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Abstract. This paper introduces a novel Parallel Multi-Objective Evo-
lutionary Algorithm (pMOEA) which is based on the island model. The
serial algorithm on which this approach is based uses the differential
evolution operators as its search engine, and includes two mechanisms
for improving its convergence properties (through local dominance and
environmental selection based on scalar functions). Two different para-
llel approaches are presented. The first aims at improving effectiveness
(i.e., for better approximating the Pareto front) while the second aims to
provide a better efficiency (i.e., by reducing the execution time through
the use of small population sizes in each sub-population). To assess the
performance of the proposed algorithms, we adopt a set of standard test
functions and performance measures taken from the specialized litera-
ture. Results are compared with respect to its serial counterpart and
with respect to three algorithms representative of the state-of-the-art in
the area: NSGA-II, MOEA/D and MOEA/D-DE.

1 Introduction

Multi-objective evolutionary algorithms (MOEAs) have been found to be very
suitable for solving a wide variety of engineering optimization problems, because
of their generality, their ease of use and their relatively low susceptibility to the
specific features of the search space of the problem to be solved [1]. Nonetheless,
they are normally computationally expensive due to several reasons: (1) real-
world optimization problems typically involve high-dimensional search spaces
and/or a large number of objective functions, (2) they require finding a set of
solutions instead of only one, often requiring, in consequence, large population
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sizes, and (3) frequently, the task of evaluating the objective functions demands
high computational costs (e.g., complex computer simulations are required). All
these factors decrease the utility of serial MOEAs for its use in real-world engi-
neering Multi-objective Optimization Problems (MOPs). In order to reduce the
execution time required to solve these problems two main types of approaches
have been normally adopted3: (1) Enhance the MOEA’s design, namely improv-
ing its convergence properties, so that the number of objective function evalua-
tions can be reduced, and, (2) Use of parallel programming techniques, i.e., to
adopt a parallel or distributed MOEA.

Based on the above, the major aim of the present work is to develop two dif-
ferent schemes for improving the performance of a pMOEA. The first is designed
for improving effectiveness (i.e., for better approximating the Pareto front), while
the second is designed for improving efficiency (i.e., for reducing the execution
time by using small population sizes in each sub-population). Either approach (or
both) can be of interest in solving real-world enginering MOPs. The two proposed
schemes are based on the island paradigm, and use the multi-objective differen-
tial evolution algorithm MODE-LD+SS [2] as its search engine. The proposed
schemes are evaluated using standard test functions and performance measures
taken from the specialized literature. The results obtained by the two proposed
pMOEAs are compared with respect to their serial counterpart and with respect
to the NSGA-II [3], MOEA/D [4], and MOEA/D-DE [5].

The remainder of the paper is organized as follows. In Section 2, the most
relevant previous related work on island-based pMOEAs is presented. Section 3
is devoted to describe the proposed approach. Then, the experimental setup
is presented in Section 4. In Section 5 the obtained results are presented and
discussed. Finally, in Section 6 our conclusions and the corresponding future
work is highlighted.

2 Previous related work

A pMOEA can be useful to solve problems faster, but also for generating novel
and more efficient search schemes, i.e., a pMOEA can be more effective than
its sequential counterpart, even when executed in a single processor [6]. From
the specialized literature, four major pMOEA paradigms are commonly used
[7]: (i) “Master-Slave,” (ii) “Island,” (iii) “Diffusion,” and (iv) “hierarchical” or
“hybrid”. A comprehensive review of these paradigms can be found in [1, 7]. This
paper focuses on the Island Model, which is based on the phenomenon of natural
populations evolving independently. In each island, a serial MOEA is executed
for a predefined number of generations called epoch. At the end of an epoch,
communication between neighboring islands is allowed. In this communication,
individuals (or copies of them in the case of pollination) can migrate from its

3 Our discussion here is focused exclusively on MOEAs that use exact objective func-
tion values, since fitness approximation schemes and surrogate models can also be
used to deal with expensive MOPs.



actual island to a different one according to a predefined migration topology
which determines the migration path along which individuals can move.

