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Abstract—The linear antenna array design problem is one Current mathematical programming techniques have several
of the most important in electromagnetism. When designing |imitations, including the fact that most of them are likéty
a linear antenna array, the goal of the designer is to achieve get trapped in local optimal points and are highly sensitive

the “minimum average side lobe level” and a “null control” to the initial h point. Eor thi | red
in specific directions. In contrast to the existing methods hat 0 the iniial search point. =or this reason, several r B

attempt to minimize a weighted sum of these two objectives have opted for the use of metaheuristics (mainly, evolatign
considered here, in this paper our contribution is twofold. algorithms) to reduce the Side Lobe Levels (SLLs) and
First, we have considered these as two distinct objectiveshich  the Null Control (NC) from the designed arrays (see for
are optimized simultaneously in a multi-objective framewak. example [2, 3, 12, 21, 22]). Such techniques are a suitable

Second, for directivity purposes, we have introduced anotér . . .
objective called the “maximum side lobe level” in the design alternative to the conventional methods because of their

formulation. The resulting multi-objective optimization problem  ability to deal with difficult problems featuring complex

is solved by using the recently-proposed decomposition-ead landscapes. Most of these approaches tackle the objectives
Multi-Objective Particle Swarm Optimizer (dMOPSO). Our  simultaneously creating a single objective function byirtigk
experimental results indicate that the proposed approachs able a weighted sum of the objective functions. Clearly, when

to obtain results which are better than those obtained by two . h ighted thod. th luti btained
other state-of-the-art Multi-Objective Evolutionary Alg orithms using such a weighted sum method, the solution obtaine

(MOEASs). Additionally, the individual minima reached by Will depend on the values of the specified weights, and
dMOPSO outperform those achieved by two single-objective determining such weights is not an easy task.

evolutionary algorithms. Motivated by the inherent multi-objective nature of the
linear antenna design problem and to avoid the problems
associated with the use of weighted sum approaches, in
Antenna arrays play an important role in detecting anthis paper, we present a multi-objective formulation of the
processing signals arriving from different directions.wée problem of our interest and we adopt a recent approach called
days, antenna arrays are preferred because the use oflezomposition-based Multi-Objective Particle Swarm Opti
single element has several limitations in terms of diréttiv mizer (dI(MOPSO) for solving it. In contrast to the plethora
and bandwidth. Antenna arrays overcome such defects byworks which consider only the average SLL and NC as the
associating each antenna element to different electrival aobjective functions, we consider here an additional object
geometrical configurations, so that it can have its beanfmaximum SLL) in order to increase the overall directivity
pattern modified with an amplitude and phase distributioof the antenna array. As we will see later in this paper, the
called the weights of the array. After post-processing thsolutions obtained by dMOPSO outperform those obtained
antenna outputs, the signals are weighted and summedhlyp two other state-of-the-art multi-objective evolutiopa
give the antenna array beam-pattern. On the other hand, thgorithms (MOEAs). Additionally, the individual minima
antenna array pattern synthesis problem consists of findiodptained by dMOPSO also outperform those obtained by
weights that satisfy a set of specifications on the beam pawo single-objective evolutionary algorithms reportedlie
tern. Antenna arrays have found several applications iarrad specialized literature.
sonar, radio, and third generation wireless communication The remainder of this paper is organized as follows.
systems [4, 7, 20]. Section Il provides the basic concepts adopted in this paper
The main goal in the design of an antenna array structuess well as the multi-objective formulation of the problem of
is to find the positions of the array elements that produceaur interest. In Section Ill, we provide a short description
radiation pattern as a whole that closely matches the dksiref the multi-objective particle swarm optimizer adopted in
pattern [19]. Recently, the synthesis of linear array el@se this work. Section IV shows the results obtained in our
separated in a non-linear fashion has become immenselyperimental study. In Section V, we give a brief discussion
popular among researchers working in electromagnetisiof the results obtained. Finally, in Section VI, we provide

|. INTRODUCTION



our conclusions and some possible paths for future researchAssuming an uniform excitation of amplitude and phase
(i.e., I, = 1 and ¢,, = 0 for all the elements), the array
1. BASIC CONCEPTS ANDPROBLEM FORMULATION factor can be written as:

