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Abstract—This paper employs an evolutionary algorithm to  In chess, the game tree consists of rougltl§? nodes [26] so
adjust the weights of the evaluation function of a chess engg. it is not possible to generate it completely. Instead, itatdr
The selection mechanism of this algorithm chooses the viral to generate thaearch treewhich is only a part of the game
players (individuals in the population) that have the highst  tree Anprincipal variationis a sequence of moves where both
number of problems properly solved from a database of tactial  ayers play optimally. In order to find the principal vaidat
and positional chess problems. This method has as its main 75 chess game, it is necessary to evaluate the nodes without

advantage that we only mutate those weights involved in the . - ;
solution of the current problem. Furthermore, the mutation children (leave nodes) in the search tree through the evaiua

mechanism is based on a Gaussian distribution whose stanchr ~ function.

deviation is adapted through the number of problems solved The main components of a chess engine are:
each virtual player. We show here how, with the use of this '
method, we were able to increase the rating of our chess engin e The search algorithm.

in 557 Elo points (from 1760 to 2317).
e The move generator.

I. INTRODUCTION e The evaluation function.

Computer chess is a topic that has attracted the interest Figure 1 shows the basic architecture of a chess engine.

of different scientists around the world. 1947, Alan Tur-  Next, we will briefly describe each of these components.
ing [28] designed a program to play chess.22, as part

of the celebrations for his centenary birth, this prograns wa _ The search algorithmfinds the principal variation from a
finally implemented to play a game against the former worlddiven position on the board. The main algorithms that can
chess champion Garry Kasparov. 1849, at Bell Telephone be used in this component are: minimax, negamax, alpha-
Laboratories, Claude Shannon [26] proposed two stratégies Peta, negascout, quiescence, among others. The basic ap-
implement a chess engine. “Strategy A’ considered all psssi  Proach for games between two adversaries is rthirimax
moves to a fixed depth of the search tree (i.e., this is a brutalgorithm [19], [22]. The negamax algorithn{6] is a more
force approach). “Strategy B” used chess knowledge to eplo €legant implementation, which is also easier to program tha
the main lines to a greater depth. Shannon was the first tf€ minimax algorithm because it applies the same operator

estimate that the total number of possible chess gam@g38.  at all levels in the tree. The main search method for games
between two adversaries is the alpha-beta algorithm [18wh

Computer chess has also attracted the interest of diffelag the advantage of refraining from evaluating some nodes
ent companies around the world, including Bell Telephongyhen unnecessary. It is also possible to use variants of the
Lgb(_)(atones, Chessbdsand IBM, among others_. The most alpha-beta pruning algorithm such as thegascout[23] or
significant event that related computer chess with companiqne principal Variation Searchmethod [9]. Thequiescence
was held in1997, when IBM's supercomputebDeep Blue  gigorithmis used to extend the search tree to steady positions
defeated the reigning world champion in a classical chesg, which material exchanges, and king’s checks (among sfher
match. This supercomputer was based mainly on Shannon’s Agnnot influence the resulting evaluation of a position.
strategy, and was capable of evaluatittg million positions ) _ ] _
per second. In spite of its importance, this event did ngp sto  Together with the search algorithm, teealuation function
the research in this area. Today, chess programs focus moke the most important part of a chess engine. As we saw

on Shannon’s B strategy and usually include meta-heusisticabove, it is only possible to represent the search tree down
in their search algorithms. to a certain depth. Therefore, it is necessary to evaluae th

. ) ) leaf nodes through the evaluation function. This functien i
Chess is a game of perfect information between twoysed to determine in a heuristic way the relative value of a
adversaries. The number of different positions reachabl@ f  position with respect to a particular side. The aim is that th

the beginning of the game is known asstate-spaceand a  evaluation function reflects the knowledge of the game.
game treds a representation of the state-space of a chess game. , o ,
The evaluation function is composed by a set of weights

Lwww.chessbase.com that store knowledge of the chess positions. A successful




Gomboc et al. [15] applied an empirical gradient method
Move generator to adjust the weights of a chess program. In this work, they
'\ used more thaf00, 00 chess positions from a Chess Informant
magazine to successfully adjust weights of the chess engine
Crafty which is a state-of-the-art chess engine with a rating of
2614 points.

position
moves

David-Tabibi et al. [7] adjusted the weights of their chess
engine with a genetic algorithm through reverse engingerin
(by mimicking the behavior of another chess program that
served as a mentor). With this approach, they had an iniegest
A participation in the2008 World Computer Chess Champi-
onship.