Kamiura et al. [8] presented a pMOEA called MOGADES (Multi-Objective
Genetic Algorithm with Distributed Environment Scheme). In this pMOEA, the
population is divided into M islands, and in each of them the MOP is converted
into a scalar one, i.e., a different weight vector is assigned to each island. The aim
of this algorithm is that each island can capture a different region of the Pareto
front. One important aspect in this approach is that when migration occurs,
the weights for each island are varied. A major drawback for this approach is
that a good distribution of solutions cannot be guaranteed as it depends on the
dynamics of the evolutionary system, i.e., of the weight vector variation.

Streichert et al. [9] proposed a pMOEA, which combines an island model
with the “divide and conquer” principle. This approach partitions the population
using a clustering algorithm (k-means), with the aim of assigning to each island,
the search task of a particular Pareto front region. In this approach, at each
epoch, the sub-populations are gathered by a master process for performing the
clustering/distributing process. The individuals in each island are kept within
their assigned Pareto front region using zone constraints. The main drawback of
this approach is that a priori knowledge of the Pareto front shape is needed to
define the zone constraints.

Zahaire and Petcu [10] developed the multi-population APDE (APDE stands
for Adaptive Pareto Differential Evolution). This approach consists of dividing
the main population into sub-populations (islands), each of equal size. In each
island, a serial version of the APDE is executed with its own set of randomly
initialized adaptive parameters, and is evolved for an epoch. Afterwards, a migra-
tion process is started. This process is based on a random connection topology,
i.e., each individual from each sub-population can be swapped (with a given mi-
gration probability) with a randomly selected individual from another randomly
selected island.

3 Our Proposed Approach

The first mechanism is as follows. In our proposed parallel algorithm, each is-
land runs an approach called MODE-LD+SS [2], which adopts operators from
differential evolution using the DE/RAND/1/bin scheme. Algorithm 1 shows the
basic (serial version) pseudo-code of our proposed MODE-LD+SS approach. In
Algorithm 1, the solution vectors u1, u2, u3 are selected from the current pop-
ulation, only if they are locally nondominated in their neighborhood ℵ. Local
dominance is defined as follows:
Definition 1. Pareto Local Dominance Let x be a feasible solution, ℵ(x)
be a neighborhood structure for x in the decision space, and f(x) a vector of
objective functions.

- We say that a solution x is locally nondominated with respect to ℵ(x) if and
only if there is no x

′

in the neighborhood of x such that f(x
′

) ≺ f(x)



The neighborhood structure is defined as the NB closest individuals to a par-
ticular solution. Closeness is measured using the Euclidean distance between so-
lutions. The major aim of using the local dominance concept, as defined above,
is to exploit good individuals’ genetic information in creating DE trial vectors,
and the associated offspring, which might help to improve the MOEA conver-
gence rate toward the Pareto front. From Algorithm 1, it can be noted that
this mechanism has a stronger effect during the earlier generations, where the
portion of nondominated individuals is low in the global population, and pro-
gressively weakens, as the number of nondominated individuals grows during
the evolutionary process. This mechanism is automatically switched off, once all
the individuals in the population become nondominated, and has the possibil-
ity to be switched on, as some individuals become dominated. Aditionally, the
diversity of the created offspring can be controled by the local dominance neigh-
borhood size NB. Low values of NB will increase the diversity of the offspring,
and viceversa.

The second mechanism that is introduced in MODE-LD+SS is called envi-
romental selection based on a scalar function, and is based on the Tchebycheff
scalarization function given by [4]:

g(x|λj , z∗) = max
1≤i≤m

{λj
i |fi(x) − z∗i |} (1)

In the above equation, λj , j = 1, . . . , N represents the weight vectors used
to distribute the solutions along the whole Pareto front (see Figure 1(a)). z∗
corresponds to a reference point, defined in objective function space and de-
termined with the minimum objective values of the population. This reference
point is updated at each generation, as the evolution progresses. The procedure
MinimumTchebycheff(Q, λj , z∗) finds, from the set Q (the combined population
consisting on the actual parents and the created offspring), the solution vector
that minimizes equation (1) for each weight vector λj and the reference point
z∗.

