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Abstract—Many real-world multi-objective optimization prob-
lems have hundreds or even thousands of decision variables,
which contrast with the current practice of multi-objective
metaheuristics whose performance is typically assessed using
benchmark problems with a relatively low number of decision
variables (normally, no more than 30). In this paper, we propose
a cooperative coevolution framework that is capable of opti-
mizing large scale (in decision variable space) multi-objective
optimization problems. We adopt a benchmark that is scalable
in the number of decision variables (the ZDT test suite) and
compare our proposed algorithm with respect to two state-of-the-
art multi-objective evolutionary algorithms (GDE3 and NSGA-II)
when using a large number of decision variables (from 200 up to
5000). The results clearly indicate that our proposed approach is
effective as well as efficient for solving large scale multi-objective
optimization problems.

I. INTRODUCTION

In the real word there are many problems that require
the optimization of two or more objective functions at the
same time. These are known as multi-objective optimization
problems (MOPs), and their solution involves finding the
best possible trade-offs among the objective functions being
optimized. This set of solutions is called the Pareto optimal
set, and their corresponding objective function values form the
so-called Pareto front.

MOPs have been solved during many years, using mathe-
matical programming techniques [1]. However, the fact that
a wide variety of MOPs in real-world applications tend to be
nonlinear, and perhaps even non-differentiable, has contributed
to the remarkable increase that the use of metaheuristics
has experienced, mainly in the last 10 years. From the
many metaheuristics in current use, Evolutionary Algorithms
(EAs) are the most popular in the specialized literature.
Multi-objective evolutionary algorithms (MOEAs) have the
advantage of being population-based, which allows them to
generate several elements of the Pareto optimal set in a single
run, whereas mathematical programming techniques tend to
produce a single element per run.

The motivation of this work is that many real-world prob-
lems have hundreds or even thousands of decision variables,
which constrasts with the current practice of multi-objective
metaheuristics that validate their performance using bench-
mark problems such as the Zitzler-Deb-Thiele (ZDT) [2], the
Deb-Thiele-Laumanns-Zitzler (DTLZ) [3], and the Walking-
Fish-Group (WFG) test problems [4], which are normally

adopted with a relatively low number of decision variables
(usually, adopting a maximum of up to 30 variables). In
fact, scalability in decision variable space is a topic that has
been only scarcely studied in the context of multi-objective
optimization using metaheuristics.

To the best of the authors’ knowledge, no MOEA has
been designed so far, with the explicit goal of being able to
deal with a very large number of decision variables. This is
perhaps motivated by the fact, that most researchers assume
that the currently available MOEAs should be able to work
properly with a large number of decision variables. However,
there is empirical evidence that indicates that most of the
currently available multi-objective metaheuristics significantly
decrease their efficacy as the number of decision variables of
the MOP increases [5], [6]. Here, we propose a cooperative
coevolutionary framework that allows a MOEA to deal with
a large number of decision variables. The reason for using
such a framework, is because there is evidence that indicates
that cooperative coevolutionary schemes have been found to
be effective for solving large scale global optimization prob-
lems [7]. Interestingly, cooperative coevolutionary MOEAs
have been proposed before (see for example [8], [9]), but none
of them has been designed with the explicit purpose of solving
large scale MOPs, as we do in this paper.

II. BASIC CONCEPTS

In the following definitions we are assuming, without loss
of generality, the minimization of all the objectives.

We are interested in solving problems of the type:

minimize~f(~x) = [f1(~x), f2(~x), . . . , fk(~x)]T (1)

subject to:

gi(~x) ≤ 0 i = 1, 2, . . . ,m (2)

hi(~x) = 0 i = 1, 2, . . . , p (3)

where k is the number of objective functions fi : Rn → R,
gi, hj : Rn → R, i = 1, ...,m, j = 1, ..., p are the constraint
functions of the problem and ~x = [x1, x2, . . . , xn]T the vector
of decision variables. We thus wish to determine from the set
Ω (where Ω is the feasible region) of all the vectors that satisfy
(2) and (3) to the vector ~x∗ = [x∗1, x