Y

Seach algorithm

In [8], David-Tabibi et al. extended their previous related
work [7]. Basically, they extended their previous expetirse
Y and carried out matches between the mentor and the evolved
organisms. With their method, they obtained the sixth place
the 2008 World Computer Chess Championship.

position
value

Evaluation function

Vazquez-Fernandez et al. [31] tuned the weights of their
evaluation function through a database of chessmasterggame
In this work, the chess material values obtained were simila
to the values known from chess theory.
adjustment of these weights allows a chess engine to play _ , 3 i
better. Developers of commercial chess programs must tune Vazquez-Fernandez et al. [32] used exploration and ex-
these weights using exhaustive manual test procedures. TIREIation to carry out the tuning of the weights of their sbe
main drawback of this method is the large amount of time€ngine. In the exploration step, they used an evolutionary
(even years) needed to adjust the weights, and therefore t orithm with supervised learning. The selection mecérani

need to automate this task. In fact, this is the focus of th&! this algorithm uses games from chess grandmasters to
work reported in this paper. In Figure 1, the search algorith decide which virtual player would pass to the next genenatio

invokes the evaluation function which returns a numericall NiS Step is similar to their previous related work [31] witte
value associated with this position. difference that now they adjusted a larger number of weights

(form 5 to 29 weights). With this method, they obtained an
Themove generatogenerates all possible movements fromincrease in the rating of their chess engine frofi3 to 2205.
a given position on the board. In Figure 1 the search algorith In the exploitation step, they used the Hooke-Jeeves dhyori
invokes the move generator which returns the available sioveto continue the adjustment of the weights for the best Virtua
on the current position. player obtained in the previous step. Using this algoritten a

, a local search engine, they increased the rating of thessche
The chess programs also ubash tableswhich store  enpgine from2205 to 2425 points.

information about positions that had already been searched

Then, if the same position is reached again, no search is Vazquez-Fernandez et al. [30] used tactical chess prable

conducted, since the previously generated informationlavou to adjust the weights of their chess engine. This methodavallo

be used in that case. to mutate only those weights involved in the current prohlem

preventing mutations that can lead to incorrect values for

The remainder of this paper is organized as follows. Théuture evaluations of board positions. Such a method adapts

previous related work is presented in Section Il. The ed&dna  the mutation rate based on the number of problems that have

function and the chess engine adopted in our experiments afen solved for each virtual player.

described in Section lll. Our proposed approach is destribe ) ) ) )

in Section IV. Our experimental results are presented in The presentwork is a continuation of our previous related

Section V. Finally, our conclusions and some possible path¥0rk [30], in which the main differences are:

for future research are provided in Section VI.

Fig. 1. Basic architecture of a chess engine.

e Before, we only used tactical chess problems. Now,
we add positional chess problems to our database.

Il.  PREVIOUS RELATED WORK e We consider now the weights associated with the

There are several papers in which the problems of adjusting bishop’s and queen's positional value.

the weights of a chess engine has been dealt with using e
co-evolution (tournaments among virtual players) (sed,[27
[12], [13], [4] [5], [3], [17], [21], and [29], among others)

Experimentally, we found the ideal number of virtual
players within the rangés, 50].

e We use a different mutation operator. In our previous

This paper adopts chess problems to carry out the weights
adjustment of a chess engine. Next, we will describe the svork
that make use of supervised learning to perform this sort of
adjustment.

work, we used Michalewicz’s non-uniform mutation
operator [20]. Now, we employ a mutation operator
based on a Gaussian distribution because we gathered
empirical evidence that indicates the superiority of



this operator with respect to Michalewicz's mutation

operator. !