A. Notions of Multi-Objective Optimization

N
An unconstrained multi-objective optimization problem AF(®) =25 I coslk - z. - cos 3
(MOP), can be stated as follows (@) ; [ 2 ®
min  {F(z)} (1) The main goal of the optimizer is to find the locations
€N

zn Of the array elements that will result in an array beam
where ) defines the search space afAdis defined as the with minimum Side Lobe Level (SLL) and nulls at specific
vector of the objective functions: directions but subject to certain constraints. In an ardenn
A T array, if the adjacent elements are located very near, than t
F:Q—RY Fz)=(fil@)..., ful2) can lead to mutual coupling effects. On the other hand, if the
where f; : R* — R is an unconstrained function. are located very far, then, occurrence of grating lobes can
In multi-objective optimization, it is desirable to produc t@ke place. Therefore, the distance among adjacent element

a set of trade-off solutions representing the best possiUﬂ?edS to be constrained. The constraints which are coesider
compromises among the objectives (i.e., solutions such tHg" hormalizing the element spacing is given by:

no objective can be improved without worsening another).

In order to describe the concept of optimality in which we 05<2zn41—2n <Line[L,N—1]

are interested, the following definitions are introduced][1  The first element along the positiveaxis needs to be
placed such that it is neither too close nor too far from the
Definition 1. Let z,y € ; we say thatz dominates y first element on the negativeaxis. Therefore, the constraint
(denoted byx < y) if and only if, fi(z) < fi(y) and for the first element is given by:
F(z) # F(y).
03<2<05
Definition 2. Let z* € §2; we say thatr* is aPareto optimal

solution, if there is no other solutiane  such thaty < *. In contrast with most of the design formulations of an-
’ tenna arrays which consider only the Average Side Lobe

Definition 3. The Pareto Optimal Set PS is defined by: ~ L€Vel (ASLL)—see for example [5, 17], we consider here an
additional objective function for the side lobe suppressio
PS = {z € Q|x is a Pareto optimal solutign the Maximum Side Lobe Level (MSLL). This objective func-
Definition 4. The Pareto Optimal Front P is defined by: tion is considered _for dl_rect|V|ty purposes. The dlred:y\of_
an antenna array is an important parameter to be considered
PF = {F(z)|z € PS} during the design stage, since the design is considered to be
) ) more efficient if the directivity is increased. In this study
The main goal of a MOEA is to generate as manyesides the ASLL reduction we have also given special
(different) elements of the Pareto optimal set as possm'@mphasis on reducing the two maximum lobes: the adjacent
while maintaining a distribution of solutions as uniform aggpe on thdeft sde (MSSL1) and the adjacent lobe on the
possible along the Pareto front. right side (M SLL?2). This ensures that the energy contents is
B. Multi-Objective Formulation of the Problem mostly confined to the maximum lobe, thereby increasing the

directivity of the entire array. Then, the two cost functon

An antenna array is a confi_guration of individual radiatin i.e., ASLL and MSLL) to be minimized are mathematically
elements that are arranged in an space and can be useqlQ.q as:

produce a directional radiation pattern. For a linear amaen
array, let us assume that we ha2é/ isotropic radiators 1 ' )

placed symmetrically along the-axis (the array geometry faste = Z A, |AF(¢)|d¢ (4)
is shown in Fig. 1). The array factor in the azimuth plane ‘ bui

can be written as: f]WSLL = |AF(¢AJSLL1)| + |AF(¢AJSLL2)| (5)

N where M SLL1 and MSLL2 are two lobes by the side of
AF(¢) =2 Incos[k-zn-cos(¢) +¢n]  (2) the MSLL,
n=1 As these two objective functions are not conflicting, a
weighted sum of these objectives could be taken. Therefore,
we define the overall objective function for the side lobe
ppressiorfsy . as a weighted sum of the above objectives,
enoted by:

¢u1'

where I, is the excitation amplitudek = 27” is the wave
number,z, is the location of thez-th element,p,, defines
the phase and represents the angle measured from the arr

line.

