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ABSTRACT
In this paper, we present a grammatical evolution-based framework
to produce new scalarizing functions, which are known to have a
significant impact on the performance of both decomposition-based
multi-objective evolutionary algorithms (MOEAs) and indicator-
based MOEAs which use 𝑅2. We perform two series of experiments
using this framework. First, we produce many scalarizing functions
using different benchmark problems to explore the behavior of
the resulting functions according to the geometry of the problem
adopted to generate them. Then, we perform a second round of
experiments adopting two combinations of problems which yield
better results in some test instances. We present the experimental
validation of these new functions compared against the Achieve-
ment Scalarizing Function (ASF), which is known to provide a very
good performance. For this comparative study, we adopt several
benchmark problems and we are able to show that our proposal
is able to generate new scalarizing functions that can outperform
ASF in different problems.

CCS CONCEPTS
• Mathematics of computing → Evolutionary algorithms; • The-
ory of computation→ Genetic programming.

KEYWORDS
multi-objective optimization, genetic programming, grammatical
evolution, scalarizing functions

1 INTRODUCTION
Optimization problems where two or more objectives need to be
simultaneously optimized are common in many fields [15]. They
are commonly known as multi-objective optimization problems
(MOPs), and Multi-objective Evolutionary Algorithms (MOEAs) are
a popular choice to solve such problems.

MOEAs present some important advantages compared to classi-
cal mathematical programming techniques, from which, perhaps
the most remarkable is that MOEAs operate on a set of solutions
(called population). This allows MOEAs (if properly manipulated)
to generate several optimal solutions in a single execution, which
contrasts with mathematical programming techniques, which nor-
mally generate a single optimal solution per execution. Additionally,
MOEAs require little domain-specific information, contrasting with
mathematical programming techniques which normally require
additional information (e.g., the gradient of the objectives and con-
straints of a MOP) [3].

Today, there are three main types of MOEAs available in the
specialized literature:

(1) Pareto-based MOEAs: These algorithms were developed
during the 1990s, and use a ranking procedure (called non-
dominated sorting) based on Pareto optimality to classify
solutions. They also adopt a mechanism responsible for
maintaining diversity (which is called density estimator).
These MOEAs were very popular for several years, but their
use is not effective in MOPs having more than three objec-
tives (the so-called many-objective problems). The reason
is that the number of nondominated solutions grows expo-
nentially with the number of objectives, and this quickly
dilutes the selection pressure [16].

(2) Indicator-based MOEAs: In this case, the idea is to use a
performance indicator to select solutions instead of using
Pareto optimality [19]. Indicator-based MOEAs were seen
first as a curiosity but they attracted a lot of attention when
it was possible to corroborate that they aremore robust than
Pareto-based MOEAs to many-objective problems. How-
ever, the main issue with indicator-based MOEAs is that
the only performance indicator currently known to be fully
Pareto compliant (i.e., strictly monotonic with respect to
Pareto optimality) is the hypervolume, which is known to
have a computational cost that increases polynomially on
the number of solutions but exponentially on the number
of objectives. Although indicator-based MOEAs based on
𝑅2 (which is weakly Pareto compliant) are computationally
efficient and have a good performance, their use is not very
popular today. Approaches based on 𝑅2 use a scalarizing
function and their performance is sensitive to the specific
scalarizing function adopted [8].

(3) Decomposition-based MOEAs: The idea of using decom-
position (or scalarization) methods was originally proposed
in mathematical programming more than 20 years ago [4]
and it consists in transforming the given MOP into sev-
eral single-objective optimization problems (SOPs) which
are then solved to generate the nondominated solutions
of the original MOP. Unlike linear aggregating functions,
the use of scalarization (or decomposition) methods allows
the generation of non-convex portions of the Pareto front
and works even in disconnected Pareto fronts. The Multi-
Objective Evolutionary Algorithm based on Decomposition
(MOEA/D), introduced in 2007 [17] presents an important
advantage with respect to methods proposed in the mathe-
matical programming literature (such as Normal Boundary
Intersection (NBI) [4]): it uses neighborhood search to solve
simultaneously all the SOPs generated from the transfor-
mation. Additionally, MOEA/D is not only effective and
efficient, but can also be used for solving MOPs with more
than 3 objectives although in such cases it will require
higher population sizes. It is worth noting however, that
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the performance of decomposition-based MOEAs is closely
related to the scalarizing function adopted [7].

There are several scalarizing functions available in the special-
ized literature [13], each of which may require different parameters,
or have different properties such as the type of solutions which
can be found with them (for instance Pareto-optimal solutions or
weekly Pareto-optimal solutions). However, to the best of the au-
thors’ knowledge, all of them are mathematical equations that have
been proposed by humans. The only exception that we are aware
of is the work presented in [14], where an implementation of ge-
netic programming was used to generate new scalarizing functions
which can be used in decomposition-based MOEAs.

In this work, we present a grammatical evolution (GE) based
implementation to automatically generate scalarizing functions as
well as some experimental work to validate the performance of said
functions in different benchmark MOPs. This paper extends the
preliminary work presented in [14] by Bernabé and Coello, where
epigenetic linear genetic programming (ELGP) was used to gener-
ate scalarizing functions. ELGP is a variant of genetic programming
(GP) with local search which was initially used to solve symbolic
regression problems [2]. However, in their implementation, they
combined ELGP with MOMBI-II (an indicator-based MOEA which
employs scalarizing functions) to create two new scalarizing func-
tions by solving one benchmark MOP at a time.

Our proposal in this work is to use a Python-based GE imple-
mentation (called PonyGE2) [6] instead of the C-based GP imple-
mentation used in [14], as the former is more flexible and allows to
use more complex fitness functions, combining two or more bench-
mark MOPs in the search process of the scalarizing functions. This
allows us to design functions combining a certain desired behavior
shown in our experiments.