PRook = Z Xrook,i * Frook,i (6)
It is important to mention that with these modifications, we i=1

were able to increase the rating of our chess engine fresn

(see [30]) t02317 (see Section V) rating points. The concept ~ where:

of rating in a chess engine is explained in Appendix A. Xrook,i 1S the weight of factor, ,o,;-

Fro0k,1 is the mobility of the rook.

. OUR CHESSENGINE Frook,2 1S true if the rook is on an open column; otherwise,

it is false.
For a particular side, we evaluated a given position on thé"...x,3 is true if the rook is on the seventh row; otherwise, it
board with the following expression: is false.

Frook,a 1S true if there are two rooks on the seventh row;

. » otherwise, it is false.
eval = materialValue + positionalValue Q)

where: The bishop’s positional value is given by:

r Pbishop = Xbishop,l * Fbishop,l (7)
materialValue = Z X; (2)

4 where:
=1

Xbishop,1 IS the weight of factotFy,snop,1.

X, represents the material value for piegeandr is the Fyishop,1 18 the bishop’s mobility.

number of pieces of one side in particular, regardless of the
king. The knight's positional value is given by:
On the other hand,

4
s Prnight = Z Xinight,i * Frnight,i (8)
positional Value = Z P; 3 =t

—
! where:

XKknight,i 1S the weight of factotF'xpigne,i.

Frnignt,1 is the mobility of the knight.

Frnigne,2 i true if the knight is in the periphery of the board;
otherwise, it is false.

where:
P; represents the positional value for piece
s is the number of pieces of one side in particular.

The king s positional value is given by: Frnignt,3 is true if the knight is defended by a pawn;
otherwise, it is false.
4 Frenignt,a 1s true if the knight cannot be evicted by an enemy
Pring = Z Xiing.i * Fring.i (4)  pawn; otherwise, it is false.
=1
The pawn’s positional value is given by:

where:
Xking,i IS the weight of factotF,;,4 ; (afactoris a positional 4
characteristic of a particular piece, for example, its ritghi P _ X W F _ 9
Fring. is the sum of material values of pieces that defend Pawn = Z; Pawn,i * & Pawn,i (9)
their king. =
Fring,2 is the sum of material values of pieces that attack the where:
king. .

X, is the weight of factorF;.

Fpawn,1 is true if the pawn is doubled; otherwise, it is false.
Fpawn,2 is true if the pawn is isolated; otherwise, it is false.
Fpawn,3 is true if the pawn is central (i.e., if it is ind, ¢5,
The queen’s positional value is given by: d4, d5, e4, €5, f4 or f5); otherwise, it is false.

Fpawn,a is true if the pawn is passed; otherwise, it is false.

Fring,3 is true if the king is castled; otherwise, it is false.
Flring,a is the number of pawns that protect their king.

Pqueen = Xqueen,l * Fqueen,l (5) . . . .

The material value of a piece is a static value. Shannon [26]
where: assigned100, 300, 330, 500 and 900 points for the pawn,
Xqueen,1 1S the weight of factotF;. knight, bishop, rook and queen, respectively. In this wiile,
Fiueen,1 1S the queen’s mobility. pawn’s material value is alwayg)0.

The positional value of a piece is a dynamic value and
The rook’s positional value is given by: depends on many factors such as mobility, board location,



strength, etc. In other related works (for example [12]g th number of problems that have been solved is zero for each
positional value of a piece only depends on its board lonatio virtual player. Line7 sets the weights that can be mutated or
because these values are stored in arraysé4ofquares. The not (because of the importance of this part of the algorithm,
idea of our proposal is that the chess positional valuesrdkpe in Section IV we discuss it in more detail). Lirte sets the
directly on the characteristics of the position. It is expeidhat  starting position of the problem. Line 9 returns the solution
while more features are taken into account in calculatireg thm of the problemp. Line 10 sets the generation counter
positional value of a piece, this value will be more accurateequal to zero. In lined1 to 23 we carry out the adjustment
and therefore, the position will be better evaluated. of the weights for the problem during Gmax generations.

