but can also reflect the rel-
ative importance of MMO for the decision-maker. Finally, a few descrip-
tive MMMOO examples are studied to verify that the optimal population
according to APHVs matches our understanding of the ideal outcome of
MMMOQO, taking into account the relative importance of both the MMO
and the MOO perspectives.

Keywords: Performance indicator - Multimodal multiobjective opti-
mization - Hypervolume.

1 Introduction

Multiobjective optimization (MOO) aims to find a set of diverse non-dominated
solutions that approximate the Pareto front (PF). These solutions reveal the
trade-off between the potentially conflicting objectives of the problem. The
decision-maker can then determine the best overall trade-off among the objec-
tives to select a single solution for its implementation using an a posteriori
decision-making approach [I].
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Quite often, the availability of distinct solutions for the selected trade-off
can be beneficial. Such distinct solutions provide alternatives to support a reli-
able decision-making process [2]. The importance of such distinct solutions has
already been analyzed and highlighted for several real-world multiobjective prob-
lems, such as path planning [3], space mission design [4], distillation plant layout
[5], functional brain imaging [6], and diesel engine design [7].

Multimodal multiobjective optimization (MMMOOQO) aims to provide such
distinct solutions. The goal of MMMOO is to find the whole Pareto set (PS),
even though a part of the PS can represent the whole PF. Even solutions that
are slightly dominated can be of interest [2]. MMMOO can be perceived as the
integration of multimodal optimization (MMO) [§] with MOO, two relatively
well-studied fields that can help to advance the knowledge in the less-establish
and more complex field of MMMOO [2]. Evaluation of an MMMOO method
requires assessing it from both the MOO and the MMO perspectives, resulting
in the prevalence of dual-metric indicators in the existing literature:

— a metric that measures the success from the MOO perspective. Most studies
used either hypervolume (HV) [QII0JIT][12], IGD [I3JT4/TI5ITOIT7IIRITI], or
both of them [2002112223] [24125] for this purpose.

— ametric that measures the success from the MMO perspective. Most existing
studies used either IGDX ([2INI6ITOIT7I25ITRITINT2]), Pareto set proximity
(PSP) [2009/14/TT] or both [22IT3I23|T526] for this purpose.

A significant drawback of dual-metric indicators arises when method A is
better than method B according to one metric but worse according to the other
one. In such cases, a dual-metric indicator cannot determine the superior method.
Besides, existing metrics to measure the performance from the MMO perspective
suffer from some theoretical shortcomings, which will be explained in Section [3}

To the best of our knowledge, IGDM [27] is the only overall indicator for
MMMOO, which addresses some of the limitations of existing dual-metric indi-
cators. Nevertheless, it requires tuning a sensitive parameter. Besides, like IGD,
it depends on the procedure used to generate uniformly distributed reference
points on the PF, which can cause some biases in the comparison [28]. There-
fore, developing other overall performance indicators that can overcome these
shortcomings has been encouraged [28].

Another limitation of existing indicators is disregarding the relative impor-
tance of MMO and MOO for the decision-maker, which is referred to as MMO-
MOO trade-off in this study. It implies that improving the performance from
the MMO perspective comes at the cost of deteriorating it from the MOO per-
spective. There are two reasons for this claim. First, it is difficult and sometimes
conflicting to efficiently address both MMO and MOO challenges at the same
time since each demands certain strategies that can negatively affect the other
one. This explains why MMMOO methods are not as good as well-known MOO
methods when only MOO is pursued [2]. Second, for a given problem, the theo-
retically ideal outcome of MMMOO may have a worse HV or IGD than the ideal
outcome of MOOQO. This means that regardless of the efficiency of the employed
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method, improved diversity in solution space may necessitate some sacrifice in
the diversity in the objective function space.

The MMO-MOO trade-off questions whether the added benefits of MMO can
justify the decline in MOO capability. The answer to this question depends on
how much the decision-maker is interested in the availability of diverse solutions,
a feature of the problem that should be specified a priori. Accordingly, perfor-
mance indicators should be able to reflect the relative importance of MMO for
the decision-maker, a feature that is missing in existing ones.

The shortage of overall and pragmatic performance indicators is a major ob-
stacle to the progress of this field since most developments in the field of evolu-
tionary MMMOO rely on experimental evaluations and comparisons of heuristic
and meta-heuristic methods and strategies. This study aims to mitigate this
shortcoming by introducing a novel performance metric that can reliably mea-
sure the success of MMMOO methods. The contributions of this study are as
follows:

— It analyzes different potential outcomes of MMMOO to determine prerequi-
sites of a theoretically and practically sound performance indicator.