The remainder of this paper is organized as follows. Section 2
provides some basic concepts on multiobjective optimization to
make the paper self-contained. In Section 3 we introduce GE as
well as the implementation used. Then, in Section 4 we present
the details of our implementation to generate scalarizing functions.
Next, in Section 5 we show the experimental setup used to evaluate
the performance of the scalarizing functions generated, and we
present the results obtained and their discussion in Section 6. Finally,
in Section 7 we provide our conclusions as well as some possible
paths for future research.

2 BASIC CONCEPTS
In multiobjective optimization, the aim is to solve problems of the
type1:

minimize ®𝑓 ( ®𝑥) := [𝑓1 ( ®𝑥), 𝑓2 ( ®𝑥), . . . , 𝑓𝑘 ( ®𝑥)] (1)
subject to:

𝑔𝑖 ( ®𝑥) ≤ 0 𝑖 = 1, 2, . . . ,𝑚 (2)
ℎ𝑖 ( ®𝑥) = 0 𝑖 = 1, 2, . . . , 𝑝 (3)

where ®𝑥 = [𝑥1, 𝑥2, . . . , 𝑥𝑛]𝑇 is the vector of decision variables, 𝑓𝑖 :
IR𝑛 → IR, 𝑖 = 1, ..., 𝑘 are the objective functions and 𝑔𝑖 , ℎ 𝑗 : IR𝑛 → IR,
𝑖 = 1, ...,𝑚, 𝑗 = 1, ..., 𝑝 are the constraint functions of the problem.

1Without loss of generality, we will assume only minimization problems.

A few additional definitions are required to introduce the notion
of optimality used in multiobjective optimization:

Definition 1. Given two vectors ®𝑥, ®𝑦 ∈ IR𝑘 , we say that ®𝑥 ≤ ®𝑦 if
𝑥𝑖 ≤ 𝑦𝑖 for 𝑖 = 1, ..., 𝑘 , and that ®𝑥 dominates ®𝑦 (denoted by ®𝑥 ≺ ®𝑦)
if ®𝑥 ≤ ®𝑦 and ®𝑥 ≠ ®𝑦.

Definition 2.We say that a vector of decision variables ®𝑥 ∈ X ⊂ IR𝑛
is nondominatedwith respect toX, if there does not exist another
®𝑥 ′ ∈ X such that ®𝑓 ( ®𝑥 ′) ≺ ®𝑓 ( ®𝑥).

Definition 3. We say that a vector of decision variables ®𝑥∗ ∈ F ⊂
IR𝑛 (F is the feasible region) is Pareto-optimal if it is nondomi-
nated with respect to F .

Definition 4. The Pareto Optimal Set P∗ is defined by:

P∗ = {®𝑥 ∈ F |®𝑥 is Pareto-optimal}

Definition 5. The Pareto Front PF ∗ is defined by:

PF ∗ = { ®𝑓 ( ®𝑥) ∈ IR𝑘 | ®𝑥 ∈ P∗}

Therefore, our aim is to obtain the Pareto optimal set from the set
F of all the decision variable vectors that satisfy (2) and (3). Note
however that in practice, not all the Pareto optimal set is normally
desirable or achievable, and decision makers tend to prefer certain
types of solutions or regions of the Pareto front [1]. Additionally, the
Pareto fronts may have different geometries such as linear, concave,
convex or combinations of them. Also, there are some degenerate
fronts, which are of a lower dimension than the objective space in
which they are embedded [9].

3 GRAMMATICAL EVOLUTION
Genetic Programming (GP) is an evolutionary computation tech-
nique used to automatically generate computer programs. Similar
to traditional evolutionary algorithms, in this case, there is a pop-
ulation of feasible solutions which are evaluated using a fitness
function to measure how well each individual performs at solving
a given problem. However, the main difference is that while tradi-
tional evolutionary algorithms encode a set of decision variables
(e.g., a vector of real numbers), the individuals used in GP encode
some sort of executable code [11].

On the other hand, Grammatical Evolution (GE) is a variant
of GP, in which the individuals are encoded using either a list of
integers or a binary list. In contrast, GP usually employs a tree
data structure to encode the individuals. In order to perform the
genotype-phenotype mapping, a Backus-Naur form (BNF) grammar
must be provided in the case of GE. This grammar determines the
nature of the solutions encoded by the individuals [12].

In order to implement GE, we used PonyGE2, which is a Python
implementation available in the public domain [6]. PonyGE2 is a
GE implementation that allows the user to solve a wide variety of
problems such as regression, classification and even multi-objective
optimization. However, we added some elements to generate scalar-
izing functions by combining it with a MOEA as described in the
following section. In all the experiments presented in this work,
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our GE used position independent grow to initialize the popula-
tion, tournament selection of size 2, variable one point crossover
(probability of 0.75) and codon mutation (probability of one over
the length of the genome).2.

4 OUR PROPOSAL
We used two main components to generate scalarizing functions.
First, we adopted PonyGE2 which, given the appropriate BNF gram-
mar, is able to generate the individuals encoding the functions and
iteratively combine them using genetic operators to find a good
performing function. However, we need another component to
measure how well these generated functions work as scalarizing
functions. Hence, the second component used is a modified MOEA
which is able to use the generated scalarizing functions to solve a
MOP. Then, we measure the quality of the solutions obtained using
the hypervolume indicator [18], and we use this value to assign
the fitness of the individuals. The reference point used for the hy-
pervolume is fixed for each MOP, since the true Pareto fronts are
already known. This is done in order to correctly compare different
scalarizing functions.