The purpose of this paper is to tune the weights ofln lines 11 to 18, each virtual player computes its next move

) . . n, and if this movement matches the movementthen this
e?éjart;?:;i(ﬁ)’ [(fz)l] S])d (g)a.(a\?t;’b(:s)ear;? (go)slijt?cl)ggle;ﬁgﬁg::tic irtual player establishes that it has found the solutiothi®
ghegss roblgms extracted from [24] [1%] [25] and [1] The%roblemp and it increases its number of problems solved in

ness p X LD : 1. In lines19 to 21 we go to the next problem if all the virtual
aim is that the adjustment of the weights performed by our) . ..o "have found the solution to the problemin line 22
approach leads to an increase in the rating of our chessengi e apply the selection mechanism and in I2& we apply

To carry out our experiments, we implemented a chesghe mutation operator.
engine with the following characteristics:

Algorithm 1 EvolutionaryAlgorithm()

. IrEitIre"?r']uc[)]r-lB]of movements through the alpha-beta algo- 1. P — chooseProblems(S, numP)

2: for each problenp in P do
e Stabilization of positions through the Quiescence al- 32 for i =1— N do
gorithm [2] that takes into account the exchange of 4 foundSolution[i]« FALSE
material and king’s checks. 5: solutions[i]« 0
6:
7

end for
* Use of hash tables [33]. establishWeightsToMutate()

In these experiments, our chess engine used the databas& setPositior]gQ)
Olympiad.abkin the opening phase. This database is included 9 ™ < solution(p)

with the graphical user interfac&rena? 10: g0
11:  while g++ < Gmaz do
IV. OUR PROPOSEDAPPROACH 12: for i=1— N do _
13: n «— nextMovement (i)
In our previous related work [30], we used tactical chessia: if m == n then
problems to adjust the weights of our chess engine. Now;s: foundSolution[i] = TRUE
we use tactical and positional chess problems to adjusethesis: solutions[i]++
weights. Under this approach, the virtual players imprinert 17 end if
playing strength with respect to our previous work. 18: end for
The evolutionary algorithm adopted in [30] adjusts the 19: if allProblemsFoundSolution()==TRUBen
weights of NV virtual players, so that the virtual players with <.- br_eak
more problems properly solved acquire the right to pass t021f end 'f.
the next generation. The idea is the following: each virtualzzj selec'qon()
player is asked if it can solve the current problem. If 50,23' mutat_lon()
the player increases in one its number of problems solved.4f end while
Once all the virtual players have been asked about the durred™ end for

solution, theN/2 virtual players which have properly solved

the highest number of problems are selected, and they becontialization

eligible to mutate the remaining half. This process is eakri . - :
out for Gmaz = 50 generations or until all the virtual players N our previous related work [30], the initial population
have solved the current problem. The algorithm was tested fgconsisted of N = 8 virtual players. Now, we useV =

N =8,9,...,50 virtual players, and for each of these values,3,10,...,20 virtual players (We .choose even values to have
it was tested foB0 to 60 problems in the database (half of the /2 parents andV/2 offspring in subsequent generations).

problems are tactical in nature, and the other half areiposit 1€ weights of the virtual players were randomly initiatize
in nature). within their allowable bounds using a uniform distribution

These bounds were defined by a chess expert. The left and

‘Algorithm 1 shows the evolutionary algorithm used to right bounds &j1ow and X i, respectively) are shown in
adjust the weights of our chess engine. Lihegyets the set Taple I. ' '

P which consists ofium P problems chosen at random from

the database of problenss Half of these problems are tactical sglection

in nature, and the other half are positional in nature. L2ne ) ) )

chooses a particular problemfrom the setP. In lines 3 to The selection mechanism of this step chooses ihe

5, we establish that the solution of the problemand the virtual players having the highest number of problems prigpe
solved, and these virtual players are mutated to generate th

2http:/www.playwitharena.com/ remainingN/2 virtual players.