Based on the serial MOEA previously described, we present here two paral-
lelization schemes. The first is designed for improving effectiveness and is called
pMODE-LD+SS(A). The second is designed for improving efficiency, and is
called pMODE-LD+SS(B). Both of them share the following characteristics:

– Use of a “random pair-islands” bidirectional migration scheme. In this scheme,
at each epoch, pairs of islands are randomly selected. Then, the communi-
cation is performed between each pair of islands. Migrants from one island
are considered as immigrants in the receptor island, and viceversa.

– Use of a pollination scheme, i.e., copies of selected migrants are sent, while
the original individuals are retained in their own population.

– The migration policy is based on randomly selected individuals.
– The replacement policy is based on the environmental selection mechanism

adopted in the serial version running in each island. In this case, immigrants
are added to the receptor island’s population, and the environmental selec-
tion process is applied to this extended population.



Algorithm 1 MODE-LD+SS

1: INPUT:

N = Population Size
F = Scaling factor
CR = Crossover Rate
λ[1, . . . , N ] = Weight vectors
NB = Neighborhood Size
GMAX = Maximum number of generations

2: OUTPUT:

PF = Pareto front approximation
3: Begin

4: g ← 0
5: Randomly create P

g

i
, i = 1, . . . , N

6: Evaluate P
g

i
, i = 1, . . . , N

7: while g < GMAX do

8: {LND} = {⊘}
9: for i = 1 to N do

10: DetermineLocalDominance(P g

i
,NB)

11: if P
g

i
is locally nondominated then

12: {LND} ← {LND} ∪ P
g

i

13: end if

14: end for

15: for i = 1 to N do

16: Randomly select u1, u2, and u3 from {LND}
17: v ← CreateMutantVector(u1, u2, u3)

18: P
g+1

i
← Crossover(P g

i
, v)

19: Evaluate P
g+1

i

20: end for

21: Q← P g ∪ P g+1

22: Determine z∗ for Q
23: for i = 1 to N do

24: P
g+1

i
← MinimumTchebycheff(Q,λi, z∗)

25: Q← Q\P g+1

i

26: end for

27: PF ← Q
28: end while

29: ReturnPF

30: End

(a) pMODE-LD+SS(A) (b) pMODE-LD+SS(B)

Fig. 1. Weight vectors distribution



The main difference between the two proposed approaches is on the weight
vectors distribution used. The pMODE-LD+SS(A) approach can be seen as the
serial version of MODE-LD+SS running in p processors and exchanging infor-
mation among them. For this approach, the same weight vector distribution (see
Figure 1(a)) is used in each island. For maintaining diversity of the global popu-
lation and to evolve each island in an independent manner, different seed values
are used in the islands’ random numbers generators. In the second case, for the
pMODE-LD+SS(B) approach, each island is also instructed to search for the
whole Pareto front, but in this case, using a reduced population and different
weight vectors sets. It is important to note that all islands contain weight vec-
tors for searching the extreme Pareto solutions. The main idea for the second
parallel approach is that the combination of all islands’ weight vectors covers
the whole Pareto front region. Figure 1(b) illustrates this situation for the case
of a bi-objective MOP with two islands participating in the pMOEA.