We used MOMBI-II [7], a metaheuristic based on the 𝑅2 per-
formance indicator, but that uses scalarizing functions. It can be
used with several scalarizing functions such as the Achievement
Scalarizing Functions (ASF), the Tchebycheff Scalarizing Function
and the Penalty-based Boundary Intersection (PBI), among others.
Given a decision vector ®𝑥 ∈ IR𝑚 and a reference point ®𝑧 ∈ IR𝑚 ,
we use the image of ®𝑥 in objective space modified by ®𝑧 as follows:
®𝑓 ′ := ®𝐹 ( ®𝑥) − ®𝑧. Then, given a weight vector ®𝑤 ∈ IR𝑚 we can define
ASF:

𝐴𝑆𝐹 ( ®𝑓 ′, ®𝑤) := max
𝑖

(
𝑓 ′
𝑖

𝑤𝑖

)
(4)

This is the function used by default in MOMBI-II, and is also
the scalarizing function adopted for our comparisons in all our
experiments.

4.1 Fitness function
In order to measure the fitness of a given scalarizing function, we
perform the following steps:

(1) We decode the genotype to obtain the final phenotype
which can be interpreted by MOMBI-II.

(2) The scalarizing function previously used in MOMBI-II is
replaced with the new decoded phenotype obtained.

(3) The modified version of MOMBI-II is used to solve a MOP
with a relatively low number of function evaluations (10,000
in the experiments presented here). This corresponds to
the number of times the objective vector is computed in
MOMBI-II. The purpose of using “few” function evalua-
tions is to avoid spending resources in scalarizing functions
which may have a really low performance. Then, the hyper-
volume values of the resulting Pareto fronts are obtained
and averaged. If they are smaller than a given threshold, the

2The source code of our implementation is available at https://github.com/amin-vanya/
PonyGE2_EMO

final fitness of the individual is the same as the average hy-
pervolume obtained. If they are greater than the threshold,
the next step is performed.

(4) The same modified version of MOMBI-II is used to solve ei-
ther one or several MOPs with a greater number of function
evaluations (100,000 in the experiments presented here).
Then, the hypervolume values of the resulting Pareto fronts
are obtained, averaged, and assigned as the final individ-
ual’s fitness.

The MOPs used to validate the scalarizing functions’ perfor-
mance belong to the Deb-Thiele-Zitzler (DTLZ) [5] and Walking-
Fish-Group (WFG) [9] test suites. We adopted these MOPs since
they present a variety of MOPs with different geometries and char-
acteristics. Additionally, the true Pareto fronts of these MOPs are
known, which allows us to obtain the maximum hypervolume given
a reference point and set the threshold used in step (3).

4.2 Grammar
For simplicity sake, in the grammar used to generate the scalarizing
functions we replaced the image of the decision vector previously
denoted by 𝑓

′
𝑖
with variable 𝑥 , and weight vector𝑤𝑖 with variable

𝑦. The complete grammar used is the following.
⟨e⟩ ::= max{⟨f ⟩}+⟨g⟩ | max{⟨f ⟩}+0.⟨c⟩⟨c⟩*⟨g⟩ |

| max{⟨f ⟩}-⟨g⟩ | max{⟨f ⟩}-0.⟨c⟩⟨c⟩*⟨g⟩ |
| max{⟨f ⟩}*⟨g⟩ | max{⟨f ⟩}*0.⟨c⟩⟨c⟩*⟨g⟩ |
| max{⟨f ⟩}/⟨g⟩ | max{⟨f ⟩}/0.⟨c⟩⟨c⟩*⟨g⟩ |
| max{⟨f ⟩}

⟨f ⟩ ::= ⟨optional_var⟩+⟨f ⟩ | ⟨f ⟩+⟨f ⟩ |
| ⟨optional_var⟩-⟨f ⟩ | ⟨f ⟩-⟨optional_var⟩ | ⟨f ⟩-⟨f ⟩ |
| ⟨optional_var⟩*⟨f ⟩ | ⟨f ⟩*⟨f ⟩ |
| ⟨optional_var⟩/⟨f ⟩ | ⟨f ⟩/⟨optional_var⟩ | ⟨f ⟩/⟨f ⟩ |
| sqrt(⟨f ⟩) |
| ⟨needed_var⟩

⟨g⟩ ::= ⟨g⟩+⟨g⟩ | ⟨g⟩-⟨g⟩ | ⟨g⟩*⟨g⟩ | ⟨g⟩/⟨g⟩ | sqrt(⟨g⟩) |
| ⟨optional_var⟩

⟨needed_var⟩ ::= x | y | x/y

⟨optional_var⟩ ::= x_sum | x_avg | x_max | x_min |
| ⟨c⟩⟨c⟩.⟨c⟩⟨c⟩ | 0.⟨c⟩⟨c⟩

⟨c⟩ ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

The main derivation rule < 𝑒 > can be formed by two elements:

• A max operator is applied to obtain the maximum value of
a given expression generated using derivation rule < 𝑓 >.
This rule is used to guarantee that the expression contains
at least one of the required variables 𝑥 and 𝑦.

• An additional term which modifies the resulting maximum
value. This is created using derivation rule < 𝑔 >.

In addition to the required variables 𝑥 and 𝑦, we used some
additional optional variables which measure the sum of all 𝑥𝑖 , as
well as its average and maximum and minimum values.

https://github.com/amin-vanya/PonyGE2_EMO
https://github.com/amin-vanya/PonyGE2_EMO
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5 EXPERIMENTALWORK
We used our proposed implementation to perform a series of ex-
periments using different MOPs in the fitness function. First, we
performed executions using only one MOP at a time. Then, using
the information obtained from these results, we performed a second
round of experiments adopting two MOPs instead of just one at a
time.