TABLE I. THIS TABLE SHOWS THE WEIGHTS THE LEFT BOUND OF

THE RANGE, THE RIGHT BOUND OF THE RANGE THE AVERAGE WEIGHT problems chosen from the database for adjusting the weights

VALUE AND THEIR STANDARD DEVIATION FOR THE WEIGHT j AT THE END So, the expressioft-solutionsi]/numP+1) is equal to one
OF THE EVOLUTIONARY PROCESS FOR THE BEST RUNTHE BOUND (or zero) if the virtual playet has not resolved any problem
VALUES WERE CHOSEN BY AN EXPERT IN CHESS from the database (or has resolvedmP problems from
X, X;i0m | Xjnign Value = the database). Wit_h this _contribution to the present vv_d1k, t
Xpawn 0 0 100.00 | 0.00 mutation of the weightX; is adap'ged through th_e evolutionary
Xromiane 200 200 29729 | 0.00 process. The idea of the terBu is cover practically all the
Xoionop 200 200 312.16 | 0.00 Gaussian bell at the beginning of the evolutionary process.
Xrook 400 600 493.57 19.44
Xgueen 800 1000 907.25 18.32 Database of Games
KXking, Fy —100 100 78.83 9.27
Xring, Py —100 100 | —84.82 | 6.67 In our experiments, we used a database consistint)@f
Xking, Fy —100 100 61.230 | 6.56 chess tactical problems ant0 chess positional problems.
Xking, Fy —100 100 81.12 | 5.56 The tactical problems were taken from [24], and the position
Xqueen, Py —100 100 9.14 | 201 problems were taken from [10], [25] and [1].
Xrook,Fy —100 100 22.44 9.87
Xrook, Fy —100 100 49.22 16.56
X o0k, Fg ~100 100 16.23 | 18.09 V. EXPERIMENTAL RESULTS
Xrook, s —199 100 1222 | 307 We carried out two experiments. In the following sub-
Xbishop, Fy —100 100 12.03 2.45 . . . .
sections we describe them in detail.
Xknight,Fy —100 100 74.25 2.34
Xknight, Fy —100 100 —51.67 3.25
Xknight,Fy —100 100 19.34 | 4.07 A. Experiment A
Xknight,Fy —100 100 84.56 2.29 . ) )
Xpawn, Fy —200 200 | —133.92 | 10.76 In the first experiment, we tuned the weights of equa-
Xpawn, Fy 200 200 | —78.56 | 18.32 tions (2), (4), (5), (6), (7), (8) and (9). These weights were
Xpawn, Fa —200 200 131.19 | 15.09 random values generated with a uniform distribution within
Xpawn, Fy —200 200 43.33 | 12.65 their allowable bounds. If, after mutation, the weight;

falls, either to the left or to the right of the allowable rang

[ X tows Xj nign], then its value is set t&; ;o.,, OF t0 X pigh,

. respectively. The number of virtual playeré took values

Mutation Operator in the range[8,50] (we choose even values to havwé/2
One offspring was created from each surviving parent byparents andN/2 offspring in subsequent generations), and

mutating all weights in equations (2), (4), (5), (6), (7)) éhd the number of training chess problemsimP took even
(9). values in the range from8(), 100] (we choose even values to

i havenum P/2 tactical chess problems andm P/2 positional
In our previous related work [30], we adopted cpags problems).

Michalewicz’'s non-uniform mutation operator [20]. In
this paper, we employ a mutation based on a Gaussian This experiment consisted of performing twenty runs for
distribution because in all the experiments that we perémtm each value ofN combined with each value ofumP. At
the Gaussian operator outperforms Michalewicz’s mutationhe end of each run, we carried 0200 games between
operator. the evolved virtual player and the non-evolved virtual play
Table Il shows the be&0 results in which the evolved virtual
player achieved the best percentage of victories agaimst th
non-evolved virtual player. The runs are sorted in descendi
X; =X, + N(u,0) (10) order based on the percentage of victories (coluiims%),

so the best result is shown in row In this row, the evolved

whereN (1, o) is a Gaussian random variable with mgan virtual player won189, drew 11 and lost0 games against

and standard deviation. The mean is given by the midpoint the non-evolved virtual player (the percentage of games won
of the range of the weighk;, that is: by the evolved virtual player wa87.25%). We can see in