It scrutinizes existing and popular performance indicators for MMMOO.

— It introduces an overall parametric indicator, called Aggregated Partial Hy-
pervolumes (APHVS) to address the shortcomings of the existing ones.

It analyzes APHVs on some distinct examples to confirm that indications of
APHVs match our understanding of the optimal outcome of MMMOO for
informed decision-making.

The rest of this study is organized as follows. Section [2] analyzes some poten-
tial outcomes of MMMOO. Section [3]reviews and analyzes relevant performance
metrics for MMMOO. Section [d]introduces APHVSs. Section [f] designs descriptive
examples to study APHVs. Finally, our conclusions are drawn in Section [6]

2 Qualitative Analysis of Potential MMMOO Outcomes

Fig. [1] illustrates a typical MMMOQO problem, in which the PS consists of three
regions. Each of these regions can represent the whole PF. Four cases for the
final population are considered:

— The population in Case I (Fig. has the ideal outcome from the MOO
perspective, but a poor one from the MMO perspective since two regions of
the PS have not been detected at all.

— In Case II (Fig. , the population could detect all three regions and for
each region, it has provided the three most important solutions, i.e., those
that maximize the HV or IGD of that subpopulation. Such an outcome
has generally been used in the MMMOO literature to represent a simple
MMMOO problem where solutions from different PS regions (PSRs) map
to the same point on the PF (e.g., in [T429)30/3TITTI25]). It provides the
best approximation of individual regions of the PS. Once a trade-off among
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(a) case I (b) case 11 (c) case III (d) case IV

Fig. 1. Potential outcomes of MMMOO. The problem has three distinguishable PSRs.

the objectives has been selected, three distinct solutions are available for
the decision-maker. However, we argue that this is not the ideal outcome
when both the MOO and the MMO perspectives are important because all
nine solutions almost map to three points on the PF, resulting in an inferior
performance from the MOO perspective when compared to the population
in Fig. Population in Case II is superior to that of Case I only if the
MMO perspective was quite important for the decision-maker.

In Case III (Fig. , the population has nicely approximated the PF and
detected all three regions of the efficient set. This outcome is indeed superior
to the one in Case I; however, it is still not the ideal outcome since solutions
from each part of the PF belong to one particular region of the PS. Once the
decision-maker specifies the desired trade-off among the objectives, there is
limited diversity in the available solutions.

Case IV (Fig. shows the pragmatic ideal outcome of MMMOO when
performance form both the MOO and the MMO perspectives is important.
Convergence and diversity in the objective space are ideal. For each part of
the PF, there are solutions from different regions of the PS, and by a slight
deviation from the selected trade-off, three distinct solutions are available
for the decision-maker.

3 Critical Assessment of Existing Indicators

Hypervolume (HV) [32] and Inverted Generational Distance (IGD) [33] are two
of the most popular metrics for assessing performance of MMMOO methods
form the MOO perspective. Given a set of solutions X = {ml, To,. .., :c‘x|} with
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normalized objective values 0 F = {fl, fareoo, f‘x‘ }, HYV is the size of the space

that is dominated by solutions in F and dominates a reference point 7. The ideal
and nadir points have normalized objective values of 0 and 1, respectively, and
the reference point should be slightly dominated by the nadir point, e.g. r» = 1.1,
as suggested in [34]. HV is the only known unary Pareto-compliant performance
indicator.

IGD is another popular performance indicator for MOO:

F*|
. 1 . x
=1

i
in which d() calculates the Euclidean distance between two points, and F* =

{ff, oo e ‘} is a set of uniformly distributed reference points on PF. The

main drawback of IGD is that it is not Pareto-compliant [35]. Besides, the IGD
value depends on the algorithm used to generate the reference points, which may
be difficult to reproduce across studies. IGD™ [36] is an enhanced version of IGD
which is weakly Pareto compliant; however, it does not resolve the challenge of
sampling reference points.