5.1 Single MOP experiments
Given a MOP, we considered three different configurations using
said MOP with 2, 3 and 5 objectives. This was done to try to avoid
the overspecification of the scalarizing functions by considering
different instances of the sameMOP. However, there is no particular
reason as to why 3 and 5 objectives were specifically chosen other
than the increase in the number of objectives. We used each of the
DTLZ(1-7) and WFG(1-9) benchmark MOPs, which results in 16
different setups. In each case, we set the number of generations to 75,
the population size to 20, and the threshold to 15% of the maximum
hypervolume. We performed two independent executions for each
experimental setup, and we evaluated the performance of the 3 best
performing scalarizing functions of each run, obtaining 6 different
functions for each setup.

5.2 Combined MOPs experiments
The single MOPs experiments previously mentioned were used to
measure how well each individual MOP used in the setup could
generalize in solving all the benchmark tests. Using this information,
which is discussed in the next section, we chose to perform further
experiments combining two promisingMOPs in the same execution.
The pair of MOPs used were DTLZ3 with DTLZ4 and DTLZ7 with
WFG1. In each of these cases, we also used 2, 3 and 5 objectives
for each MOP, producing 6 instances to be solved in the fitness
function. Additionaly, we increased the number of generations
to 100, in an attempt of exploring more functions since now we
are solving two MOPs instead of just one, but the population size
(20) and threshold (15%) remained the same. We performed three
independent executions using these two setups and we evaluated
the performance of the three best resulting functions for each setup.

6 RESULTS
To assess the performance of the generated scalarizing functions
we adopted once again modified versions of MOMBI-II using the
new functions and we compared them against MOMBI-II using ASF,
which is the default setup. The MOPs solved were 16 benchmark
problems (DTLZ1-7 and WFG1-9), considering 2, 3, 4, 5, 6 and 7 ob-
jectives, creating a total of 96 instances. It is important to emphasize
that during the generation of the scalarizing functions only one or
two MOPs were adopted, and we are evaluating against the whole
benchmark to verify their capability to generalize. We performed
30 independent runs per test instance for each scalarizing function.
The obtained results were compared using the average hypervol-
ume values and the Wilcoxon rank-sum test with a significance
level of 5%.

6.1 Single MOP results
In Tables 1 to 4 we show the results obtained with each of the 16
benchmark MOPs separated by their geometry. In each of these
Tables we show the training MOP used and each of the scalarizing
functions generated, as well as the comparison of hypervolume
values with respect to the use of ASF. The columns “+”, “-” and “∼”
present the number of MOPs where the new function outperformed
ASF, got worse values than ASF or had a similar performance to
ASF according to the Wilcoxon rank-sum test respectively.

For each MOP we present the comparison of 6 different scalar-
izing functions produced by 2 independent executions of our im-
plementation. The best 3 functions found in the first execution are
shown in the first three rows of the corresponding MOP, whereas
the best 3 functions found in the second execution are shown in the
next three rows. Thus, the first three scalarizing functions tend to
share similarities in the function phenotype (for instance, functions
SF_DTLZ1A and SF_DTLZ1B in Table 1 are different in only one
digit), in the same way that the next three functions share some
terms. However, this does not always reflect a similar tendency in
the hypervolume comparison, since the change of a single term can
have a significant impact in the performance of the function solving
the benchmark MOPs used (for instance, functions SF_DTLZ2B and
SF_DTLZ2C in Table 4 are also different in only one digit, but have
a rather different performance).

Most of the functions obtained with linear MOPs such as DTLZ1
and WFG3 have a really poor performance, since the number of
MOPs in which the results improve is much smaller than the num-
ber of MOPs in which the results worsens. From this set, the best
performing function is SF_DTLZ1F, which improves 37 instances
but obtains worse values in 20 instances.

There is only one fully convex MOP in both benchmarks, and it
is WFG2. The functions generated with it don’t show a much better
performance, with the exception of SF_WFG2A, which improves
35 MOPs and only obtains worse values in 10.

Regarding mixed MOPs (which are MOPs in which the geometry
of their Pareto fronts contain both convex and concave portions)
we observe a really bad performance, since not a single resulting
function is able to improve more MOPs than the ones in which it
worsens.

The concave MOPs are the most frequently represented in both
benchmarks and we can observe a more diverse behavior in the
resulting functions. For instance, the function DF_DTLZ4A has a
really good performance, being able to improve 40 instances and
only worsening 2. On the other hand, two other functions generated
with DTLZ4 (SF_DTLZ4B and SF_DTLZ4C) as well as SF_WFG5E
have a performance identical to ASF, since all 96 instances have
similar values.

Additionally, we performed a further analysis to know howmany
MOPs were being improved by each function with respect to the
geometry of the benchmark MOPs. This was done by dividing the
96 test instances using the same classification of linear, convex,
mixed and concave MOPs.

We averaged the values obtained with the scalarizing functions
produced by each of the training MOPs. These results are shown
using a percentage value, because there are different quantities of
each geometry in the benchmark sets. Namely, there are 12 linear



Designing Scalarizing Functions Using G.E.

Table 1: Scalarizing functions generated using linear bench-
mark MOPs (DTLZ1 and WFG3).

Training Scalarizing f(x,y) HV comparison
MOP function + - ∼

DTLZ1

SF_DTLZ1A max{x/y}+57.76-x_max 22 33 41
SF_DTLZ1B max{x/y}+57.73-x_max 20 34 42
SF_DTLZ1C max{x/y/x_sum}+x_avg*x_avg 6 80 10
SF_DTLZ1D max{sqrt(x/y)+x_avg}+x_sum 6 85 5
SF_DTLZ1E max{x/y}+sqrt(x_sum) 8 59 29
SF_DTLZ1F max{x/y}+0.58*(x_avg) 37 20 39

WFG3

SF_WFG3A max{sqrt(x/y)}+0.67*(x_sum*x_sum*x_max 0 96 0+sqrt(x_sum*x_max))

SF_WFG3B max{sqrt(x/y)}+0.67*(x_sum*x_sum*x_max 0 96 0+sqrt(x_max))
SF_WFG3C max{x/y}*x_sum 2 86 8
SF_WFG3D max{x/y*sqrt(y)-y}+0.98*(x_sum) 5 86 5
SF_WFG3E max{x/y*sqrt(y)-y}+0.94*(x_sum) 5 86 5
SF_WFG3F max{x/y*sqrt(y)-y}+x_sum 5 86 5

Table 2: Scalarizing functions generated using a convex
benchmark MOP (WFG2).

