
Multi-Objective Evolutionary GAN
Marco Baioletti

University of Perugia
marco.baioletti@unipg.it

Carlos Artemio Coello Coello
CINVESTAV-IPN

ccoello@cs.cinvestav.mx

Gabriele Di Bari
University of Perugia
gabriele.dibari@unifi.it

Valentina Poggioni
University of Perugia

valentina.poggioni@unipg.it

ABSTRACT
Generative Adversarial Network (GAN) is a generative model pro-
posed to imitate real data distributions. The original GAN algorithm
has been found to be able to achieve excellent results for the image
generation task, but it suffers from problems such as instability
and mode collapse. To tackle these problems, many variants of the
original model have been proposed; one of them is the Evolutionary
GAN (EGAN), where a population of generators is evolved.

Inspired by EGAN, we propose here a new algorithm, called
Multi-Objective EvolutionaryGenerative Adversarial Network (MO-
EGAN), which reformulates the problem of training GANs as a
multi-objective optimization problem. Thus, Pareto dominance is
used to select the best solutions, evaluated using diversity and
quality fitness functions.

Preliminary experimental results on synthetic datasets show
how the proposed approach can achieve better results than EGAN.

KEYWORDS
General Adversarial Network, Multi Objective, Evolutionary Algo-
rithms, Deep Generative Models

ACM Reference Format:
Marco Baioletti, Carlos Artemio Coello Coello, Gabriele Di Bari, and Valentina
Poggioni. 2020. Multi-Objective Evolutionary GAN. In Genetic and Evo-
lutionary Computation Conference Companion (GECCO ’20 Companion),
July 8–12, 2020, Cancún, Mexico. ACM, New York, NY, USA, 8 pages. https:
//doi.org/10.1145/3377929.3398138

1 INTRODUCTION
Generative models have a long history in the machine learning
field; these tools are a powerful way to learn a distribution from a
set of real data.

The introduction of deep learning gives a new life to this research
field, thus, new models have been proposed such as PixelRNN [13],
PixelCNN[14], Variational Autoencoders [10], and many others,
which can tackle this task in a surprising way.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
GECCO ’20 Companion, July 8–12, 2020, Cancún, Mexico
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-7127-8/20/07.
https://doi.org/10.1145/3377929.3398138

Using these new models, we can generate realistic data distri-
bution such as images, videos, audios and so on. A family of these
models is based on Generative Adversarial Networks (GANs). GANs
train two neural networks, called discriminator and generator, that
compete with each other in a two-playerminimax game. This model
was designed to learn from large scale real-data distributions like
for example CalebA [7], LSUN [19] and ImageNet [2].

Nevertheless, this model can learn a limited distribution path
since it suffers from the vanishing gradient issue and mode col-
lapse, which leads to training a generator able to generate a limited
diversity of samples, diverging from the real-data distribution to
be imitated.

Thus, a huge number of recent works have focused on overcom-
ing these issues by proposing several generator’s objective func-
tions. In [15] the authors proposed the Evolutionary GAN (EGAN)
model. In that work, a population of generators is evolved using
different training objectives to produce new candidates for the next
generation. In EGAN’s selection step, the new population of gener-
ators is reduced using a fitness function which takes into account
quality and diversity of the solutions.

In this work, we propose the Multi-Objective Evolutionary Gen-
erative Adversarial Network (MO-EGAN) model, where the evalua-
tion of generators is re-defined as a multi-objective problem, using
quality and diversity as two distinct conflicting objectives. Thus, in
contrast to EGAN, MO-EGAN performs the selection between the
parents and offspring using a technique taken from the evolutionary
multi-objective optimization field. Our preliminary results using
synthetic data have shown how the two objectives selected are
indeed conflicting. Additionally, we show how this new approach
can actually provide better results than EGAN.

This paper is organized as follows. In Section 2 we provide a
brief summary of the GAN algorithm and the formulation of the
multi-objective problem of our interest. Section 3 describes in detail
the proposed algorithm: MO-EGAN. Section 4 provides details of
our preliminary experiments aimed to validate our proposed ap-
proach. In Section 5 the analysis of the results obtained in terms of
qualitative and quantitative measures is given. We also provide a
short discussion on the Pareto fronts obtained and the complexity
of the algorithm proposed. Finally, in Section 6, we present our
conclusions and some possible paths for future research.

2 BACKGROUND
In this section, we provide a short description of the Generative
adversarial networks, and some basic definitions used in multi-
objective optimization.

https://doi.org/10.1145/3377929.3398138
https://doi.org/10.1145/3377929.3398138
https://doi.org/10.1145/3377929.3398138

GECCO ’20 Companion, July 8–12, 2020, Cancún, Mexico Marco Baioletti, Carlos Artemio Coello Coello, Gabriele Di Bari, and Valentina Poggioni

2.1 Generative Adversarial Networks
The Generative Adversarial Network was originally proposed by
Goodfellow et al. [3].

This framework re-defines the generative model as a two-player
game, where a generator network competes with a discriminator
one. The generator has the task to generate real-looking distribu-
tions (e.g. images) while the discriminator has to distinguish fake
distributions from original ones. The two adversaries play a contin-
uous match as the generator tries to fool the discriminator, while
the other tries not to be fooled. To generate the best distribution
we need a very good generator and a very good discriminator: this
is because if the generator is not good enough, it will never be
able to fool the discriminator and the model will never converge.
On the other hand, if the discriminator is not good enough, then
distributions without any sense are classified as real and the model
will never learn.