4 Experimental setup

In order to validate the two proposed parallel approaches, their results are
compared with respect to those generated by their serial counterpart (MODE-
LD+SS), and to NSGA-II [3], MOEA/D [4], and MOEA/D-DE [5] which are
MOEAs representative of the state-of-the-art in multiobjective evolutionary op-
timization. Our approaches were validated using nine test problems: five from the
ZDT (Zitzler-Deb-Thiele) set with 2 objectives (ZDT1, ZDT2, ZDT3, ZDT4, and
ZDT64), and four more from the DTLZ (Deb-Thiele-Laumanns-Zitzler) set with
3 objectives (DTLZ1, DTLZ2, DTLZ3, and DTLZ4). The selected test functions
comprise different difficulties such as convex, concave, and disconnected Pareto
fronts, as well as problems with multiple fronts. Two performance measures were
adopted in order to assess our results: Hypervolume (Hv) and Two Set Cover-
age (C-Metric). A description of these performance measures are omitted here
but can be found elsewhere [1]. The Hv measure uses a reference point in the
objective space which was set to (1.05,1.05) for all the 2-objective MOPs, and
to (5.0,5.0,5.0) in all the 3-objective MOPs. In the case of the C-Metric, the
A reference set is considered as the true Pareto front which is known for all
the MOPs used in the experiments. Thus, the C-Metric can be considered as a
measure for the ability of the algorithm to find solutions that are nondominated
with respect to the Pareto optimal set (i.e., solutions that also belong to the
Pareto optimal set).

5 Results and discussion

In this section we present the results obtained by the proposed parallel ap-
proaches. As a first step, the serial version of MODE-LD+SS is compared with

4 ZDT5 is a binary problem and was not included because we adopted real-numbers
encoding in our experiments.



respect to NSGA-II, MOEA/D and MOEA/D-DE. Then, the number of islands,
epoch and migration rate adopted in the parallel approaches are tuned by means
of an empirical study, using ZDT1. Finally, the results obtained with the two
parallel approaches are presented and compared to those of the serial version of
MODE-LD+SS, and those obtained by NSGA-II, MOEA/D and MOEA/D-DE.
These comparisons are based on the average results from 32 independent runs
executed by each algorithm and for each MOP.

Comparison of serial versions

Table 1 presents the results of the serial versions for NSGA-II, MOEA/D,
MOEA/D-DE and MODE-LD+SS. The population size in all the algorithms
was set to N=50 for all the 2-objective MOPs, and 153 for all the 3-objective
MOPs the maximum number of generations was set to GMAX = 150 for all prob-
lems, except for ZDT4 and DTLZ3, where we used GMAX = 300. The common
parameters for NSGA-II, MOEA/D and MOEA/D-DE were: crossover proba-
bility pc = 1.0; mutation probability pm = 1/NVARS (NVARS correspond to
the number of decision variables for each MOP); distribution index for crossover
ηc = 15; and distribution index for mutation ηm = 20. As for the MOEA/D
and MOEA/D-DE the replacing neighborhood size was set as indicated in [4]
and [5], respectively. For the MODE-LD+SS algorithm, we used: F = 0.5 for
all MOPs; CR = 0.5 for all MOPs except for ZDT4, where CR = 0.3 was used;
Neighborhood size NB = 5 for all MOPs except for ZDT4, where we used NB =
1. From the results presented in Table 1, it can be observed that MODE-LD+SS
obtains the best results in 6 of 9 MOPs for the Hv measure. It also obtains
the best results in 8 of 9 MOPs regarding the C-Metric, which indicates that it
converged closer to the true Pareto front.

Parameters for the pMOEA approaches

For any pMOEA approach based on the island model, additional to the pa-
rameters required by its serial counterpart, we have to define the number of
islands, migration rate, and epoch period. The choice of these parameters has a
great influence in the performance of the pMOEA and is problem dependent. For
selecting a set of parameters to be used in the present work, ZDT1 was selected
to conduct an experimental study for assessing how the parameters affected per-
formance with respect to the serial version. For this study, the following set of
parameters was used: epochs = 10, 20, and 50 generations; migration rate MR =
0.1, 0.2, 0.3 and 0.5; and number of islands NI = 4, 6, and 8. All the combinations
were tested. The parameters for population size, maximum number of genera-
tions, F, CR, and NB were set the same for all the islands, as in the serial version
previously described. From the results of this study, and regarding the C-Metric,
it was observed that high migration rates with shorter epoch periods produce the
best improvements with respect to the serial version. However, this can lead to
higher communication costs. From the study, the final set of parameters selected