1without loss of generality, we assume minimization fsrr =a- fspa+ 8- fust (6)
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Fig. 1. Symmetrically placed linear array.

wherea = 0.2 and 8 = 0.1, and the null controlfyc¢ is A

defined as:
fno =Y |AF () (7)
k

In this way, equations (6) and (7) are considered as
two distinct objectives that are simultaneously optimized
a multi-objective framework. A MOEA will allow us to
find out the right balance between the two above objec-
tive functions. When a MOEA is used, we obtain a set 2 Arainable Objcive Se
of solution which represent the best compromises among f;
such objectives. Therefore, a MOEA will allow us greater
flexibility in designing a linear antenna array than singIeFig- 2. lllustration of the Penalty Boundary Intersecti®*B() approach.
objective evolutionary approaches, which provide only one
optimal solution per run, which might not completely satisf
the designer’s needs.

such that:

F o * TA N

I1l. THE MULTI-OBJECTIVE PARTICLE SWARM di = W andd; = H(F(l’) —2") —diy
OPTIMIZER

A Pareto optimal solution to a MOP, under some mil

assumptions, can be an optimal solution to a scalar optimiz

tion problem in which the objective is an aggregation of allErl1 th;)s Wasll’ a Za;gto;gnr;}al p0|_nth|ts ;eacgteo;_bygnl?:mamg
the objective functiongd;’s. Therefore, an approximation of a subprooblem detined by the Weighted VecioFlg. < Shows

: . -the illustration of the PBI approach.
the Pareto optimal front can be achieved by decomposmgAt each cycle, dMOPSO tries to find the best solution to

a MOP into several single-objective optimization problems ) )
This is the main motivation behind current decomposition.gach subproblem. Thusf tgeobal beﬂ_set Gvest) IS Qefmed
based MOEAs [15, 18, 23, 24]. in a natural way by storing the solutions that minimize each

bproblem and these solutions are identified at each cycle.
Recently, Zapotecas and Coello [23] proposed a nov%:ep ersonal best = . of the ith particle. represents th)é
decomposition-based Multi-Objective Particle Swarm Opti est F;olution providzébé; by the partigle o tk,fé s?.lbproblem

izer (AMOPSO). This MOEA empl d it @ ide . ]
;P;Zn?;véork simila)r to ![ie one aggnpﬁeogsb; M?)CEX}BO?ZZ; ince, at the beginning, a particle does not have a previous
However, a i + ))-selection mechanism (selecting the bes|Enovement, the best personal position is initialized with th

: : . ition as the particle, i.e,;; = z;.
solution to each subproblem) is employed instead of a mecha ¢ POS! 1 b v .
P ) pioy Once the global best set has been defined, the velocity

ism t dat ighborhood dopted in MOEA/D. =2 } .
anism fo update a neignborhood as adopted in and the position of each particle are updated according to

In dMOPSO, a swarm oV particlesP = {z1,...,zn}iS . i oo
randomly initialized. Each particle possesses a flightaigto the traditional PSO flight equations:

d/vherex € R", z* = min{ f;(x)|x € Q} and\ € A, beingA
a well-distributed set of weighted vectors previously dedin

v; and an ages;, both of which are initially set to zero. vf“ = wol + car(Tpe; — xt) + cora(zgp — ab)
Along the flight circuits, a particle tries to minimize one of et = gt ottt
the subproblems in which the MOP is decomposed. Each 9)

subproblem is defined by a weighted vectorccording to  wherew > 0, ¢1,¢2 > 0, 71,72 € (0,1), v;, Zpp; andxgp ;
the Penalty Boundary Intersection (PBI) approach, which iepresent the velocity, the personal best and the global bes
stated as [24]: position for thei*" particle, respectively.
In dMOPSO, a reinitialization mechanism based on the
minimize: g(z|\, 2*) = dy + 0ds (8) age of each particle is employed. This mechanism provides



diversity along the flight circuits. When a particle does noivhereA denotes the Lebesgue measure amdR”* denotes
improve its personal position in a flight cycle, then thea reference vector being dominated by all valid candidate
particle increases (by one) its age. On the other hand, sblutions inA.

a particle exceeds a certain age threshdlg),(the particle Here, we consider the hypervolume difference to a refer-
(including, its velocity, its age and its personal best) ience setR (commonly, the Pareto optimal front), and we
reinitialized according to the following equation: will refer to this indicator ad 7, which is defined as:

xt+1(]) =N (xgb,i(j) - ‘T;Db,i(j)7 |‘rqb7,(,7) _ pri(j)l) IH(A) = IH(R) - IH(A)