Formally, given a noise sample 𝑍 generated from a uniform
distribution 𝑝𝑛𝑜𝑖𝑠𝑒 (i.e. fake data), and a data sample 𝑋 generated
from the data distribution 𝑝𝑑𝑎𝑡𝑎 (i.e. real data), the generator 𝐺
produces an output according to a distribution𝐺 (𝑍), which is as
close as possible to 𝑝𝑑𝑎𝑡𝑎 , while a discriminator 𝐷 tries to detect
which are the true samples (𝑋) and which one came from the𝐺 (𝑍)
fake distribution.

The original formulation of the two-players minimax game de-
scribed in [3] is:

min
𝐺

max
𝐷
E𝑥∼𝑝𝑑𝑎𝑡𝑎 [log𝐷 (𝑥)] + E𝑧∼𝑝𝑛𝑜𝑖𝑠𝑒 [1 − log𝐷 (𝐺 (𝑥))]

In the specialized literature, many different reformulations of
the original one are available [9, 16, 17].

2.2 Multi-Objective Problem
In multiobjective optimization, the aim is to solve problems of the
type1:

minimize ®𝑓 (®𝑥) := [𝑓1 (®𝑥), 𝑓2 (®𝑥), . . . , 𝑓𝑘 (®𝑥)] (1)
subject to:

𝑔𝑖 (®𝑥) ≤ 0 𝑖 = 1, 2, . . . ,𝑚 (2)
ℎ𝑖 (®𝑥) = 0 𝑖 = 1, 2, . . . , 𝑝 (3)

where ®𝑥 = [𝑥1, 𝑥2, . . . , 𝑥𝑛]𝑇 is the vector of decision variables,
𝑓𝑖 : IR𝑛 → IR, 𝑖 = 1, . . . , 𝑘 are the objective functions and 𝑔𝑖 , ℎ 𝑗 :
IR𝑛 → IR, 𝑖 = 1, . . . ,𝑚, 𝑗 = 1, . . . , 𝑝 are the constraint functions of
the problem.

A few additional definitions are required to introduce the notion
of optimality used in multiobjective optimization:

Definition 1. Given two vectors ®𝑥, ®𝑦 ∈ IR𝑘 , we say that ®𝑥 ≤ ®𝑦 if
𝑥𝑖 ≤ 𝑦𝑖 for 𝑖 = 1, ..., 𝑘 , and that ®𝑥 dominates ®𝑦 (denoted by ®𝑥 ≺ ®𝑦)
if ®𝑥 ≤ ®𝑦 and ®𝑥 ≠ ®𝑦.

Definition 2.We say that a vector of decision variables ®𝑥 ∈ X ⊂
IR𝑛 is nondominated with respect to X, if there does not exist
another ®𝑥 ′ ∈ X such that ®𝑓 (®𝑥 ′) ≺ ®𝑓 (®𝑥).

1Without loss of generality, we will assume only minimization problems.

Definition 3. We say that a vector of decision variables ®𝑥∗ ∈ F ⊂
IR𝑛 (F is the feasible region) is Pareto-optimal if it is nondomi-
nated with respect to F .

Definition 4. The Pareto Optimal Set P∗ is defined by:

P∗ = {®𝑥 ∈ F |®𝑥 is Pareto-optimal}

Definition 5. The Pareto Front PF ∗ is defined by:

PF ∗ = { ®𝑓 (®𝑥) ∈ IR𝑘 | ®𝑥 ∈ P∗}

Therefore, our aim is to obtain the Pareto optimal set from the
set F of all the decision variable vectors that satisfy (2) and (3).
Thus, given a Multi-Objective Problem (MOP), the goal of a Multi-
Objective Evolutionary Algorithm (MOEA) is to produce a good
approximation of the Pareto front.

One of the most widely used MOEAs for problems having only
two or three objectives is the elitist Nondominated Sorting Genetic
Algorithm (NSGA-II) [1]. This algorithm solves a MOP using non-
dominated sorting and a crowding-comparison operator that acts
as its density estimator.

3 MO-EGAN
MO-EGAN algorithm resembles the classical GAN algorithm [3]: it
evolves a population of ` generators𝐺1, . . . ,𝐺` , represented by the
corresponding parameters 2 Θ1, . . . ,Θ` , respectively, and a single
discriminator 𝐷 , represented by the parameter vector𝑤 .

Its main loop is composed of two phases: in the first phase 𝐷 is
trained and in the second phase all the generators are trained. These
two phase are alternately executed until a satisfactory solution is
found. In contrast with GAN and analogously with the Evolution-
ary GAN [15], MO-EGAN, during the generator training phase,
evolves the population of generators using three steps: Variation,
Evaluation, and Selection.