Table 1. Comparison of Hv and C-Metric measures for the serial versions

Hypervolume measure

Function
NSGA-II MOEA-D MOEA-D-DE MODE-LD+SS

Mean σ Mean σ Mean σ Mean σ

ZDT1 0.740382 0.003323 0.716729 0.024506 0.583847 0.076507 0.757395 0.000397
ZDT2 0.377348 0.070194 0.176615 0.079320 0.082341 0.115367 0.424895 0.000331
ZDT3 0.604214 0.003199 0.585094 0.023488 0.277813 0.111381 0.613846 0.000307
ZDT4 0.073098 0.122631 0.730980 0.016966 0.450990 0.215977 0.349325 0.285549
ZDT6 0.292164 0.020894 0.375312 0.007755 0.239793 0.084688 0.407638 0.000009

DTLZ1 124.139600 1.113898 124.969600 0.000768 119.402900 7.771898 124.967700 0.000383
DTLZ2 123.972600 0.124088 124.397400 0.001778 124.353700 0.027743 124.397600 0.003356
DTLZ3 80.131930 39.091680 124.338100 0.250190 85.976200 54.287600 124.396900 0.003004
DTLZ4 123.934300 0.125475 124.400100 0.002818 124.387900 0.003452 124.393900 0.002684

C-Metric measure

Function
NSGA-II MOEA-D MOEA-D-DE MODE-LD+SS

Mean σ Mean σ Mean σ Mean σ

ZDT1 0.994591 0.008785 0.997234 0.007463 1.000000 0.000000 0.748125 0.153569
ZDT2 1.000000 0.000000 0.208557 0.140626 1.000000 0.000000 0.586492 0.100261
ZDT3 0.931490 0.047844 0.813861 0.121330 1.000000 0.000000 0.384729 0.092223
ZDT4 1.000000 0.000000 0.975157 0.088624 1.000000 0.000000 0.845625 0.364496
ZDT6 0.975723 0.008476 0.978242 0.001639 0.989831 0.016529 0.000625 0.003536

DTLZ1 0.535550 0.134412 0.340389 0.234715 0.807088 0.113710 0.021434 0.014189
DTLZ2 0.447368 0.035370 0.211798 0.040208 0.678562 0.053395 0.171215 0.009018
DTLZ3 1.000000 0.000000 0.725727 0.179974 0.972366 0.063160 0.160711 0.007169
DTLZ4 0.453536 0.058747 0.205555 0.036333 0.554462 0.051949 0.156578 0.008628

correspond to the following: Number of Islands = 6; epoch = 10 generations, and
migration rate = 0.4. This will be used in assessing the two parallel approaches
proposed here. Table 2 shows the results of the two proposed parallel approaches.

pMOEA for effectiveness improvement

From Table 2, it can be observed that the approach designed for effective-
ness improvement produced better Hv values in 4 of the 9 MOPs (ZDT1, ZDT3,
ZDT4, and ZDT6), while improving the C-Metric in 7 of the 9 MOPs (ZDT1,
ZDT4, ZDT6, DTLZ1, DTLZ2, DTLZ3, DTLZ4), with respect to the serial
version of MODE-LD+SS. One important result to remark from this parallel
approach, is its ability to reach the true Pareto front of ZDT4 and ZDT6 in the
32 runs performed, as indicated by the mean and standard deviations for the
C-Metric for these two MOPs.

pMOEA for efficiency improvement

For this approach, each island uses a reduced population size of N = 10 for the
2-objective MOPs and of N = 28 for the 3-objective MOPs. Since we used 6 is-
lands, the global population consists of 60 individuals for the 2-objective MOPs,
and of 168 individuals for the 3-objective MOPs. Considering that the global
population size grows, the maximum number of generations used in pMODE-