2 (10) where smaller values correspond to higher quality as oghose

whereN (m, o) represents a random number using a norma? the original :—IypervollumelgdlcabtlolfH(A). q K h
distribution with meanm and sigmas. As in [23], in our Since we SOIV]? area r-1worf prof em, Whe do r_10t nOVk\J’It N
experiments we usg, — 2. Pareto optimal front. Therefore, for each design problem,

The solutions contained ify..; at the final generation, we executed all the algorithms for a considerably large

are reported as an approximation to the Pareto set. Fopg]mberofgeneratmns, and the union of all the nondominated

detailed description of dMOPSO, the interested reader §ﬁ)_ut|0ns obtained was used as the reference f&efor
referred to [23]. this performance measure. For computihig the reference

vectorr was defined by using the maximum values of each
IV. EXPERIMENTAL STUDY objective function found by all the algorithms over all the

runs in each test problem.
In order to assess the performance of dMOPSO, we

compared its results with respect to those generated by tBe Multi-Objective Evolutionary Approaches
Nondominated Sorting Genetic Algorithm Il (NSGA-II) [6] For each design problem, we performed 30 independent
and the Multi-Objective Particle Swarm Optimizer based oruns with each algorithm. Each run was restricted to 700

Decomposition (MOPSQO/D) [18]. generations. For each problem, we used a population size
N = 100. Therefore, we performed 70,000 fitness function
A. Performance Measures evaluations for each test problem.
For comparing results, we adopted the performance mea-Since dMOPSO and MOPSO/D are two decomposition-
sures described next. based algorithms, we used the same scalarization function

1) R2 Indicator (Iz): The R2 indicator {z) proposed for a fair comparison, i.e_., we used the PBI approach with
in [9] quantifies the distance between the nondominated &t= 5- For all the algorithms (dMOPSO, MOPSO/D and
or a reference seR and an approximation of the nondom-NSGA-l), the parameters were set as the best suited para-
inated set4 given by an algorithm. Mathematically, it can Metric set-up chosen with guidelines from their respective

be expressed as: references, see [6, 18, 23]. Since the solutions obtained fo
each MOEA are not always nondominated, we extracted the
Tra(A) = dea (A R) (11) best compromise solutions by using the fuzzy membership

[A| function based method outlined in [1].

whereR is a reference set,* is the maximum value reached As we mentioned before, the performance of each MOEA

by the utility functionu with the weight vector\, on an was evaluated using the two performance measures previ-

L : X ously defined {r2 and Iz). The results are summarized in
t t, i.e., u* = . A denotes th " .
approximation setd, 1.€., u r;leajx( uA(y) enotes the Tables I, 1ll and V. Each table displays the best, the worst,

set of weight vectors\ € R*. the average value, as well as the standard deviation of each

Here, we employed the augmented Tchebycheff functioperformance measure, for each test instance. For an easier
as the utility functionu. For each test problem, the referencenterpretation, the best results are presentebaialface for
vector R was defined by using the minimum values of eacleach performance measure and test problem adopted.
objective found by all the algorithms.

2) Hypervolume difference to a reference set (I7): The
Hyperv0|ume IH) indicator was proposed by Zitzler [25] The individual minima found by each MOEA, i.e., the
This performance measure is Pareto compliant [26] arf@inimum value reached at each objective functigia.
quantifies the approximation of nondominated solutions t8nd fnc¢), were compared with respect to those achieved
the Pareto optimal front. The hypervolume corresponds 8y two single-objective bio-inspired algorithms: a stamta
the non-overlapped volume of all the hypercubes formed Hyarticle Swarm Optimizer (PSO) [11] and an elitist Genetic
a reference point (given by the user) and each solutipin ~ Algorithm (GA) [8]. For each design problem, we performed

the Pareto set approximatioh It is mathematically defined 30 independent runs with each single-objective evolutipna
as: approach. Both algorithms were tested using a population

size of 100 individuals. As in the multi-objective evolutio
Ig(A)=A U {zlp <z <r} (12) ary approaches, each run was restricted to 70,000 fitness
pEA function evaluations (i.e., 700 generations). Howevercesi

C. Sngle-Objective Evolutionary Approaches



we used the single-objective evolutionary approaches for
minimizing separately each objective function, we divided
the computational cost for each objective, i.e., we employe
350 generations (35,000 fitness function evaluations)dohe
one.