The description of MO-GAN is provided in Algorithm 1. The
discriminator training phase is composed of 𝑁𝑑 steps described in
lines 3-7. At each step a sample ®𝑥 of𝑚 elements is generated from
𝑝𝑑𝑎𝑡𝑎 and a sample ®𝑧 of the same size is generated from a noise
distribution and divided in ` batches of size𝑚/`. Each generator
𝐺 𝑗 uses its own batch to generate fake data. One step of the Adam
neural network optimizer algorithm is then used to update the
weights𝑤 of 𝐷 .

The generator training phase is described between lines 9 and
13. During this phase, the Variation procedure is applied to all the
parents, producing a subpopulation of 𝑁𝑚 · ` children.

In the evaluation step, two fitness functions are computed for
each child and also for each parent. Finally, multi-objective selection
is applied.

2the network connection weights

Multi-Objective Evolutionary GAN GECCO ’20 Companion, July 8–12, 2020, Cancún, Mexico

Figure 1: The EGAN algorithm diagram compared to the MO-EGAN one. The EGAN evolve a population of generator {Θ𝑗 } and
select the best on the new population by a fitness function F . Instead the MO-EGAN algorithm uses the Pareto dominance on
a population {Θ𝑗 ,Θ𝑗,1, . . .Θ𝑗,𝑁𝑚 } to select the bests ones for the next generation.

Algorithm 1MO-EGAN
Require: batch size𝑚, number of parents `, discriminator’s up-

dating steps per iteration 𝑁𝑑 , number of objective functions
𝑁𝑚 , Adam hyperparameters 𝛼 , 𝛽1, 𝛽2

Require: Initial discriminator’s parameters𝑤
Require: Initial generators’ parameters Θ1, . . . ,Θ`

1: for number of training iterations do
2: for 𝑘 ← 1 . . . 𝑁𝑑 do
3: Sample a batch ®𝑥 from dataset 𝑃𝑑𝑎𝑡𝑎
4: Generate noise batch ®𝑧 from a uniform distribution
5: 𝑔𝑤 ← ∇𝑤

[
1
𝑚

𝑚∑
𝑖=1

log𝐷𝑤 (𝑥𝑖)

6: + 1
𝑚

∑̀
𝑗=1

𝑚/`∑
𝑖=1

log(1 − 𝐷𝑤 (𝐺 𝑗 (𝑧𝑖)))
]

7: 𝑤 ← 𝐴𝑑𝑎𝑚(𝑔𝑤 ,𝑤, 𝛼, 𝛽1, 𝛽2)
8: end for
9: for 𝑗 ← 1 . . . ` do
10: Generate noise batch ®𝑧 from a uniform distribution
11: Θ

𝑗,1...𝑁𝑚

𝑐ℎ𝑖𝑙𝑑
← Variation (𝐷,Θ𝑗 , ®𝑧, 𝛼, 𝛽1, 𝛽2)

12: Evaluate all the children
13: end for
14: Use the last discriminator to re-evaluate the parents
15: 𝑃𝑄 ← Θ1, . . . ,Θ` ,Θ1,1

𝑐ℎ𝑖𝑙𝑑
, . . . ,Θ

`,𝑁𝑚

𝑐ℎ𝑖𝑙𝑑
16: PF ← non_dominated_sorting(𝑃𝑄)
17: crowding_alignment_assignment(PF)
18: Θ1, . . . ,Θ` ← sorting(PF)
19: end for

Algorithm 2 Variation

Require: Generator’s parameters Θ𝑗

Require: The number of objective functions 𝑁𝑚

Require: Noise Batch ®𝑧
Require: Adam hyperparameters 𝛼 , 𝛽1, 𝛽2
1: for ℎ ← 1 . . . 𝑁𝑚 do
2: 𝑔

𝑗,ℎ

Θ ← ∇ΘM
ℎ (𝐺\ 𝑗 (®𝑧))

3: Θ
𝑗,ℎ

𝑐ℎ𝑖𝑙𝑑
← 𝐴𝑑𝑎𝑚(𝑔 𝑗,ℎΘ ,Θ𝑗 , 𝛼, 𝛽1, 𝛽2)

4: end for

3.1 Variation
The Variation step is an asexual reproduction, where a single parent
generates 𝑁𝑚 children obtained by applying one step of the Adam
algorithm with 𝑁𝑚 different objective functions.

A pseudo-code of this step is provided in Algorithm 2, where
given a parent Θ𝑗 a child Θ

𝑗,ℎ

𝑐ℎ𝑖𝑙𝑑
is generated for each objective

functionMℎ .
In particular, in this work, we used the same objective functions

proposed in [15].
The first objective function is calledminimax and is derived from

the original GAN framework

M𝑚𝑖𝑛𝑖𝑚𝑎𝑥 =
1
2
E𝑧∼𝑞 (𝑧) [log(1 − 𝐷 (𝐺 (𝑍)))]

According to [3],M𝑚𝑖𝑛𝑖𝑚𝑎𝑥 minimizes the Jensen-Shannon di-
vergence (JSD) between the data distribution and the generated
distribution. The primary issue of this objective function is the
generator’s vanishing gradient.