this table that the evolved virtual player always exceedied t
winning percentage of the non-evolved virtual player by a
p= (Xj 100 + Xj high)/2 (11)  wide margin. We can also see that the ideal number of virtual
players was in the range fron8 to 26, where22 was the
where X ;,., and X nion, are the left and right bounds of most frequent value (with eight repetitions). In this table
the weight.X;, respectively. The standard deviation is givencan see that the highest values of the variabhlen P are in
by: the best20 runs. Therefore, it is expected that if we increase
the number of training chess problems in this variable, the
winning percentage of the evolved virtual player with regar
to the non-evolved virtual player will also be increased.

Mutation was implemented according to:

o = 3(—solutions[i]|/numP + 1)u (12)

wheresolutions[i] denotes the number of problems solved  In this experiment we used a search depth of four plles (
by the virtual playeri, and numP denotes the number of ply corresponds to the movement of one side).



TABLE II. NUMBER OF GAMES WON DRAWN AND LOST FOR THE BEST . \Vin

VIRTUAL PLAYER IN GENERATION 50 AGAINST THE BEST VIRTUAL PLAYER AT Games Draw
GENERATION 0. I | oss
Row | Wins | Draws | Losses| Wins% N | numP 0-0-200 0-2-198 0-8-192 0-10-190
1] 189 11 0 | 97.25% | 20 96 200
2| 189 10 1 | 97.00% | 22 98 150
3| 188 12 0 | 97.00% | 22 98
4| 188 12 0 | 97.00% | 20 96 100
5| 188 12 0 | 97.00% | 24 92 50
6 | 187 13 0 | 96.75% | 18 90
[ 13 0 ] 96.75% | 20 96 2500 2300 2100 1900 Rating
8 | 187 13 0 | 96.75% | 22 88
9| 188 11 1| 96.75% | 20 92 Fig. 2. Histogram of wins, draws and losses for the non-alvirtual
10 | 186 14 0 | 96.50% | 22 94 player againsRybka 2.3.2a
11 | 186 13 1| 96.25% | 24 94
12 | 186 13 1| 96.25% | 22 92 . Win
13 | 185 14 1| 96.00% | 22 96 Games Draw
14 | 184 16 0 | 96.00% | 24 96 BN | oss
15 | 185 13 2 | 95.75% | 22 94
6 152 5 T T o5.7% | 20 98 200 29-40-131 77-48-75 110-30-60 166-27-7
17 | 185 13 2 | 95.75% | 24 98 I .
18 | 184 15 1| 95.75% | 26 96 150
19 | 183 16 1| 95.50% | 20 90 100
20 | 183 15 2 | 95.25% | 22 86 50 . -
2500 2300 2100 1900 Rating
B. Experiment B Fig. 3. Histogram of wins, draws and losses for the evolvetlai player

. . . againstRybka 2.3.2a
In this experiment, the non-evolved virtual player was

calledV P, o1 —evolveq @nd played200 games against the chess

program Rybka 2.3.2ausing each of the following ratings: VI. CONCLUSIONS ANDFUTURE WORK
2500, 2300, 2100 and 1900. A histogram of our results is _ . )
shown in Figure 2. For examplé] Poon_ecvorvea WON, drew In this paper, we presented an evolutionary algorithm to

and lost0, 0 and 200, respectively, againsRybka 2.3.2aat  adjust the weights of the evaluation function of a chessrengi
2500 rating points;V Pron—cvoivea WON, drew and losp, 2 The selection mechanism of this algorithm gives priorityite
and 198, respectively, againsRybka 2.3.2aat 2300 rating virtual players who had properly solved more chess problems
points. The same experiment was carried out with the evolve§om our database.