Training Scalarizing f(x,y) HV comparison
MOP function + - ∼

WFG2

SF_WFG2A max{x/y}*x_avg/x_sum-x_avg*x_sum+x_avg 14 76 6
SF_WFG2B max{x/y}+0.13*(x_max) 5 7 84
SF_WFG2C max{x/y}+x_sum 6 77 13
SF_WFG2D max{x/y}+0.67*(x_avg) 39 20 37
SF_WFG2E max{sqrt(x/y)}*63.13-x_avg 1 26 69
SF_WFG2F max{x/y}+0.66*(x_avg) 38 20 38

Table 3: Scalarizing functions generated using mixed bench-
mark MOPs (DTLZ7 and WFG1).

Training Scalarizing f(x,y) HV comparison
MOP function + - ∼

DTLZ7

SF_DTLZ7A max{x/y-y-y+x/y}+x_sum 14 71 11
SF_DTLZ7B max{x/y-y+x/y}+x_sum 14 68 14
SF_DTLZ7C max{x/y-y+sqrt(sqrt(x_max))}+x_avg 17 58 21
SF_DTLZ7D max{x/y-x+x/y}+x_sum 12 73 11
SF_DTLZ7E max{x/y-x_max*x+x/y}+x_sum 10 74 12
SF_DTLZ7F max{x/y-y}+x_sum*sqrt(x_avg/x_sum) 14 68 14

WFG1

SF_WFG1A max{x/y-y/x_avg}+0.19*(x_avg) 5 87 4
SF_WFG1B max{20.99-y*x/y+x/y}+x_avg 12 74 10
SF_WFG1C max{x/y}+sqrt(x_sum/x_max) 18 69 9

SF_WFG1D max{x/y/y}+0.53*(sqrt(x_max)-x_sum 22 70 4*x_max*sqrt(x_avg)-x_max*x_sum)
SF_WFG1E max{x/y/y}+0.05*(x_avg/x_sum/x_max-x_max) 15 78 3

SF_WFG1F max{x/y/y}+0.30*(x_avg/80.06-x_max-x_avg 14 79 3-x_max)

instances (DTLZ1, WFG3), 6 convex instances (WFG2), 12 mixed
instances (DTLZ7,WFG1) and 66 concave instances (DTLZ2-DTLZ6,
WFG4-WFG9), since each MOP is solved using 2-7 objectives.

In Table 5 we present the average percentage of MOPs improved
by the functions generated with each training MOP. We used a
gradient color to show the number of MOPs improved, the more
green a cell is, the greater improvement it represents. Similarly, in
Table 6 we show the average percentage of MOPs worsened by the
functions. However, in this case, the more red a cell is, the greater
number of MOPs worsened it represents.

From these two tables we can observe that no single MOP is able
to generate scalarizing functions which improve more than half of
the MOPs according to the geometry classification used (the best
improvements range from 44 to 47%). On the other hand, worsened
problems do get high values, since some MOPs generated really bad

Table 4: Scalarizing functions generated using concave bench-
mark MOPs (DTLZ2-7, WFG4-9).

Training Scalarizing f(x,y) HV comparison
MOP function + - ∼

DTLZ2

SF_DTLZ2A max{x/y}+0.04*(x_sum) 35 10 51
SF_DTLZ2B max{x/y}+0.04*(sqrt(x_sum)) 27 11 58
SF_DTLZ2C max{x/y}+0.84*(sqrt(x_sum)) 13 51 32
SF_DTLZ2D max{34.44*x/y}+x_sum*x_sum 5 80 11
SF_DTLZ2E max{23.24*x/y}+x_max*x_sum 15 67 14
SF_DTLZ2F max{53.23*x/y}+x_sum 15 54 27

DTLZ3

SF_DTLZ3A max{x/y}+0.03*(x_sum) 29 8 59
SF_DTLZ3B max{x/y}+0.07*(sqrt(x_sum)*sqrt(x_avg)) 31 9 56
SF_DTLZ3C max{x/y}+0.07*(sqrt(x_avg)) 26 10 60
SF_DTLZ3D max{x+x/y*24.64}+x_sum-x_avg 36 6 54
SF_DTLZ3E max{x/y*92.46}+x_sum 27 7 62
SF_DTLZ3F max{x/y*24.92}+x_avg 24 7 65

DTLZ4

SF_DTLZ4A max{x/y-x_sum}+x_sum 40 2 54
SF_DTLZ4B max{x/y}*x_sum/x_avg 0 0 96
SF_DTLZ4C max{x/y}+x_sum/x_avg 0 0 96
SF_DTLZ4D max{x/y+x}+0.12*(x_avg*x_max) 55 21 20
SF_DTLZ4E max{x/y+x}+0.02*(x_sum) 55 19 22
SF_DTLZ4F max{x/y+x}+0.22*(x_sum) 53 27 16

DTLZ5

SF_DTLZ5A max{x/y}+0.21*(x_max+x_avg) 32 17 47
SF_DTLZ5B max{x*y}+0.88*(x_sum/x_avg) 17 59 20
SF_DTLZ5C max{y*x}+0.06*(x_sum*x_sum/13.53) 15 69 12
SF_DTLZ5D max{y*x}+0.05*(x_sum*x_sum/13.53) 18 67 11
SF_DTLZ5E max{y+x}+0.76*(x_sum*x_avg/13.63) 13 73 10
SF_DTLZ5F max{y+y*x-y}+0.01*(x_sum*x_max) 17 69 10