∗
2, . . . , x

∗
n]T that are Pareto



optimal. To describe the concept of optimality that we will
adopt, we need to introduce a few additional definitions.
Pareto Optimality: We say that a vector of decision variables
~x∗ ∈ Ω (where Ω is the feasible region) is Pareto-optimal if
∀~x ∈ Ω ∧ ∀i ∈ {1, . . . , k}:

fi(~x) = fi(~x
∗) ∨ @i ∈ {1, . . . , k} : fi(~x) < fi(~x

∗) (4)

Pareto Dominance: A vector ~u = [u1, . . . , uk]T is said to
dominate another vector ~v = [v1, . . . , vk]T (denoted by ~u � ~v)
if and only if ~u is partially less than ~v, i.e.,:

∀i ∈ {1, . . . , k}, ui ≤ vi ∧ ∃i ∈ {1, . . . , k} : ui < vi (5)

Pareto Optimal Set: For a given MOP ~f(~x), the Pareto
Optimal Set P ∗ is defined by:

P ∗ := {~x ∈ Ω|@~x′ ∈ Ω, ~f(~x′) � ~f(~x)} (6)

Pareto Front: For a given MOP ~f(~x) and its Pareto optimal
set P ∗, the Pareto front PF ∗ is defined by:

PF ∗ := {~f(~x), ~x ∈ P ∗} (7)

III. PREVIOUS RELATED WORK

In the multi-objective research community, parameter scal-
ability has been rarely considered before, in contrast with
objective function scalability (the so-called many-objective
optimization) which has been a hot research topic in recent
years [10], [11]. The only work in this direction that we have
found in the specialized literature is the small study presented
in [12] in which ZDT1 is solved with up to 100 decision
variables.

Regarding studies on parameter scalability in MOEAs, the
most significant ones that we are aware of are those reported
in [5], [6], in which eight multi-objective metaheuristics are
analyzed. Such metaheuristics include three genetic algorithms
(GAs) (NSGA-II, SPEA2, and PESA-II), an evolution strategy
(PAES), a PSO (OMOPSO), a cellular GA (MOCell), a
Differential Evolution algorithm (GDE3) and a Scatter Search
algorithm (AbYSS). All of these approaches are represen-
tative of the state-of-the-art in evolutionary multi-objective
optimization, and were studied when solving a benchmark of
parameter-wise scalable problems (the ZDT test suite). The
authors analyzed the behavior of these eight multi-objective
metaheuristics when using a number of decision variables that
ranged from 8 up to 2048. The hypervolume indicator was
adopted to define a stopping criterion, and the study paid
particular attention to the computational effort required by
each algorithm for reaching the true Pareto front of each
problem. These papers provided empirical evidence of the
decrease in efficacy that multi-objective metaheuristics have
when increasing the number of decision variables. These
defficiencies are precisely the main motivation of the work,
in which our aim is to present a framework that allows to use
a MOEA for large-scale multi-objective optimization.

Although parameter scalability is a topic that has been
only scarcely studied in the literature on evolutionary multi-
objective optimization, large-scale optimization has been the

focus of an important amount of research in global (single-
objective) optimization using evolutionary algorithms, and we
relied on such studies to develop our proposal. The currently
available approaches for large-scale global optimization can
be roughly divided in two groups: (1) those that decompose
a high-dimensional objective vector into small subcomponents
which can then be handled by conventional EAs, and (2) those
that approach the problem by disturbing the population of
the EA or by combining different evolutionary methods [7].
From these methods, cooperative coevolution has been one of
the most successful approaches for solving large and complex
problems, through the use of problem decomposition. There
is plenty of evidence of the success of this sort of approach
in large scale global optimization [13], [14].

A. Cooperative Coevolution

In nature, coevolution is the process of reciprocal genetic
change in one species, or group, in response to another. The
original framework of cooperative coevolution (CC) utilized
within evolutionary algorithms was originally introduced by
Potter and De Jong [15]. This framework uses a divide-and-
conquer approach to split the decision variables into subpopu-
lations of smaller size, so that each of these subpopulations is
optimized with a separate EA. The original CC framework for
high-dimensional optimization can be summarized as follows:

1) Decompose an objective vector into m low dimensional
subcomponents.

2) Set j = 1 to start a new cycle.
3) Optimize the j-th subcomponent with a certain EA for

a predefined number of fitness evaluations (FEs).
4) If j < m then j + +, and go to Step 3.
5) Stop if the stopping criteria are satisfied; otherwise go

to Step 2 for the next cycle.