virt_ual_ player which corresponds to the first_ row in Table II. In our previous related work, we only used tactical chess
This virtual player was callef Pe,oiveqa- The histogram of the  roplems. Now, we added positional chess problems to our
results is shown in Figure 3. In this Figure, we can see thagatabase. Also, we added the weights associated with the
V' Peyolvea WON, drew and lose9, 40 and 131, respectively, hishop's and queen’s positional value. The mutation mecha-
againstRybka 2.3.2aat 2500 rating points;V Peyoived WON,  pism was also modified. Before, this mechanism was based on
drew and lost'7, 48 and75, respectively, against Rybka 2.3.2a \jichalewicz’s non-uniform mutation operator. Here, the-mu
at 2300 rating points, and so on. tation mechanism used a Gaussian distribution whose stnda
e?{sviation is adapted through the number of problems solved

Based on these played games, we used the Bayesely gach virtual player. With these changes, we increased the
tool” to estimate the ratings of the virtual players @Rgbka 5ing of our chess engine 67 rating points (from1760 to
2.3.2ausing a minorization-maximization algorithm [16]. The 2317).

obtained ratings are shown in Table Ill. In this table we can
see that the rating for the virtual play&P,on—cvoived WaS From our experiments, we concluded that the ideal number
1501, and the rating for virtual playeV P.,oiveq Was 2317, of virtual players was in the range froi8 to 26, where22
representing an increase &f6 rating points between the non- was the most frequent value. We also found that, as one would
evolved and the evolved virtual players after the evolutign
process for the first run in Table II.

TABLE III. R ATINGS OF THE VIRTUAL PLAYERS ANDRybka2.3.2a

It is worth mentioning that these experiments were also car{ rRank | Name Elo | + |- | Games| Score | Oppo. | Draws
ried out by using Michalewicz non-uniform mutation operato (%) %)
instead of the mutation operator based on a Gaussian distrib | ! Rybkazsoo | 2510 | 89 | 37 | 400 | 88% | 1909 | 10%
tion. In this case, the best evolved virtual player regedea S [ Petved | BTN | 9 L 80D OTR 290 | 8%
. . . ybkaz300 2312 34 34 400 75% 1909 13%
rating of 2282 points againsRybka 2.3.2a 1 Rybhasios | 2207 | 35 | 36 | 200 55% T 1000 T 10%
6 Rybkaigoo 1994 38 39 400 54% 1909 9%
5 V Pon—evol 1501 52 62 800 1% 2256 3%

Shttp://remi.coulom.free.fr/Bayesian-Elo/



expect, as more chess problems are used in the training,phase
the strength of the virtual players gets better.

It is worth mentioning that the material values of the chess
pieces are similar to the values known from chess theory.

As part of our future work, we plan to add weights to the
evaluation function of our chess engine in order to incrégse
rating as much as we can. Also, we plan to use better strategie
that allow us a more efficient exploitation and exploratidn o
the search space. Similarly, it would be interesting to test
our method with other mutation operators as well as with
other evolutionary algorithms such as differential eviolot
evolution strategies, etc.
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APPENDIX A [4]

The Elo rating system is a method for calculating the
relative strength of players in games with two opponentfisuc
as chess. In this system, each player has a numerical rating?!
and a higher number denotes a higher playing strength of the
player concerned.

The formula to obtain the Elo rating of a player is given
by [11]: (6]

(7]
Rycw = Rolg + K (outcome — W),

(13)
where:

Ryew IS the new rating.

R,q is the old rating.

K is a constant that depends on the rating. 9]
outcome is the game result.

W is the expected or percentage score given by the logistic

(8]

curve. [10]
o [11]
The outcome is given by:
1, for a win [12]
outcome = ¢ 0.5, for a draw

0, foraloss [13]

The expected or percentage scoveis given by:
1 [14]

W = — , (14)

1 + 10 Roppon:g;}t Bold [15]
here Ropponent iS the opponent’s rating. [16]

This method was created by the mathematician Arpad Eld17]
and has been adopted by the United States Chess Federation
(USCF) sincel960 and by the Fédération Internationale des
Echecs (FIDE) sinc&970. Table IV shows the classification [1g]
of the USCF.

TABLE IV. ELO RATING SYSTEM
Interval Level
2400 and above| Senior Master
2200 — 2399 Master
2000 — 2199 Expert
1800 — 1999 Class A
1600 — 1799 Class B
1400 — 1599 Class C
1200 — 1399 Class D
1000 — 1199 Class E
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