TABLE |

BEST, WORST, MEAN AND STANDARD DEVIATIONS OF THE

FOREXAMPLE 1

PERFORMANCE MEASURES /2 AND I57) ACHIEVED BY EACH MOEA

The PSO algorithm was tested using the traditional inertia
equations. The inertia weight was set linearly decreasing

from 0.9 to 0.4. The flight constraints andc, were set in
2. The GA was implemented using a roulette-wheel selection
mechanism, one-point crossover and an adaptive feasible

mutation operator [13].

The results obtained by each algorithm are reported in
Tables I, IV and VI. Each table displays the individual
minima and the directivity (in decibels (dB)) obtained by
each algorithm for each test problem. The best result for
each adopted test problem is presentedafdface

D. Test Problems and Numerical Results

In our study, we compared the performance of the above
mentioned MOEAs in three different test problems. In the
following, we describe these design problems and their
corresponding numerical results are also presented.

1) Example 1: In the first example we have designet
22-element array having minimum SLL in bands [0°, 8
and [98°, 180°] with one null in the direction 81°.

Table | provides the results achieved by the multi-objex
evolutionary approaches (i.e., dMOPSO, MOPSO/D
NSGA-II) with the adopted performance measurgs; (and
I7). From this table, it is possible to see that the best ve
for both indicators are obtained by dMOPSO. That me
that dAMOPSO obtained a better approximation to the P:¢
optimal front than MOPSO/D and NSGA-Il. These resl
are validated in Fig. 3, where we show the bi-dimensic
Pareto front obtained by all the MOEAs. The figure cle:
indicates that by using dMOPSO, it is possible to ach
better trade-off solutions between the two conflicting ab
tives, namelyfs;; and fyc¢. In Table Il, we have provided

fNC

Metric | Value Type | MOPSO/D | NSGA-II dMOPSO
Best 5.76E-007 | 4.36E-005| 1.72E-007

T Worst 7.66E-005 | 8.72E-004| 6.63E-005
: Mean 3.86E-005 | 1.87E-004| 1.65E-005
Sd. Dev 1.65E-005 | 5.83E-005| 1.84E-005

Best 5.87E-006 | 4.87E-005| 3.28E-006

I Worst 1.54E-004 | 7.54E-004| 9.78E-005
H Mean 8.20E-005 | 2.87E-004| 6.62E-005
Sd. Dev 4.29E-005 | 9.87E-005| 2.68E-005

TABLE 1l

INDIVIDUAL MINIMA AND DIRECTIVITY ACHIEVED BY EACH
ALGORITHM FOR EXAMPLE 1

1

0.9

0.8

0.7

0.6

0.5

0.4r

0.1 0.11

0

Algorithms | fssr Nnc Directivity (dB)
dMOPSO | 0.1056 | 0.0231 17.587
NSGA-II 0.1672 | 0.0476 17.282
MOPSO/D | 0.1352 | 0.0532 17.354
GA 0.1852 | 0.1054 16.192
PSO 0.1762 | 0.0976 16.823
5 ‘ ‘
O MOPSO/D
o O dMOPSO |
O  NSGA2
o
© 8
o 8
o o
: 3
E 2
o

12 013 014
fSLL

0.15 0.16 0.17 0.18

the individual minima values and the value of directivity fo Fig. 3. Best solutions obtained by dMOPSO, MOPSO/D and N3iGa¢

the linear antenna array obtained by the considered singfexample 1

objective evolutionary algorithms (i.e., PSO and GA). From
this table, we can see clearly that the individual mini
obtained by dMOPSO is considerably better than tt
obtained by the single-objective evolutionary approac
Finally, Fig. 4 plots the normalized power (in dB) vers
the elevation angle (in degrees) for all the algorithms ¢
the design corresponding to Example 1.