The second objective function is called heuristic, which unlike
minimax, maximizes the log probability of the discriminator being
mistaken

Mℎ𝑒𝑢𝑟𝑖𝑠𝑡𝑖𝑐 = −1
2
E𝑧∼𝑞 (𝑧) [log(𝐷 (𝐺 (𝑍)))]

Compared with minimax, heuristic does not saturate when the
discriminator rejects the generated samples. Thus, this objective
function does not suffer from the problem of vanishing gradient for
the generators. On the other hand, heuristic tends to push the two
distributions away from each other. Thus, this may lead to training
instability and generative quality fluctuations [5].

The last objective function is least-square, used in LSGAN algo-
rithm [8]

M𝑙𝑒𝑎𝑠𝑡−𝑠𝑞𝑢𝑎𝑟𝑒 = E𝑧∼𝑞 (𝑧) [log(𝐷 (𝐺 (𝑍)) − 1)2]
This function does not saturate when the discriminator has clas-

sified with absolute certainty the generated image as fake (i.e.,

GECCO ’20 Companion, July 8–12, 2020, Cancún, Mexico Marco Baioletti, Carlos Artemio Coello Coello, Gabriele Di Bari, and Valentina Poggioni

𝐷 (𝐺 (𝑍)) = 0). This objective function, like heuristic, does not suf-
fer from the vanishing gradient problem.

Moreover, unlike heuristic, least-square tries to avoid that the
model collapses by assigning an extremely low cost to generating
fake samples.

Figure 2: Plot of the variations of the objective functions
with respect to the discriminator output.

In order to get a better understanding of the way in which these
objective functions work, we illustrate their behaviour in Figure 2
with respect to the discriminator 𝐷 given a generated distribution
𝐺 (𝑍).

3.2 Evaluation
The Evaluation step introduced in [15] uses two fitness functions:
the first one computes the quality of a generator, and the second
one is used tomeasure the diversity. The quality function is defined
as :

F𝑞 = E𝑧 [𝐷 (𝐺 (𝑍))]
The diversity fitness is defined as :

F𝑑 = − log | |∇𝑤 − E𝑥 [log𝐷 (𝑋)] − E𝑧 [log(1 − 𝐷 (𝐺 (𝑍)))] | |
They are described and commented in [15].
Since the discriminator is not the same at each iteration, the

diversity fitness is computed as the logarithm of the diversity score
weighted by the discriminator’s gradient. This can be seen as a
weight of the diversity. If the discriminator network applied a
countermeasure (hence it is strongly changed), the diversity score
of a generator is increased; otherwise, if the discriminator is not
changed, the diversity score is reduced. Thus, the collapse issue can
be mitigated and the discriminator will smoothly change, which
helps to improve the training stability.

Finally, we defined the multi-objective problem of our interest
as

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 F𝑞𝑑 (Θ) = {F𝑞 (Θ), F𝑑 (Θ)}
where Θ is the generator to be evaluated.

In Algorithm 1, the evaluation step is applied to the children at
line 12. Moreover, since the discriminator is changing all the time,

at line 14, the parents are re-evaluated. We do that in order to allow
a fair comparison between the child and the parent in the selection
step.

Algorithm 3 Non Dominated Sorting
Require: set of points 𝑃
1: for 𝑝 ∈ 𝑃 do
2: 𝑆𝑝 ← ∅, 𝑛𝑝 ← 0
3: for 𝑞 ∈ 𝑃 do
4: if 𝑝 ≺ 𝑞 then 𝑆𝑝 ← 𝑆𝑝 ∪ {𝑝}
5: else if 𝑞 ≺ 𝑝 then 𝑛𝑝 ← 𝑛𝑝 + 1
6: end for
7: if 𝑛𝑝 = 0 then
8: 𝑝𝑟𝑎𝑛𝑘 ← 1
9: F1 ← F1 ∪ {𝑝}
10: end if
11: end for
12: 𝑖 ← 1
13: while F𝑖 ≠ ∅ do
14: for 𝑝 ∈ F𝑖 do
15: for 𝑞 ∈ 𝑆𝑝 do
16: 𝑛𝑝 ← 𝑛𝑝 − 1
17: if 𝑛𝑝 = 0 then
18: 𝑞𝑟𝑎𝑛𝑘 ← 𝑞𝑟𝑎𝑛𝑘 + 1
19: Q← Q ∪ {𝑞}
20: end if
21: end for
22: end for
23: 𝑖 ← 𝑖 + 1
24: F𝑖 ← Q
25: end while
26: return (F1, F2, . . .)

3.3 Selection
In this section, we describe how MO-EGAN selects the generator
for each generation. In fact, unlike EGAN [15], MO-EGAN is based
on the Pareto dominance, as NSGA-II [1].

Therefore, the set of parents and children generators is 𝑃𝑄 =

{Θ1, . . . ,Θ` ,Θ1,1
𝑐ℎ𝑖𝑙𝑑

, . . . ,Θ
`,𝑁𝑚

𝑐ℎ𝑖𝑙𝑑
}, whose size is ` · (1 + 𝑁𝑚).

The nondominated sorting, described in Algorithm 3, is applied to
𝑃𝑄 . This algorithm divides the set of the points 𝑃 = {F𝑞𝑑 (Θ) |∀Θ ∈
𝑃𝑄 } into nondominated fronts PF according to non dominance
relation.