Table 2. Results for MODE-LD+SS(A) and pMODE-LD+SS(B)

Function
pMODE-LD+SS(A) pMODE-LD+SS(B)

Hv C-Metric Hv C-Metric
Mean σ Mean σ Mean σ Mean σ Speed-up

ZDT1 0.757675 0.000115 0.623750 0.105517 0.750276 0.002323 0.983219 0.043928 2.9977
ZDT2 0.424363 0.000310 0.766844 0.105424 0.421071 0.001954 0.815243 0.099875 2.6918
ZDT3 0.614156 0.000201 0.385278 0.078578 0.608588 0.001898 0.741921 0.122588 2.5434
ZDT4 0.758770 0.000006 0.000000 0.000000 0.034668 0.119046 1.000000 0.000000 2.3341
ZDT6 0.407650 0.000001 0.000000 0.000000 0.406966 0.000241 0.002552 0.006860 2.5110

DTLZ1 124.967400 0.000238 0.011863 0.004840 124.970200 0.000681 0.022575 0.009888 4.9934
DTLZ2 124.391900 0.002976 0.162893 0.008310 124.404200 0.001968 0.175189 0.008008 4.7269
DTLZ3 124.389000 0.003113 0.155273 0.005601 124.015800 1.228651 0.242665 0.247538 4.8357
DTLZ4 124.389500 0.002848 0.154082 0.008518 124.402700 0.002529 0.149008 0.008031 4.8949

LD+SS(B) were reduced accordingly to obtain an equivalent number of objec-
tive function evaluations as in the serial version. However, once the islands’
populations are gathered and a global environmental selection is performed, the
maximum population size reported for this approach is of 50 solutions for the
2-objecive MOPs, and 153 for the 3-objective MOPs. This latter condition is due
to the fact that each island searches for the Pareto extreme solutions (there are
redundant solutions which are filtered out). The parameters for F, and CR were
set the same as in the serial version for all islands. However, due to the reduction
in island population size, the parameter NB was set to 1 in all MOPs. In Table 2,
the estimated average parallel Speed-Up measure is reported for all MOPs used.
Also from this table, it can be seen that the approach designed for efficiency
improvement produced better Hv values in 3 of the MOPs adopted (DTLZ1,
DTLZ2, and DTLZ4). By taking a closer look to the results for the Hv metric
for ZDT1, ZDT2, ZDT3 and ZDT6, it can be seen that pMODE-LD+SS(B)
obtained values very close to those of the serial version (MODE-LD+SS), even
when each island was using a small population size.

6 Conclusions and future work

We have introduced a new pMOEA, called pMODE-LD+SS. For it, two differ-
ent parallel schemes were proposed, aiming at improving: (a) effectiveness and
(b) efficiency, with respect to its serial version, called MODE-LD+SS. From the
results presented in the previous section, the first goal was achieved in 4 and 7
of 9 test problems adopted, when considering the Hv and C-Metric performance
measures, respectively. It is worth noting that, in some cases the improvement
achieved has been quite significant. Regarding the second goal, and even when
each island is using a reduced population size, the second approach is able to
obtain better results for the Hv measure in 3 of the 9 test problems adopted.
Additionally, in 3 other problems, the values attained are very similar to those
obtained by the serial version. From the above, we can conclude that the pro-
posed algorithm has good properties both in terms of effectiveness and efficiency.
In the present work, the proposed algorithm was run with parameters derived
from empirical tests. However, a thorough statistical analysis is required in order
to identify the most appropriate parameters to be adopted, and to relate more



closely such parameter values to specific types of test problems. These tasks
will be part of our future work. Given the good convergence properties of the
proposed algorithm and its ability to improve both effectiveness and efficiency
in the test problems adopted, it is also desirable to test them in real-world op-
timization problems, and that is actually part of our ongoing research. Finally,
we also plan to compare our proposed pMOEA with respect to other pMOEAs
currently available in the specialized literature.
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