IGDX [21I] measures the spread of solutions in the solution space to evaluate
the success from the MMO perspective. Analogous to IGD, it samples a set of

uniformly distributed solutions X* = {x’{, x5, ... ,:L'l*x*l} on PS. Then, IGDX is

calculated as follow:

X"

[GDX (X, X) = —— 3" min d(z;

). 2
X £ mex i ) (2)

Like IGD, IGDX suffers from the dependency on the employed algorithm for
generating the reference point. This dependency is more prominent for IGDX
since the solution space has generally a higher dimensionality than the objective

X2

\/

P M- o ‘ X1
X3

Fig. 2. Given Reference points (crosses), IGDX of population P1 (shown by circles) is
much smaller than that of P2 (shown by triangles).
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X2

X1

(a) (b) ()

Fig. 3. Actual PS (solid line) and final populations (circles) in for three different cases
for problems with two decision parameters.

space, which makes generating reference points that are uniformly distributed
more challenging. Besides, directional sensitivity of the objective function(s) can
result in misleading IGDX values. Fig [2] depicts such a situation in which at
PS (solid line segment on z7 axis), the fitness function is assumed to be more
sensitive along x3 than x5. Two populations are considered: Py (circles) has a
slight deviation from PS along x5 while P (triangles) has a large deviation along
xo. The fitness values of the solutions can be identical, but population P; has a
much smaller IGDX, and thus should be regarded as a better one according to
the IGDX metric. However, Py provides a greater diversity in the solution space;
therefore, it should be a better choice from the MMO perspective if diversity of
solutions is desired.

Like IGDX, PSP [9] has been frequently used to evaluate the success from
the MMO perspective. It is the ratio of the Cover Rate (CR) and IGDX:

k=1

oR 1/(2D)

in which 6, is the coverage of the PS for the k' dimension. It is calculated as
follows:

: max __ min
1 if Vpmex =V
s min max max min
0, =<0 ' - if o't > VRaX or pex KV (4)
min{p™a¥ Ymaxy _max {pmin yming )
B — otherwise
in which v™® and v are the minimum and maximum of the k" element of the
k k

solutions in the population, and Vkmi“ and V;*** are the minimum and maximum
of the PS along the k*" coordinate.

CR is inspired by the maximum spread [37], a less popular performance in-
dicator for MOO. CR takes into account only the hypercube that contains final

populations, and compares it with a similarly defined hypercube for the actual
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PS. Comparing such limited information can easily result in misleading conclu-
sions. For instance, PSP is sensitive to the orientation of PS. Fig. 38 shows a
situation in which the final population has approximated the PS quite success-
fully. The value of CR is about 0.9 in this case. Fig. represents the same
problems subject to a linear rotation of the search space, and it is assumed that
the population has converged to exactly the previous solutions after undergoing
the exact same rotation; therefore, the approximation quality has remained un-
changed. It is expected that an indicator assessing the convergence to the PS
has identical values for the cases depicted in Figs. and however, we have
CR=0 for the latter. Fig. [3c| reveals a more serious drawback of CR. The final
population (two solutions here) could not approximate the PS properly, yet, we
have CR = 1 in this case, which is the best possible outcome from a MMO
perspective according to the CR indicator. Since PSP is proportional to CR,
the drawbacks of CR are also present in PSP, even though combining CR with
IGDX may mitigate these drawbacks to some extent.

So far, IGDM [27] is the only overall performance indicator for MMMOO
[28]. Like IGD, IGDM requires a set of uniformly distributed reference points
on the PF (f7,i =1,2,...,|F*|). For each f;, it finds all the solutions in the
PS that map to that reference point (w;‘js) Then, the population members are
assigned to the closest reference solutions according to the minimum Euclidean
distance criterion in the solution space. This means that for every 7 ;, there is
a subset of population members, denoted by P;;. Then, the distance between all
x;;s and all the population members in P;; in the objective space is calculated,
and the smallest one is considered d;;. IGDM is the mean of all these d;; values.

IGDM addresses some of the drawbacks of dual-metric indicators. Most im-
portantly, it is an overall indicator which facilitates comparison of MMMOO
methods. However, it has the following drawbacks:

— It depends on the algorithm used for generating reference solutions on the
PF.

— Some of P;;’s can be empty, for which IGDM sets di; = dmax, Which is a
default value for reference solutions with no matching population member.
This makes the relative values of IGDM sensitive to dmax, particularly know-
ing that IGDM is the mean of d;;s, and the mean is not a robust statistical
measure.

— It cannot reflect the relative importance of MOO and MMO for the decision-
maker. Based on our analysis, the ideal population with minimal IGDM
resembles the one depicted in Case II , which is not generally the best
outcome when both MMO and MMO are important.