The next step computes the crowding distance for each individual
in the same nondominated front (see lines 6-12 of the Algorithm 4).
It is worth noting that the borders of the front have an infinite
crowding distance which means they are always preferred in the
selection step.

The last step is the sorting procedure, as described in Algorithm 5.
In this case, all individuals of all fronts are combined on single set
𝑃 , and sorted by the following partial order:

𝑖 ≺𝑛 𝑗 ≡ 𝑖𝑟𝑎𝑛𝑘 < 𝑗𝑟𝑎𝑛𝑘 ∨ (𝑖𝑟𝑎𝑛𝑘 = 𝑗𝑟𝑎𝑛𝑘 ∧ 𝑖𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 < 𝑗𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒)
where 𝑖𝑟𝑎𝑛𝑘 is the value computed in the nondominated sorting step,
and 𝑖𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 is the crowding distance.

Multi-Objective Evolutionary GAN GECCO ’20 Companion, July 8–12, 2020, Cancún, Mexico

Given the set 𝑃 , the best ` generators are selected for the the
next iteration of the algorithm.

Algorithm 4 Crowding Alignment Assignment

Require: set of nondominated fronts F = (F1, F2, . . .)
1: for I ∈ F do
2: 𝑙 ← |I|
3: for 𝑖 ← 1 . . . 𝑙 do
4: I[𝑖]𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 ← 0
5: end for
6: for𝑚 ← 1 . . . 𝑁𝑚 do
7: sort I by𝑚-th objective function
8: I[1]𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 ←∞
9: I[𝑙]𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 ←∞
10: for 𝑖 ← 2 . . . (𝑙 − 1) do
11: I[𝑖]𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 ← I[𝑖]𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 +

I[𝑖+1] .𝑚−I[𝑖−1] .𝑚
𝑓𝑚𝑎𝑥
𝑚 −𝑓𝑚𝑖𝑛

𝑚

12: end for
13: end for
14: end for

Algorithm 5 Sorting

Require: set of nondominated fronts F = (F1, F2, . . .)
1: 𝑃 ← ∅
2: for 𝑖 = 1 . . . 𝑙 do 𝑃 ← 𝑃 ∪ F𝑖
3: sort 𝑃 by ≺𝑛
4: return 𝑃

4 EXPERIMENTS
In this section, a comparison ofMO-EGAN’s algorithm performance
with respect to GAN and EGAN is presented.

The preliminary experimental analysis was performed on the
same synthetics datasets used in [15]. These datasets will help us to
get a proof-of-principle about the behavior of MO-EGAN, but we
clearly need to assess its performance with more complex datasets
in the future.

4.1 Datasets
The synthetic data are two datasets generated from 2D Gaussian
mixture distributions.

The first one is a mixture of 8 Gaussians arranged in a circle, and
the second one is a mixture of 25 Gaussians arranged in a grid of
size 5 × 5.

Those Synthetic datasets are designed to verify the ability of the
algorithm to train a generator to reproduce a 2D Gaussian mixture
distributions in those cases where the original GAN algorithm does
not achieve satisfying results.

4.2 Metric
Because of the nature of the data, the metric measure adopted
for our tests is the Maximum Mean Discrepancy (MMD) [11] [4].
The MMD metric represents distances between distributions as
distances between mean embedding of features.

Formally, let 𝑥 and 𝑦 be random variables on a topological space
X, and given observations 𝑋 = {𝑥1, . . . , 𝑥𝑛} and 𝑌 = {𝑦1, . . . , 𝑦𝑚},
independently and identically distributed from distribution genera-
tors 𝑝 and 𝑞 (𝑝 ≠ 𝑞), we define the empirical MMD as

𝑀𝑀𝐷 (F , 𝑝, 𝑞) = sup
𝑓 ∈F
(E𝑥∼𝑝 [𝑓 (𝑋)] − E𝑦∼𝑞 [𝑓 (𝑌)])

where the F be a class of functions 𝑓 : 𝑋 → R.
Replacing the expectations with the averages computed on the𝑋

and 𝑌 samples, we obtain the biased empirical estimation of MMD

𝑀𝑀𝐷 (F , 𝑋,𝑌) = sup
𝑓 ∈F
(1
𝑛

𝑛∑
𝑖=1

𝑓 (𝑥𝑖) −
1
𝑚

𝑚∑
𝑖=1

𝑓 (𝑦𝑖))

This metric is not commonly used on datasets of real images since
identifying the function 𝑓 is a hard task. However, according to [4],
MMD is easy to estimate if a Gaussian kernel is used and the 𝜎 and
bias parameters are known.

Thus, since the datasets have been generated with mixtures of
Gaussian distributions, this metric can be easily computed giving
us an accurate estimation of the difference between a target distri-
bution and the generated one.

4.3 Implementation details

Layer Size Activation function
Generator

Input 2 -
Fully connected 512 ReLU
Fully connected 512 ReLU
Fully connected 512 ReLU
Output 2 -

Discriminator
Input 2 -
Fully connected 512 ReLU
Fully connected 512 ReLU
Fully connected 512 ReLU
Output 1 Sigmoid

Table 1: Networks layouts

In order to have a fair comparison, we used the same network
used in [15]. Since the original document does not describe the
network structure used for Synthetic Data, we decided to use the
same networks implemented in EGAN’s source code available at
GitHub 3. For clarity, the layouts are reported in Table 1, i.e., both
networks have more than half a million parameters to optimize. It
is also worth noting that we have releasedMO-EGAN’s source code
on GitHub 4.