Here, a cycle consists of one complete evolution of all
subcomponents and the main idea is to decompose a high-
dimensional problem into several low-dimensional subcom-
ponents and evolve these subcomponents cooperatively for a
predefined number of cycles. CC has shown to be a good
framework for solving large scale problems [13], [14]. Since
the cooperative coevolutionary framework can be extended
in a relatively easy way to multi-objective optimization, a
number of approaches have been proposed which incorporate
it to improve the performance of multi-objective EAs. This
is evidenced by MOCCGA [16], which integrates coopera-
tive coevolution with Fonseca and Fleming’s MOGA [17].
MOCCGA uses a dominance rank for individuals, in which
a count of the number of individuals dominating others is the
fitness criterion. In MOCCGA, the objectives are evaluated
twice for each individual both with the best ranked individuals
from each subpopulation, as well as with randomly selected
individuals. This follows the approach described by Potter and
De Jong, which aims to decrease the premature convergence
observed on some test problems adopted with the original
CC framework. In MOCCGA, the subcomponents are ranked
only within the same subpopulation. It is important to mention



that the number of evaluations adopted by the authors is not
reported anywhere in the paper.

Another approach is presented in [9], where a cooperative
coevolutionary algorithm for multi-objective optimization is
presented. This algorithm subdivides the decision variable
space and determines which portions of the decision variables
intervals are being used and discards portions of the intervals
that it deems that are not being used by the search process. It
also subdivides intervals so that separate sub-populations can
operate on the portions of these intervals which contribute
to the search. Sub-populations which are not making con-
tributions are eliminated from the search. There exist more
examples of the use of CC as a framework, but none of
them focuses on the solution of MOPs with a high number
of decision variables, which is the main motivation in this
work.

IV. OUR PROPOSED APPROACH

Our proposed approach is based on the previous work done
in large scale global optimization. The main idea of our
proposed approach is to make use of the divide-and-conquer
technique applied in the CC framework (such as in [15]),
but transfering this concept to multi-objective optimization.
We also adopt some additional concepts taken from other
CC based frameworks found in the specialized literature [7].
Our aim was to combine the best of this previous work, and
enhance it with our own ideas that are focused on the specific
features found in evolutionary multi-objective optimization.

In the large scale global optimization literature, it has
been reported that approaches based on the use of CC as a
framework, have a poor performance in nonseparable func-
tions, because the vector of decision variables in this kind
of problems is composed by elements that interact with each
other and are not independent. Because of this problem, it
has been found that dividing the problem into random groups
provides better results than applying a deterministic division
scheme, when dealing with nonseparable functions [13], [14].
Motivated by this previous work, our proposed approach
divides the vector of decision variables into S subpopulations,
each one representing a subset of all the decision variables at a
time rather than taking only one variable at a time. Our scheme
assigns each decision variable to its corresponding group in a
random way, since this will increase the chance of optimizing
some interacting variables together. Our proposed approach is
described next.

A. Description of our proposed approach

Our proposed approach works as follows: at the beginning,
it divides the vector of decision variables ~x of dimension
D ∈ N into S ∈ N subcomponents of equal size. Each
subcomponent is created from a random grouping of decision
variables in order to increase the probability of grouping
interacting variables in non-separable problems. At the same
time, S subpoputaions (species) are created, each one with
NP individuals, and these S subpopulations are assigned their
corresponding decision variables in a random way. This means
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Fig. 1. Graphical representation of the subcomponents (species) creation.
Here, we assume a vector of decision variables of dimension D which is
divided into S subcomponents of dimension m, created in a random way
from the original vector of decision variables and assigned to the S existing
species, where D = m ∗ S.

that to each subpopulations, it corresponds a subcomponent
from the S which have been already done. Thus, every
subpopulation will have a total of m decision variables. This
is graphically depicted in Figure 1.