4 Aggregated Partial Hypervolumes

Our proposed performance measure is based on the summation of partial hy-
pervolumes (PHVs). Let us assume that the PS; consists of K distinct regions,
each of which represents the whole or a part of the PF, i.e., PS = UlePSRk,
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in which PSRy, is the & distinct region of PS. Let Py be a subset of popula-
tion P for which the closest PSR is PSRy. It is assumed that P approximates
PSRy. PHV} is the partial hypervolume that corresponds to P, and THV is
the total hypervolume that corresponds to P. Aggregated Partial Hypervolumes
(APHVs) is defined as follows:

APHVs= oy THV+ (1 — ay) MPHVs,
MPHYV. Ly PHVE, 0<ay <1 (5)
§= E ; ks SO0 >

APHVs is the weighted average of two terms. The first term, THV, mea-
sures the quality of P from the MOO perspective (convergence and spread),
disregarding which PSRs have been approximated. In contrast, the second term
(MPHYVs), measures how good every PSR has been approximated on average,
indicating the quality of P from the MMO perspective. Parameter «; speci-
fies the relative importance of MOO and MMO for the decision-maker, i.e., the
MMO-MOO trade-off. a; = 1 means MMO has no value for the decision maker,
whereas for a; = 0, the importance of finding every region of the PS is maximal.

Fig. [ illustrates how APHVs is calculated for a simple bi-objective minimiza-
tion problem. The PS counsists of three distinct regions (PSR, PSR2, PSR3),
and each region may represent the whole PF. The population P has successfully
approximated all these regions, and can be divided into Py (pluses), P2 (circles),
and P3 (crosses), based on the distance of its members to the each PSR. For this
example, Figure [4al calculates THV = 0.557 given the reference point [1.1,1.1]7.
Figures and [4d] illustrate how PHVs are calculated for each subpopula-
tion. For this example, APHVs = 0.557c; + (0.460 + 0.476 4+ 0.384)(1 — o) /3.

When compared with existing indicators for MMMOO, APHVs has the fol-
lowing advantages:

— Like IGDM, APHVs is an overall indicator, which facilitates comparison of
MMMOO methods.

— Although APHVs is the weighted average of two terms, these two terms have
the same nature. They are all HVs calculated in the objective space with
respect to one fixed reference point.

— APHVs uses a distance metric in the solution space only to group population
members based on the PSR that they are approximating. Unlike IGDX,
MPHVs (or APHVs when a; = 0) does not use any distance metric in the
solution space to quantify the performance from the MMO perspective.

— MPHVs implicitly takes the quality of solutions into account. It can deal
with potential differences in the sensitivity of the objective function at dif-
ferent parts of the PS or to certain directions, whereas IGDX ignores such
information.

— Unlike IGDX, IGD, and IGDM, APHVs does not require uniformly dis-
tributed reference points on the PS or the PF. The reference point for the
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(a) THV=0.557 (b) PHV; =0.460 (c) PHV, =0.476 (d) PHVs = 0.384

Fig. 4. Calculation of different terms in APHVs for a typical problem with three dis-
tinct PSRs, represented by solid lines. The reference for the calculation of APHVs is
[1.1,1.1]7.

calculation of APHVs can be easily set (e.g. 1.1 when the objectives are
normalized [35]).

— Unlike IGDM, APHVs can easily reflect the relative importance of the MMO
perspective for the decision maker by setting «; at the problem level.

— Unlike IGDM, APHVs does not have any additional and sensitive parameter
to account for regions of the PS that have not been detected. These sub-
regions simply have a zero PHV.

Quite often, the PSRs are distinguishable given the mathematical description
of the PS. This is the case with most existing mathematically defined benchmark
problems for MMMOQO, such as those proposed in the CEC 2019 special session
on MMMOO [38], in which the PS consists of either end-joined or disjoint con-
tinuous PSRs. For a PS with a complex geometry, a mathematically meaningful
procedures to divide the PS into PSRs is required at the problem level, which
can be regarded as a limitation of APHVs.

5 Descriptive Examples

This section designs descriptive examples to highlight distinctive features of
APHVs, especially its capability to reflect the relative importance of MMO and
MOO for the decision-maker. The examples are simple but distinct so that the
search-space can be exhaustively searched and indications of APHVs can be
visually compared with our intuition of the ideal outcome of MMMOO for in-
formed decision-making. For the same reason, only bi-objective problems with
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two decision parameters (0 < x1,x2 < 1) are considered. Both objectives should
be minimized, and the reference point for the calculation of APHVs is r = 1.1.