Following this line, we used the same parameters of the EGAN
implementation: the batch size is𝑚 = 64, the number of discrimi-
nator’s updating steps is 𝑁𝑑 = 1. Moreover the Adam parameters
are 𝛼 = 0.0001, 𝛽1 = 0.0, 𝛽2 = 0.999.

All experiments of this work were performed using a personal
computer with a GPU Nvidia Tesla V40d, CPU Intel i7-4770 and 8
GB of RAM.
3https://github.com/WANG-Chaoyue/EvolutionaryGAN
4https://github.com/Gabriele91/MO-EGAN

https://github.com/WANG-Chaoyue/EvolutionaryGAN
https://github.com/Gabriele91/MO-EGAN

GECCO ’20 Companion, July 8–12, 2020, Cancún, Mexico Marco Baioletti, Carlos Artemio Coello Coello, Gabriele Di Bari, and Valentina Poggioni

TARGET GAN+Heuristic GAN+Least-square GAN+Minimax EGAN MO-EGAN

Figure 3: Kernel density estimation plots of generated data compared to target data. The first row reported the mixture of 8
Gaussians, The second one are the plots of 25 Gaussians.

Algorithm
8 Gaussians 25 Gaussians

Average Best Average Best
GAN-Heuristic 45.27 33.2 2.80 2.19
GAN-Least-square 3.99 3.16 1.83 1.72
GAN-Minimax 2.94 1.89 1.65 1.55
EGAN (without diversity function) 11.54 7.31 1.69 1.60
EGAN (with diversity function) 2.36 1.17 1.20 1.04
MO-EGAN 0.912 0.677 1.08 0.948

Table 2: MMD (×102) on the Synthetic datasets. Lower values are better because they indicate that the generated distribution
is closer to the target one. MO-EGAN finds the best solutions in both the problems.

5 ANALYSIS
Our analysis was conducted on the synthetic data. This allows us
to understand the collapse issue since we can observe and measure
the distribution of the generated data quite easily.

We performed three types of analysis. The first one is qualitative:
a comparison between the distributions generated by the gener-
ators trained with different algorithms with respect to the target
distributions through a Kernel density estimation plot. The second
one is a quantitive analysis that comes out of the computation of
the MMD metric on all the generators trained. The last one is an
analysis of the Pareto fronts produced during the training phase
with MO-EGAN.

Moreover, we reported a brief study on the computational com-
plexity of the new selection step proposed in this work.

5.1 Qualitative analysis
Regarding the qualitative analysis, Figure 3 shows the Kernel Den-
sity Estimations (KDE) of the target data with respect to data gen-
erated by the best generator trained by GAN (with Heuristic, Least-
Square and Minimax) , EGAN, and MO-EGAN.

The GAN+Heuristic algorithm does not achieve good results on
the tested data: the plots of the 8 Gaussians results are blurry and
unclear; this is also true for the middle lines on the 25 Gaussians

grid. GAN+Least-Square achieves better results on the first dataset
while the middle lines on the 25 Gaussians grid still remains blurry.
Also GAN+Minimax achieves a good result on the first problem,
while the second one remains a hard task; in this case, the most
blurred part is in the middle columns instead of the middle rows.

Regarding EGAN, we can note that the generators produce Gauss-
ian mixture distributions extremely close to the target distributions.
This is also true for the generator trained by MO-EGAN. Neverthe-
less, MO-EGAN’s generators generate the cleanest distributions, in
that a few samples are wrong, in both mixtures. Thus, MO-EGAN’s
generators produce the closest distributions to the target ones.

5.2 Quantitative analysis
For the quantitative analysis, we report in Table 2 the MMD values
computed on each distribution generated in both problems. More
precisely, in the right column is written the algorithm used to train
the generators, and in the second and third one, we report the
MMD’s average across 10 generators and the MMD of the best one
for the mixture with 8 Gaussians, respectively. In the same way,
the fourth and fifth columns are respectively the MMD’s average
between 10 generators and the best MMD for the mixture with 25
Gaussians.

Multi-Objective Evolutionary GAN GECCO ’20 Companion, July 8–12, 2020, Cancún, Mexico

` = 4 ` = 6 ` = 8 ` = 12

Figure 4: Plots of the Pareto fronts across different population sizes. The first row, we reported the Pareto fronts where we
were found the best solution, The second one, we show all points computed during the evolution.

Regarding the first problem, our algorithm performs significantly
better, in fact in terms of average MO-EGAN has halved the MMD
value, and in terms of the best generator computed it improves
performance by +75%. Also, the performance on the second dataset
was improved by +11% for the average and +9% for the best solution.

5.3 Pareto front analysis
Finally, we analyze the Pareto fronts. The objective of this experi-
mental analysis is to figure out if the selection step based on Pareto
dominance is a viable option for this problem.