DTLZ6

SF_DTLZ6A max{x*x/y}+x_sum*x_max 35 52 9
SF_DTLZ6B max{x*x/y}+x_sum*x_avg 41 51 4
SF_DTLZ6C max{x/y+05.97*x-x_max}+sqrt(x_avg) 26 63 7
SF_DTLZ6D max{x+y}+0.04*(x_sum) 10 76 10
SF_DTLZ6E max{x+y}+0.04*(x_sum*x_max) 11 77 8
SF_DTLZ6F max{x+y}+0.54*(x_avg/x_sum) 12 76 8

WFG4

SF_WFG4A max{x/y*11.03}+x_sum+71.03 36 15 45
SF_WFG4B max{x/y*16.72}+x_max 2 5 89
SF_WFG4C max{x/y*x/y}+x_max 10 12 74
SF_WFG4D max{x/y}+x_sum/02.81*x_sum-x_sum*x_avg 24 43 29
SF_WFG4E max{x/y}+0.29*(x_avg) 34 18 44
SF_WFG4F max{x/y}+0.35*(x_sum) 12 46 38

WFG5

SF_WFG5A max{x_max-x_max+x/y-sqrt(x)}+x_max 15 67 14
SF_WFG5B max{x_max+x/y-x}+0.44*(74.97) 11 72 13
SF_WFG5C max{x_max+x/y-x}+x_avg 14 70 12
SF_WFG5D max{x/y+44.77-x_sum-y}+x_sum 16 65 15
SF_WFG5E max{x/y}+sqrt(41.14) 0 0 96
SF_WFG5F max{x/y}+sqrt(x_avg) 29 24 43

WFG6

SF_WFG6A max{x/y-y*x*x_avg}+0.43 29 37 30*(x_sum-sqrt(x_avg)/x_max)
SF_WFG6B max{x/y-y*x*y}+0.43*(x_max) 15 54 27

SF_WFG6C max{x/y}+0.82*(x_max+sqrt(x_max 44 35 17*x_sum*x_max))

SF_WFG6D max{x/y-y}+0.03*(x_avg*sqrt( 19 59 18sqrt(x_avg*x_sum))+sqrt(sqrt(67.19))*x_avg)
SF_WFG6E max{x/y-y}+0.03*(x_avg*x_sum) 17 60 19
SF_WFG6F max{x/y-y}+0.04*(x_avg) 17 64 15

WFG7

SF_WFG7A max{x/y}+x_max/sqrt(x_max+x_avg)/x_sum 44 32 20+x_sum*x_max

SF_WFG7B max{x/y}+sqrt(sqrt(x_max+x_avg) 44 6 46/x_sum+x_sum)/x_max*x_max

SF_WFG7C max{x/y}*sqrt(sqrt(x_max+x_avg)/x_sum 37 18 41+x_sum)/x_max*x_max

SF_WFG7D max{x/y*x/y-x/y}+0.88*(sqrt(sqrt(sqrt( 23 54 19sqrt(x_avg))))-x_max*x_max+sqrt(x_sum))

SF_WFG7E max{x/y*x/y-x/y}+0.84*(sqrt(sqrt(sqrt( 11 55 30sqrt(x_sum))))/x_max)

SF_WFG7F max{x/y*x/y-x/y}+0.84*(sqrt(sqrt(sqrt( 9 49 38sqrt(x_sum))))-x_max)

WFG8

SF_WFG8A max{x_sum*sqrt(x/y)/x_max+03.05*x/y}+69.03 19 65 12-x_avg

SF_WFG8B max{x_sum*sqrt(x/y)/x_max+05.65*x/y} 33 42 21+x_max
SF_WFG8C max{x/y/x_avg}+0.96*(x_max*x_max) 11 78 7
SF_WFG8D max{x/y-sqrt(x/y)}+72.28-sqrt(x_max) 2 67 27
SF_WFG8E max{x/y-x_avg}+0.82*(x_sum) 9 71 16
SF_WFG8F max{x/y-x_avg}+0.22*(sqrt(72.21-sqrt(x_max))) 6 69 21

WFG9

SF_WFG9A max{x/y-y}+0.27*(sqrt(x_avg)) 18 51 27
SF_WFG9B max{x/y-y}*04.90+sqrt(x_sum) 18 53 25
SF_WFG9C max{x/y}+0.34*(x_sum) 15 48 33
SF_WFG9D max{x/y}+0.42*(sqrt(x_max*x_avg)) 36 19 41
SF_WFG9E max{x/y}+0.42*(sqrt(x_sum)) 34 20 42
SF_WFG9F max{x/y}+0.40*(sqrt(x_sum)) 34 20 42
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Table 5: Average percentage of MOPs improved by geometry
using single MOP functions

Training Average MOPs improved (%)
MOP Geometry Linear Convex Mixed Concave
DTLZ1 25.00 19.45 13.89 16.16
WFG3 Linear 6.95 0.00 0.00 3.03
WFG2 Convex 13.89 22.22 19.45 17.93
DTLZ7 44.45 33.34 30.56 3.79
WFG1 Mixed 40.28 47.22 27.78 5.05
DTLZ2 4.17 8.33 27.78 21.21
DTLZ3 0.00 8.34 47.23 34.34
DTLZ4 11.12 11.11 12.50 45.96
DTLZ5 20.00 16.67 30.00 18.18
DTLZ6 1.39 0.00 4.17 33.08
WFG4 1.39 13.89 27.78 23.23
WFG5 30.56 30.56 30.56 7.58
WFG6 34.73 30.55 43.06 18.69
WFG7 13.89 5.56 20.84 35.61
WFG8 31.95 16.67 9.73 11.12
WFG9