2) Example 2: In the second example we have increa 3
the number of elements of the array thereby consideri § “eor
26-element array having minimum SLL in bands [0°,8
and [98°, 180°] which has one null in the direction 20°. 8oy

In Table lll, the performance measures adopted for
comparison of the MOEAs are reported. For both, fhe ooy

and the Iz indicators, the best values were obtained

dMOPSO. Fig. 5 shows the bi-objective Pareto front obta ~ *°

by the MOEAs tested here. From this figure, it is poss
to see that AMOPSO achieved a better approximation to the
Pareto optimal front than the two other MOEAS, although the
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X ——pso
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20 40

I I
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. . .
120 140 160 180

Azimuth angle(deg)

Fig. 4. Array patterns obtained for Example 1
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Fig. 5. Best solutions obtained by dMOPSO, MOPSO/D and NSIG&r Fig. 6. Array patterns obtained for Example 2
Example 2

As it is possible to see, dAMOPSO achieved a better approxi-
distribution was not better. HOWGVET, a better distribotadf mation to the Pareto 0pt|ma| front than the other MOEASs. |In
solutions is relevant only when there is a good approximatioraple VI, the individual minima values are reported. From
to the Pareto front. In Table II, we can see that the indiMiduahjs table, we can see that dAMOPSO not only obtained better
minima values obtained by dMOPSO are better than thosgsults in terms of the indicators adopted here, but also
obtained by the single-objective evolutionary approachegptained individual minima that outperformed those oteéin
Fig. 6 shows the normalized power versus elevation anglg, the single-objective evolutionary approaches. Finally
plot for all the algorithms over the design corresponding tgjg. 8 shows the normalized power versus elevation angle
Example 2. plot for all the algorithms over the design corresponding to

Example 3.
TABLE Il
BEST, WORST, MEAN AND STANDARD DEVIATIONS OF THE
PERFORMANCE MEASUREY/R2 AND I7) ACHIEVED BY EACH MOEA
FOREXAMPLE 2

TABLE V
BEST, WORST, MEAN AND STANDARD DEVIATIONS OF THE
PERFORMANCE MEASURES IRy AND I7) ACHIEVED BY EACH MOEA
FOREXAMPLE 3

Metric | Value Type | MOPSO/D | NSGA-II dMOPSO
Best 6.83E-007 | 5.75E-006] 3.57E-007 Value Type | MOPSO/D | NSGA-T | dMOPSO
; Vbrst 2.63E-004 | 8.03E-004| 9.02E-005
o - - - Best 6.86E-007 | 5.05E-006| 3.01E-007
Mean 5.08E-005 | 1.76E-004| 3.10E-005
Vibrst 8.I3E-005 | 4.83E-004| 7.75E-005
§d Dev | 3.82E-004 | 1.65E-004| 8.35E-005 Trs |1 el ML S
Best 5.20E-005 | 1.07E-004] 2.66E-005 Sd Dev | 8.63E-005 | 9.27E-005| 5.82E-005
; Viorst 8.I3E:004 | 3.76E-003| 5.67E-004 =
a = 1.76E-005 | 8.20E-005| 1.03E-005
Mean Z4.98E-004 | 9.24E-004 | L.65E-004
Vibrst 6.43E-005 | 6.65E-004| 5.33E-005
§d Dev | 2.63E-004 | 5.83E-004| 3.76E-004 Ig e I e
Sd Dev | 4.54E-006 | 5.92E-006 L.87E-006
TABLE IV

INDIVIDUAL MINIMA AND DIRECTIVITY ACHIEVED BY EACH

TABLE VI
ALGORITHM FOR EXAMPLE 2

INDIVIDUAL MINIMA AND DIRECTIVITY ACHIEVED BY EACH
ALGORITHM FOR EXAMPLE 3

Algorithms | fssr nc Directivity (dB)
dMOPSO | 0.1130 | 0.0012 17.9230 Algorithms Directivity (dB
NSGA-l | 0.1575] 0.0543 |  17.7540 pooiims | Jesp | Jno | Directvly (8)
GA 0.1865 | 0.0965 16.0030 MOPSO/D | 0.1557 | 0.0203 17.5630
PSO 0.1733 | 0.0511 17.2130

3) Example 3: In the third example, we consider a 26-
element array having minimum SLL in bands [0°, 82°] and
[98°, 180°] which has two nulls in the direction 12°and 60°. V. DISCUSSION OFRESULTS