For each problem, a set of Pareto optimal solutions of size Np is provided.
The optimal population of size np is exhaustively sought such that APHVs is
maximized for the predefined «;. Population members are a subset of the Np
provided Pareto optimal solutions. For each oy, we report THV and MPHV's and
their relative ratios to the maximum possible values in parenthesis. It is possible
that multiple of such optimal populations exist in the problem; therefore, for
each value of ay, Npest indicates the number of different populations with the
maximum APHVs. In such cases, the first population with the maximal APHVs
is illustrated. The outcomes are distinct for the selected values of «y.

5.1 Example 1

This example analyzes APHVs in a relatively simple but insightful scenario. The
problem objectives are:

{fl(x) = z1exp(g), fo(x) = (1 — $1)6XP(9).

g = sin?(2mzy)

(6)

The PS consists of three disjoint regions with x5 = 0,0.5, 1, respectively, and each
can represent the whole front. For this problem, Np = 3 x 17 = 51 and np = 6.
Fig. [p]illustrates the ideal population that maximizes APHVs for selected values
of ;. As observed:

— When oy = 0 (maximal importance of the MMO perspective), the optimal
population resembles the one depicted in Fig. [IB] which is the ideal outcome
from the MMO perspective. The HV is 22.1% less than the ideal case from the
MOO perspective due to a lack of sufficient diversity of the whole population
in the objective space. In fact, from the MOO perspective, the union of
subpopulations is no better than each subpopulation alone.

— when «a; = 0.1, subpopulations map to different points of the PF, even
though they are still in two distinguishable regions of the PF. THV is now
only 9.3% inferior to the ideal outcome form the MOO perspective. At the
same time, MPHVs has reduced only 0.5%, which is practically negligible.
There are 6 possibilities for the ideal population in this case, which are
formed by swapping the relative solutions in each subpopulation.

— A greater ay is used when the MMO perspective is less important for the
decision-maker, e,g,, when the formulated optimization problem is a more ac-
curate model of the actual problem. A better approximation of the whole PF
thus becomes more important. Comparing the plots in Fig [5| demonstrates
that APHVs nicely reflects this preference, where the optimal population,
according to the APHVs indicator, should have a higher diversity in the ob-
jective space to maximize THV, in exchange for a weaker approximation of
individual PSRs. The former becomes less important for a greater ay.

— The ideal outcome for 0.3 < a; < 0.99 resembles the outcome in Fig.
which has a nice balance between the importance of MMO and MOO. This
shows that the indications of APHVs are robust with respect to ay.
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5.2 Example 2

In the second test problem, PS consisted of two regions, PSR; and PSRy with
xo = 0 and o = 1, respectively. Each PSR can represent the whole front, but
PSR is four times larger:

filx) =gxi/h, fo(x) = g[1 — z1/h| )
g=2+cos(2mwy +m),h = (1+ Azs)/(A+1),A=3"
The set of available Pareto optimal solutions consists of 17 solutions on each
PSR (Np = 2 x 17 = 34). For this problem np = 8. Fig. [0 illustrates the
optimal outcome according to the APHVs indicator for different values of a;. As
observed:

— When «; = 0, the population forms two equally sized subpopulations P; and
P5, which are uniformly distributed on PSR, and PSR, respectively, even
though PSRy is four times larger. Both subpopulations map to exactly the
same points in the objective space to maximize their MPHVs, providing the
decision-maker with the most important trade-off solutions for each PSR.
Once a trade-off is chosen, two distinct solutions are available.

— According to the IGDX indicator, the ideal outcome from the MMO per-
spective would have only one or two points on PSR;. The reason for this

wa:l waZG Nbg:lZ waZB
THV = 0.48 (77.9%) THV = 0.558 (90.7%) THV = 0.605 (98.2%) THV = 0.615 (100%)
MPHVs = 0.48 (100%) MPHVs=0.477 (99.5%)  MPHVs=0.468 (97.5%) MPHVs = 0.449 (93.6%)
1es 1es Leg leg
f | f | e f " fl "
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o 4 ) .
=) o, °
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Fig. 5. The optimal MMMOO outcome for the first example according to the APHVs
indicator with different values of a;. The dots represent Np solutions on the PS. Pluses,
circles, and crosses are used to divide the population according to which region of the
PS they are approximating.
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Fig. 6. The optimal MMMOO outcome for the second test problem according to the
APHVs indicator with different values of a:. The dots represent Np solutions on the
PS. Pluses and circles are used to divide the population according to the region of the
PS that they are approximating.

is that the number of reference points on PSRy would be four times larger
than the number of reference points on PSR, since reference points for the
calculation of IGDX are uniformly distributed on the PS. This observation
reveals an intrinsic difference between IGDX and MPHVs (or APHVs when
a; = 0): MPHVs and IGDX specify two fundamentally different populations
when the ideal outcome from the MMO perspective is desired. From the
decision-making perspective, the one specified by IGDX is inferior because
distinct solutions might not be available for the selected trade-off.