Concave

18.06 30.56 36.11 26.52

Table 6: Average percentage of MOPs worsened by geometry
using single MOPs functions

Training Average MOPs worsened (%)
MOP Geometry Linear Convex Mixed Concave
DTLZ1 27.78 47.22 54.17 59.34
WFG3 Linear 79.17 91.67 94.45 95.45
WFG2 Convex 20.84 41.67 31.95 43.69
DTLZ7 38.89 33.33 38.89 86.87
WFG1 Mixed 54.17 44.45 52.78 91.92
DTLZ2 26.39 63.89 29.17 53.03
DTLZ3 4.17 36.11 0.00 7.83
DTLZ4 33.34 36.11 22.23 4.04
DTLZ5 53.33 56.67 45.00 63.33
DTLZ6 90.28 91.67 95.84 57.58
WFG4 15.28 47.22 9.73 26.26
WFG5 33.34 36.11 20.84 62.12
WFG6 44.45 55.56 29.17 59.60
WFG7 51.39 63.89 37.50 32.07
WFG8 33.34 69.44 59.72 75.76
WFG9

Concave

20.84 52.78 15.28 41.92

scalarizing functions which worsen almost all test instances. For
instance, functions generated with DTLZ6 and WFG3 have little to
no improvement in most cases, while having a really high number
of MOPs worsened. This is an indication that these MOPs tend
to generate overspecified scalarizing functions. Hence, if we are
looking for scalarizing functions that generalize a good performance
in other MOPs, we are interested in functions with a relatively good
amount of MOPs improved while having a low amount of MOPs
worsened. For example, altough WFG3 (a linear MOP) has a poor
performance, DTLZ1 (the other linearMOP in the benchmarks used)

generated functions which have a better performance (specially in
linear MOPs, which is intuitively expected), and a smaller number
of MOPs worsened overall.

Regarding WFG2, the functions generated have a similar im-
provement across all geometries, having the best improvement
in the corresponding geometry of WFG2 (convex). However, the
amount of problems worsened is always greater than the amount
of problems improved, which is an expected behavior since WFG2
is the only fully convex problem in the whole benchmark.

Functions generated with mixed MOPs (both DTLZ7 and WFG1)
are the ones which have the largest number of linear and convex
MOPs improved, while improving also some of the mixed MOPs.
However, they have some of the worst number of concave MOPs
worsened, which may indicate that the functions that improve
the linear, convex and mixed geometries tend to perform badly in
concave MOPs.

Finally, once again, there are different behaviors in the functions
generated with concave MOPs. On the one hand, DTLZ4 is the
MOP which produced the functions that have the largest concave
MOPs improvement, and it has a low improvement in linear, convex
and mixed MOPs. Its counterpart could be the functions generated
with WFG5, which have one of the lowest improvement in concave
MOPs but have a decent improvement in linear, convex and mixed
MOPs.

6.2 Combined MOPs results
Using the information from single MOP results, we decided to per-
form more experiments combining functions. First, we combined
DTLZ3 and DTLZ4, since they are two MOPs which generated
some of the best results in concave MOPs. Functions generated
with WFG7 actually have the second best concave results, however,
the number of MOPs worsened in all geometries is larger than those
of DTLZ3. The goal of this experiment is to find a function that
has a good performance in concave MOPs. Additionally, we com-
bined DTLZ7 and WFG1, since they are the MOPs that generated
the functions which have the best improvements across all three
remaining geometries (linear, convex and mixed). Consequently,
the goal of this experiment is to find a function that has a good
performance in these MOPs.

The three resulting functions from combining DTLZ3 and DTLZ4
are SF_D3D4A-C, and the three resulting functions from combining
DTLZ7 and WFG1 are SF_D7W1A-C. These are shown in Table 7,
along with the number of MOPs improved (+), worsened (-) and
similar (∼) comparing against ASF. Here, we can observe that all
three functions generated with DTLZ3 and DTLZ4 improve more
test instances than the amount of instances worsened. While the ex-
act opposite occurs with all three functions generated with DTLZ7
and WFG1. This is due to the fact that the benchmark MOPs used
are mostly concave MOPs (such as DTLZ3 and DTLZ4).

This is backed up by the percentage of MOPs improved by each
function according to the MOPs geometry shown in Table 8, and
the percentage of MOPs worsened shown in Table 9.

From these results we can observe that, from the functions gen-
erated using DTLZ3 and DTLZ4, SF_D3D4A has the greatest im-
provement in concave MOPs, at the expense of worsening almost
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Table 7: Scalarizing functions generated using combination
of DTLZ3 with DTLZ4 and DTLZ7 with WFG1.

Scalarizing f(x,y) HV comparison
function + - ∼

SF_D3D4A max{x/y+x}+0.06*x_avg 49 22 25
SF_D3D4B max{x/y+x/y}+0.19*x_avg 30 5 61
SF_D3D4C max{x/y+x/y}+x_avg/92.83 13 2 81
SF_D7W1A max{x/y-x}-0.13*x_avg*x_max 34 57 5
SF_D7W1B max{x/y-x}-0.13*x_sum 28 55 13
SF_D7W1C max{x/y-x}+89.95-sqrt(x_max)/x_max 15 71 10

Table 8: Percentage of MOPs improved by geometry using
combined MOPs functions.

Scalarizing Training MOPs improved (%)
function Geometry Linear Convex Mixed Concave

SF_D3D4A 8.34 0.00 8.34 71.21
SF_D3D4B 0.00 16.67 41.67 36.36
SF_D3D4C

Concave
0.00 0.00 33.34 13.64

SF_D7W1A 50.00 83.33 50.00 25.76
SF_D7W1B 50.00 50.00 58.33 18.18
SF_D7W1C

Mixed
33.34 50.00 41.67 4.55

Table 9: Percentage of MOPs worsened by geometry using
combined MOPs functions.