Once the subpopulations are created, the algorithm does a
random initialization of all the individuals across all subpopu-
lations. Then, the algorithm performs the cycles in which the
evolution of each of the subpopulations is done for a given
number of generations. This will continue until the stop con-
dition is reached, and at the end, the solutions that are globally
nondominated (i.e., with respect to all the subpopulations),
constitute the outcome of the algorithm. The collaboration
among the subpopulations takes place in the next way: in the
first generation, random collaborations are formed and evalu-
ated, obtaining a random individual from each subpopulation
and forming a complete set of solutions to be evaluated in
their objective functions. Then, the results from the evaluation
are assigned back to the individual under evaluation. After the
first generation, the resulting child subpopulations Q1 to QS

will be evaluated by forming collaborations with randomly
selected components from the best non-dominated levels in
the subpopulations, P1 to PS , of the previous generation.
This is shown in Figure 2. The algorithm iterates until some
termination condition is fulfilled (usually when a certain
predefined number of cycles is reached). At the end, we apply
a fast non-dominated sorting procedure as in the NSGA-II [18]
to the best non-dominated levels of each subpopulations in
order to obtain a final set of solutions for the problem being
solved. A summary of the way in which our approach works
is presented in Figure 3 and in Algorithm 1.

B. GDE3

Since our proposed approach adopts the GDE3 algorithm
as its basic multi-objective optimizer, we provide next a brief
description of this technique.

GDE3 [19] is the third version of the so-called Generalized
Differential Evolution (GDE) algorithm [20], which is able to
deal with multiple objectives. It starts with a population of
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i are the offspring of each species and P t
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There are S subpopulations, where S is the number of species, inside of which their corresponding decision variables have been assigned, with the method
described in Figure 1.
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Fig. 2. Cooperative coevolutionary collaboration architecture from the
perspective of species number 1. Here, we assume that we have S species,
where the representative of each species for the collaboration is taken
randomly from its best level of non-dominated solutions.

random solutions, which becomes the current population. At
each generation, an offspring population is created using the
differential evolution operators; then, the current population
for the next generation is updated using the solutions of both,
the offspring and the parent populations. Before proceeding
to the next generation, the size of the population is reduced
using non-dominated sorting and a pruning technique aimed at
diversity preservation, in a similar way as NSGA-II, although
the pruning used in GDE3 modifies the crowding distance of
NSGA-II in order to solve some of its drawbacks when dealing

Algorithm 1 Cooperative Coevolutionary Framework
Input: NP , Cycles, Gmax, NumEsp
Output: SolutionSet
Pobs← Populations(NP,NumEsp)
InitializeSpecies(Pobs)
for j ← 1 to Cycles do

for i← 1 to NumEsp do
for k ← 1 to Gmax do
MOEA(Pobs[i])

end for
end for

end for
SolutionSet← ObtainNonDominatedSet(Pobs)
return SolutionSet

with problems having more than two objectives.

C. Experimental Studies

For the purposes of this study, we adopted a benchmark that
is scalable in the number of decision variables: Zitzler-Deb-
Thiele test suite [2]. We selected four problems from this suite:
ZDT1, ZDT2, ZDT3 and ZDT6. The main characteristics of
these problems are described next. ZDT1 has a convex Pareto
front which is continuous and uniformly distributed. ZDT2
has a non-convex Pareto front. ZDT3 has 5 discontinuous



non-convex fronts. ZDT6 has a non-uniform mapping between
objective function space and decision variable space and has
a non-connected Pareto front.

We compare our proposed approach with respect to two
MOEAs: GDE3 [19] and NSGA-II [18]. In our experiments,
we use a large number of decision variables that ranges from
200 up to 5000. Our approach will be using GDE3 as its basic
multi-objective optimizer, so we decided to call our proposed
approach: Cooperative Coevolutionary GDE3 (CCGDE3).

D. Methodology

Since the main objective of this work is to evaluate the
behavior of our approach when solving MOPs with a large
number of decision variables, we will analyze its convergence
rate with respect to that of the other two MOEAs with
respect to which it is compared. For this sake, we adopt the
hypervolume performance indicator [21].

The hypervolume is obtained by computing the volume (in
objective function space) of the non-dominated set of solutions
Q that minimize a MOP. For every solution i ∈ Q, a hypercube
vi is generated with a reference point W and the solution i
as its diagonal corner of the hypercube. The reference point
W can be generated by building a vector of worst possible
objective function values. Then, the hypervolume (HV) is
computed as a union of all the found hypercubes as follows:

HV = volume

 |Q|⋃
i=1

vi

 (8)