In fact, if the best solutions are in the middle of the front, this
motivates the application of this kind of selection. While, if the
best solutions are located on one of the two extremes, one of the
two functions is privileged over the other. In other words, in the
latter case, we do not need to optimize two objective functions
and then we could re-define this problem just as a single-objective
optimization problem, considering only the privileged objective.

To this aim, our analysis has shown the Pareto fronts and all
the points found during the evolutionary process in Figure 4, for
the following population sizes: ` ∈ {4, 6, 8, 12}. In the first row, we
show the Pareto fronts for the iterations where the best solutions
ware found. We normalized the MMD between the worst and best
solution. Thus, the big yellow circle is the solution with smallest
MMD value, and vice-versa, the small purple circle corresponds to
the solution with the highest MMD value. In the second row, with
the aims of providing a better visualization, we drew the normalized
rank of the MMD values raised to 100. Thus, like the first plots,
the big yellow circles are the solutions with smaller MMD values
and the small purple circles correspond to the solutions with the
highest MMD values.

From these plots, we can see how the best solutions are found in
the middle of the Pareto front independently of the population size.
This is also visible in the second line, where all the better solutions
were found in the curve’s inflection point.

5.4 Computational complexity
In this section a computational complexity comparison between
MO-EGAN and EGAN is presented.

EGAN and MO-EGAN have the same computational complexity
except for the selection step. EGAN sorts the generators with re-
spect to the fitness values, hence the cost of this step is𝑂 (𝑁 log𝑁),
where 𝑁 is the number of the offsprings produced during the vari-
ation step. Instead, MO-EGAN selection step uses Non Dominated
Sorting, Crowding Alignment Assignment and Sorting procedures.

The complexities of these procedures are, respectively, 𝑂
(
𝑁 2) ,

𝑂 (𝑁 log𝑁) and 𝑂 (𝑁 log𝑁), since MO-EGAN has only two objec-
tive functions 5.

We also found the empirical contribution to the computational
time of the diversity function and the MO-EGAN selection step.
The result of this analysis is shown in Table 3. This comparison
shows the computation times of EGAN with diversity function and
MO-EGAN for each population size ` with respect to the faster
executions on 8 Gaussians and 25 Gaussians, indicated with 𝑡1 and
𝑡2, respectively.

For both datasets, we recorded that the computational cost grows
around 70% when the diversity function is used, while the contri-
bution of using of the multi-objective selection is smaller, since the
cost is increased by another 15.4%.

6 CONCLUSION AND FUTUREWORK
In this work we redefined the single-objective generator optimiza-
tion problem of GAN as a multi-objective one. We did this by re-
designing EGAN as a multi-objective algorithm. More precisely, we
replaced the selection step with the non_dominated_sorting and

5The cost of the Non Dominated Sorting and Crowding Alignment Assignment in the
general case are𝑂

(
𝑀𝑁 2) and𝑂 (𝑀𝑁 log𝑁) , respectively, where𝑀 is the number

of objective functions

GECCO ’20 Companion, July 8–12, 2020, Cancún, Mexico Marco Baioletti, Carlos Artemio Coello Coello, Gabriele Di Bari, and Valentina Poggioni

Algorithm
8 Gaussians 25 Gaussians

` = 4 ` = 6 ` = 8 ` = 12 ` = 4 ` = 6 ` = 8 ` = 12
EGAN (with diversity function) 1.00 × 𝑡1 1.42 × 𝑡1 1.84 × 𝑡1 2.76 × 𝑡1 1.00 × 𝑡2 1.51 × 𝑡2 1.94 × 𝑡2 3.00 × 𝑡2
MO-EGAN 1.10 × 𝑡1 1.61 × 𝑡1 2.16 × 𝑡1 3.32 × 𝑡1 1.17 × 𝑡2 1.73 × 𝑡2 2.60 × 𝑡2 3.42 × 𝑡2

Table 3: Times comparison between EGAN andMO-EGAN, where 𝑡1 and 𝑡2 are the faster computational times for the 8 Gaussians
and 25 Gaussians, respectively.

crowding_alignment_assignment procedures, that manage the qual-
ity and diversity fitness functions in the same way as the NSGA-II
does for problems with two objective functions.

The preliminary results of MO-EGAN show that the application
of the Pareto dominance for the selection phase gets better results
than the original EGAN algorithm on the synthetic datasets adopted.

As part of our future work, we will focus on three points: ex-
periments on real-world distributions, improving the stability of
MO-EGAN and reducing the time complexity of our approach.

For the first point, we are going to apply thismethod on databases
such as FashionMNIST [18], CIFAR10 [6], and CelebA [7] in order to
see if the same behavior observed on the synthetic datasets persists
on these other types of distributions.

About the second point, because of the ability of MO-EGAN to
manage more than one objective function, the objective functions
F𝑞𝑑 could be re-defined using more than one discriminator for
measuring the quality and also for the diversity evaluation of the
generators.

Regarding the way of reducing the time complexity, we are
going to re-define the variation step. A possible idea is to use a
strategy such as the roulette wheel proposed in [12], or the upper
confidence bound algorithm, version1 (UCB1) for a smart selection
of the objective function to be applied.