Scalarizing Training MOPs worsened (%)
function Geometry Linear Convex Mixed Concave

SF_D3D4A 67.00 83.00 42.00 6.00
SF_D3D4B 0.00 17.00 0.00 6.00
SF_D3D4C

Concave
0.00 0.00 0.00 3.00

SF_D7W1A 50.00 17.00 17.00 73.00
SF_D7W1B 33.00 0.00 25.00 73.00
SF_D7W1C

Mixed
67.00 50.00 25.00 86.00

all convex instances, and a lot of linear and mixed MOPs. Inter-
estingly, SF_D3D4B, which is the function with the second best
improvement in concave MOPs, has a relatively low worsening in
all geometries while still having a decent improvement in mixed
MOPs. This may be due to the fact that functions generated with
DTLZ3 have the highest improvement of mixed MOPs in Table 5,
which is also interesting since DTLZ3 is a degenerate MOP and
this property could be playing a role in the amount of problems
improved. The last function generated with DTLZ3 and DTLZ4,
SF_D3D4C, has a very similar behavior as SF_D3D4B, but with
lower improvement and worsening values.

Regarding the functions generated using DTLZ7 and WFG1, we
can notice that SF_D7W1A is the onewith the greatest improvement
values in linear, convex and mixed MOPs. And it even improves
25% of the concave MOPs. However, it worsens half of the linear
instances. All three functions generated in these experiments have
a similar behavior in improving linear, convex and mixed MOPs
at the expense of worsening a lot (73-86%) of the concave MOPs.
It is interesting to notice that two of the three resulting functions
generated using this combination improve more concave MOPs

than the average improvement shown by DTLZ7 and WFG1 on
their own in Table 5.

Finally, we show the average execution time of the experiments
using our implementation in Figure 1. The hardware used to exe-
cute these experiments consists of an Intel Core i7-8700 CPU, (6
cores, 3.20 GHz) with 16 GB of RAM. The differences in execution
time correspond to the cost of solving each MOP during the GE
fitness function. Hence, the relatively easy MOPs such as DTLZ1
has one of the smallest execution times while WFG1, which is more
time-consuming has the worst execution time in single MOP exper-
iments. Also, the amount of functions that get through step 3 of the
fitness function into step 4 has a great impact in the execution time,
since step 4 involves the solution of the training MOP with a large
number of function evaluations. As can be seen, all the execution
times shown are relatively high, ranging from 3.8 hrs up to 13.3
hrs in the worst case, without using any sort of parallelisation or
multithreading optimisation. However, it must be noted that it is
not our intention to generate a custom scalarizing function in order
to solve a given MOP, but rather to find scalarizing functions which
can outperform other commonly used functions in at least some
types of MOPs.
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Figure 1: Average execution times of single and combined
MOPs experiments.

7 CONCLUSIONS AND FUTUREWORK
In this work, we have presented an implementation that allows the
generation of scalarizing functions given one or several MOPs.

In the first round of experiments presented, the experimental
validation shows mixed results, since some functions are able to
improve some instances compared to ASF, but at the expense of
worsening several other instances. However, we have shown a brief
analysis of the behavior of these scalarizing functions, considering
the geometries of the MOPs adopted to validate their performance.
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Using this information, we have designed a second round of ex-
periments using our implementation, but this time, combining two
MOPs that exhibit an average improvement in certain geometries.
The corresponding results, along with their geometries analysis
show that these scalarizing functions exhibit a consistent behavior
with our previous experiments. Meaning that the use of DTLZ3
and DTLZ4 (which had good improvements in concave MOPs) in
the GE search process created a scalarizing function with an even
greater improvement in concave MOPs. Whereas the use of DTLZ7
and WFG1 (which had good improvements in linear, convex and/or
mixed MOPs) produced functions with a decent performance in all
three geometries. Hence, we could identify which MOPs allow the
generation of better functions to solve a certain type of MOPs.

Another expected behavior that we could observe in most of
our results is that when the best results are obtained in a given
geometry (or set of geometries, such as linear, convex and mixed),
the worst results will obtained in the remaining cases. This makes
sense, since the better a function solves a particular type of MOP,
the more specific the scalarizing function is and, therefore, it will
perform the worse in MOPs that are different to the one being
successfully solved. Hence, we can conclude that the combination
of two MOPs with similar characteristics (such as geometry of
the Pareto front) in our proposed implementation allows us to
find scalarizing functions with a better performance in the MOPs
with said characteristics, at the expense of potentially worsening
MOPs with different characteristics. Thus, there is a trade off in
the MOPs improved/worsened with the resulting functions, but
we should still be able to generate different functions which work
well for each of the geometries present in the benchmark tests.
This could be particularly useful since, even though we may not
know the geometry of a given MOP in a real-world application, we
could use an ensemble of scalarizing functions which work well in
different geometries, and develop a decomposition-based MOEA
which alternates the scalarizing function used according to the
performance of each of them in solving the given MOP.

Some of the future work derived from the results we have pre-
sented here include a deeper analysis of the behavior of the gener-
ated functions, as well as more experiments considering different
or additional combinations of the MOPs used. Another aspect that
may be worth exploring is to change the indicator used to evaluate
the performance of the scalarizing functions in the fitness function
of our GE. We adopted hypervolume since it assesses both conver-
gence and maximum spread of the Pareto front. However, we could
employ a different performance indicator in order to specifically
improve, for example, diversity in the solutions. Also, a different
set of MOPs could be used, such as inverse DTLZ MOPs [10], since
regular DTLZ and WFG are composed by concave MOPs in their
majority, and other geometries are underrepresented, causing some
differences in the amount of experimental validation done for each
geometry.
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