When «; increases, the diversity of the optimal population in the objective
space improves while the quality of the approximation of individual PSRs
declines. Nevertheless, for the large range of 0.2 < «a; < 0.99, the ideal
outcome does not change, indicating the robustness of the APHVs metric to
the choice of o4.

5.3 Example 3

The third example investigates a scenario which can be regarded as the opposite
of the one in Example 2: PSR, at o = 0 and PSR, at ;1 = 0 have equal
lengths but the former maps to a small region of the PF:

(8)

fi(®) = gx1/h, fo(w) = g (1 —21)/h
g=2+cos(2mae +m),h = (1+ Axy), A=4"
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Npog = 1 Ny =1 Npog = 1
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Fig. 7. The optimal MMMOO outcome for the third example according to the APHVs
indicator with different values of a;. The dots represent Np solutions on the PS. Pluses
and circles are used to divide the population according to the region of the PS that

they are approximating.

2 x 17 uniformly distributed points are provided on the PS from which the
optimal population of size np = 6, which consists of two subpopulations, Py
and P, should be selected. Fig. [7] illustrates the optimal outcome for different

values of «;. As observed:

— For a; = 0, the two subpopulations are not equally sized. Proper approx-

imation of PSR, is more important because the contribution of PSRs to
MPHVs is limited. For decision-making, detection of PSR is useful only if
the decision-maker is interested in a trade-off on the upper left part of the PF.
This characteristic of the problem is well-captured by the APHVs indicator.
The only member of P is on the right corner of PSRy to present the most
important trade-off that can be offered by a solution in PSRs. In contrast,
IGDX recommends a completely different outcome in which both subpop-
ulations are equally sized and uniformly distributed on PSRs, disregarding
the fact that all solutions in PSR, are useless unless the decision-maker is
interested in a small region of the PF on the top left.

As expected, a larger o, emphasizes more on diversity of the whole popu-
lation in the objective space. Surprisingly, when «; = 0.99, PSR, has two
members in the optimal population. An extra member on PSR, has im-
proved THV because the available points on PSRy can provide a better
approximation of the upper left part of PF.



14 A. Ahrari et al.
6 Summary and Conclusions

This study introduced an overall indicator, called APHVs, which overcomes the
discussed theoretical and practical shortcomings of existing indicators. APHVs
is the weighted average of two terms: THV, which measures the success from
the MOO perspective, and MPHVs, which quantifies the success from the MMO
perspective. Both terms are inherently hypervolumes calculated on the objective
space with respect to a fixed reference point. The weight parameter, 0 < oy <
1, specifies the importance of the MMO perspective for the decision-maker, a
feature that does not exist in the currently available indicators for MMMOO.

Our descriptive test problems presented evidence indicating that APHVs
matches our understanding of the desirable outcome of MMMOO with an arbi-
trary MOO-MMO trade-off. Besides, the parameter «; of APHVs can reliably
reflect the relative importance of MOO and MMO perspectives when evaluating
MMMOO methods. When «; = 0, the optimal population aims to make the
best approximation of individual regions of the PS. By increasing «;, the op-
timal population focuses more on providing a better approximation of the PF;
nevertheless, the optimal population is not sensitive to the choice of oy, and for a
large range of «y, the optimal population should have a good performance from
both the MMO and the MOO perspectives.

When compared with existing dual-metric indicators, APHVs takes the rela-
tion between PS and PF into account when quantifying MMO success, resulting
in a fundamentally different and practically more meaningful perception of the
MMO success. For example, if a large region of PS maps to a small part of PF,
APHVs gives less importance to that region of the PS. Besides, for APHVs, di-
verse solutions are those that belong to different regions of the PS, which might
not necessarily be far from each other in the solution space.

The limitation of APHVs arises when PSRs cannot be easily determined
given the PS; however, this case is scarce in existing benchmark problems for
MMMOO. Formulating a mathematically sound procedure to divide the PS into
PSRs can address this limitation, which can be the subject of future studies.
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