ACKNOWLEDGMENTS
This work is partially supported by the DMI-Unipg Ricerca di Base
2017 project "Evolutionary Neural Network Optimization".

Carlos A. Coello Coello gratefully acknowledges support from
CONACyt grant no. 2016-01-1920 (Investigación en Fronteras de
la Ciencia 2016) and from a project from the 2018 SEP-Cinvestav
Fund (application no. 4).

REFERENCES
[1] Kalyanmoy Deb, Amrit Pratap, Sameer Agarwal, and TAMT Meyarivan. 2002. A

fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE transactions on
evolutionary computation 6, 2 (2002), 182–197.

[2] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. 2009. ImageNet: A
Large-Scale Hierarchical Image Database. In CVPR09.

[3] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,
Sherjil Ozair, Aaron Courville, and Yoshua Bengio. 2014. Generative adversarial
nets. In Advances in neural information processing systems. 2672–2680.

[4] Arthur Gretton, Karsten M Borgwardt, Malte J Rasch, Bernhard Schölkopf, and
Alexander Smola. 2012. A kernel two-sample test. Journal of Machine Learning
Research 13, Mar (2012), 723–773.

[5] Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent Dumoulin, and Aaron
Courville. 2017. Improved Training of Wasserstein GANs. In Proceedings of
the 31st International Conference on Neural Information Processing Systems
(NIPS’17). Curran Associates Inc., Red Hook, NY, USA, 5769–5779.

[6] Alex Krizhevsky. 2009. Learning multiple layers of features from tiny images.
Technical Report.

[7] Ziwei Liu, Ping Luo, XiaogangWang, and Xiaoou Tang. 2015. Deep Learning Face
Attributes in the Wild. In Proceedings of International Conference on Computer

Vision (ICCV).
[8] Xudong Mao, Qing Li, Haoran Xie, Raymond YK Lau, Zhen Wang, and Stephen

Paul Smolley. 2017. Least squares generative adversarial networks. In Proceedings
of the IEEE International Conference on Computer Vision. 2794–2802.

[9] Z. Pan, W. Yu, X. Yi, A. Khan, F. Yuan, and Y. Zheng. 2019. Recent Progress
on Generative Adversarial Networks (GANs): A Survey. IEEE Access 7 (2019),
36322–36333.

[10] Danilo Jimenez Rezende, Shakir Mohamed, and Daan Wierstra. 2014. Stochastic
Backpropagation and Approximate Inference in Deep Generative Models. In
Proceedings of the 31st International Conference on International Conference
on Machine Learning - Volume 32 (ICML’14). JMLR.org, II–1278–II–1286.

[11] Alex Smola, Arthur Gretton, Le Song, and Bernhard Schölkopf. 2007. A Hilbert
space embedding for distributions. In International Conference on Algorithmic
Learning Theory. Springer, 13–31.

[12] Jamal Toutouh, Erik Hemberg, and Una-May O’Reilly. 2019. Spatial evolutionary
generative adversarial networks. In Proceedings of the Genetic and Evolutionary
Computation Conference. 472–480.

[13] Aäron van den Oord and Nal Kalchbrenner. 2016. Pixel RNN. In ICML.
[14] Aäron van den Oord, Nal Kalchbrenner, Lasse Espeholt, Koray Kavukcuoglu,

Oriol Vinyals, and Alexander Graves. 2016. Conditional Image Generation with
PixelCNN Decoders. In Advances in Neural Information Processing Systems 29.
4790–4798.

[15] Chaoyue Wang, Chang Xu, Xin Yao, and Dacheng Tao. 2019. Evolutionary gen-
erative adversarial networks. IEEE Transactions on Evolutionary Computation
23, 6 (2019), 921–934.

[16] Zhengwei Wang, Qi She, and Tomas E Ward. 2019. Generative adversarial
networks: A survey and taxonomy. arXiv preprint arXiv:1906.01529 (2019).

[17] Xian Wu, Kun Xu, and Peter Hall. 2017. A survey of image synthesis and editing
with generative adversarial networks. Tsinghua Science and Technology 22, 6
(2017), 660–674.

[18] Han Xiao, Kashif Rasul, and Roland Vollgraf. 2017. Fashion-MNIST:
a Novel Image Dataset for Benchmarking Machine Learning Algorithms.
arXiv:cs.LG/cs.LG/1708.07747

[19] Fisher Yu, Yinda Zhang, Shuran Song, Ari Seff, and Jianxiong Xiao. 2015. LSUN:
Construction of a Large-scale Image Dataset using Deep Learning with Humans
in the Loop. arXiv preprint arXiv:1506.03365 (2015).

	Abstract
	1 Introduction
	2 Background
	2.1 Generative Adversarial Networks
	2.2 Multi-Objective Problem

	3 MO-EGAN
	3.1 Variation
	3.2 Evaluation
	3.3 Selection

	4 Experiments
	4.1 Datasets
	4.2 Metric
	4.3 Implementation details

	5 Analysis
	5.1 Qualitative analysis
	5.2 Quantitative analysis
	5.3 Pareto front analysis
	5.4 Computational complexity

	6 Conclusion and future work
	Acknowledgments
	References