For this design instance, Table V shows the results ob- According to the results presented in Tables | to VI,
tained by the MOEAs. The best values for both indicatordMOPSO has clearly shown its superiority in terms of the
(Ir2 and ), were obtained by dMOPSO. In Fig. 7, the bi-performance measures considered here. These tablesgrovid
objective Pareto front achieved by the MOEAs is presented. quantitative assessment of the performance of dMOPSO



0.2

based on decomposition (i.e., dMOPSO and MOPSO/D),
o NSGA2 the algorithms try to minimize different problems defined

0187 o oS Il by a well distributed set of weighted vectors and the PBI

: approach. In other words, the solutions are guided by each
] weighted vector, and the parameteenforces the search in

a specific direction, providing diversity in the search. The

single-objective evolutionary algorithms adopted doratvé

a similar mechanism to maintain diversity and are simply

] guided by the aim of improving, as much as possible, the
best solution obtained so far.
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foL In this work, we have incorporated an additional objective
function (called the Maximum Side Lobe Level (MSLL))
Fig. 7. Best solutions obtained by dMOPSO, MOPSO/D and N$iG8r  into the linear antenna array design problem which has been
Example 3 formulated as a bi-objective optimization problem. The two
objectives considered here, are optimized simultaneaasly

. a multi-objective framework. Then, a MOEA is adopted as
o S "N ‘ dMOPSO our search engine. Our results indicate that MOEAs provide
Desired Null Desired Null NSGA2 s . ) .
_pp| Diredtion Direction ——— SDMOPSO greater flexibility in the linear antenna array design peof|
i 75;\0 by producing a set of solutions from which the designer
,,

can choose the most preferred one according to his/her
own particular preferences. In our study, we adopted one of
the recently developed variants of PSO for multi-objective
optimization called dMOPSO, which was developed by two
of the co-authors of this paper. The adopted algorithm has
been tested in three different instances of the design @nobl

of our interest. The results obtained by dMOPSO were
compared with respect to those obtained by two state-of-the

-60

Gain(db)

-80

-100

120 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ art MOEAs, namely NSGA-1l and MOPSO/D. Additionally,
0 2 4 0 80 anglleo(?jeg) 120 140 160 180 the individual minima obtained were compared with respect
to those attained by two single-objective algorithms (a PSO
Fig. 8. Array patterns obtained for Example 3 approach and an elitist GA)'

The results indicate that dAMOPSO outperforms all the
other approaches with respect to which it was compared

in terms of thelz, and I; indicators. That means that (including the single-objective techniques). In fact, tie
the solutions obtained by dMOPSO constitute a better aplOEAs adopted were able to outperform the individual
proximation to the Pareto optimal front than the solutionghinima obtained by the single-objective optimizers used
obtained by either MOPSO/D or NSGA-II. As it is possiblein our study, giving evidence of the benefits of the more
to see in Tables I, IV and VI, dMOPSO also reachedliversified search that they perform.
better values for the individual minima than those reported As part of our future work, we are interested in having
by two single-objective evolutionary approaches. It is thvor more control of the array pattern by using dMOPSO for op-
noting that dAMOPSO was not the only MOEA capable tdimizing the excitation amplitude and phase of each element
obtaining good individual minima. In fact, the other twoin the array. We also aim to investigate the use of dAMOPSO
MOEAs also achieved better individual minima than those other (more complex) antenna design problems which are
obtained by the single-objective evolutionary approactMes currently modeled as single-objective optimization peohs.
believe that this good performance of the MOEAs evaluatefidditionally, we are also interested in hybridizing dMOPSO
in our experimental study can be attributed to their diwgrsi with direct search methods available in the mathematical
maintenance mechanism, which allows a better exploratiggmogramming literature (e.g., Hooke-Jeeves [10] or Nelder
of different regions of the search space than that provideédead [16] method) aiming to improve its performance. The
by a single-objective optimizer. In the case of NSGA-Iljidea is to use the evolutionary strategy to explore the searc
this diversity is provided by its crowded-comparison op@ra space as a whole and the mathematical programming method
[6], which promotes the exploration of regions of the Paretto exploit promissory regions within it (acting as a local
front which contain isolated solutions. In the case of MOEAsearch engine).
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