Since the true Pareto fronts of the ZDT problems are
known, we will run each of the MOEAs being analyzed, until
they obtain an approximation of the Pareto front that has a
hypervolume of 95% with respect to the true Pareto front.
This represents a reasonable approximation to the true Pareto
fronts in terms of convergence and spread of solutions. The
aim of this study is to identify which of the MOEAs being
compared is able to reach faster the true Pareto front. Since it
is possible that some of the MOEAs being compared never
achieve the desired convergence, we decided to use as an
alternative stopping condition a maximum number of function
evaluations. We set the maximum number of evaluations to ten
million. In our experiments, we check the stopping condition
at every 100 evaluations for GDE3 and NSGA-II, which
means that the condition is checked at each iteration, and
every cycle in CCGDE3, when we measure the hypervolume
of the non-dominated solutions found so far. We performed
25 independent runs for each algorithm and each problem
instance using a number of decision variables that ranges
from 200 up to 5000. Since we are dealing with stochastic
algorithms, we need to perform a statistical analysis of the
obtained results to compare them with a certain level of
(statistical) confidence. For assuring this we have performed
a bootstrapping test [22]. We have done the calculations
based on 1000 bootstrap replicates, from our original sets
of 25 independent runs for each algorithm and for each
problem instance. This was done in order to get the mean and

TABLE V
RUNNING TIME FOR ZDT1

D.V. NSGA II GDE3 CCGDE3

200 0.1412 mins 0.0488 mins 0.0230 mins
500 0.5174 mins 0.2865 mins 0.0707 mins

1000 14.8514 mins 2.9855 mins 0.2060 mins
2000 89.0180 mins 11.8222 mins 0.8269 mins
3000 92.7289 mins 23.7238 mins 1.9190 mins
4000 159.6966 mins 59.8936 mins 2.7693 mins
5000 174.4521 mins 78.7402 mins 7.1859 mins

standard error from the bootstrap distribution and to calculate
confidence intervals, through the adjusted bootstrap percentile
(BCa) interval, with a confidence level of 95% for the mean.

E. Parameterization

The parameters of each MOEA used in our study were
chosen in such a way that we could do a fair comparison
among them. Thus, for NSGA-II and GDE3, we used an
internal population size equal to 100. For CCGDE3, we used
a populations size of 40 individuals for each subpopulation
(species), since the number of species is set to two. In
the case of NSGA-II, the distribution indexes for the SBX
and polynomial-based mutation operators [18], were set as:
ηc = 20 and ηm = 20, respectively. The crossover probability
is pc = 0.7 and the mutation probability is pm = 1/L, where L
is the number of decision variables. In GDE3 and CCGDE3,
the value for both F and CR [19] was set to 0.5. In the
particular case of CCGDE3, we used 2 species each of which
had a size of 40 individuals for their internal populations. We
used just one generation for each species per cycle. Finally,
the test problems were used with the following numbers of
decision variables: 200, 500, 1000, 2000, 3000, 4000 and
5000.

F. Analysis of results

In our experiments, we obtained the mean number of
evaluations needed by GDE3, NSGA-II and CCGDE3 in
order to generate an approximation of the Parero front with
a hypervolume value of 95% of the true Pareto front. We
also report the median of the time taken by each algorithm to
solve each problem, averaged over the 25 independents runs
performed. Tables I, II, III and IV show the mean, standard
error and confidence intervals of the number of evaluations
obtained from the bootstrapping test and Tables V, VI, VII and
VIII show the average of the time, in minutes, needed to get an
approximation with a hypervolume of 95% of the true Pareto
front. We show in such tables, the results for ZDT1, ZDT2,
ZDT3 and ZDT6, respectively. When a value of 10,000,000
appears in the table for any of the algorithms, this means that
it was not able to obtain an acceptable approximation for the
problem in the 25 independent runs performed. In this case,
the average time reported appears in italics, because, in these
cases, more time would be required in order to obtain the
desirable convergence.



TABLE I
EVALUATIONS FOR ZDT1

NSGA II GDE3 CCGDE3
Mean SE CI Mean SE CI Mean SE CI

200 119556.66 1189.41 (117276,121879) 54055.30 258.13 (53525,54544) 24323.79 210.59 (23895,24710)

500 253903.03 2190.67 (249937,258559) 239592.64 1225.13 (237008,241923) 64723.36 303.95 (64059,65283)

1000 10000000 0 2212089.16 120619.60 (2026548,2517188) 155135.41 1197.78 (152405,157114)

2000 10000000 0 10000000 0 387793.43 3733.05 (380450,395144)

3000 10000000 0 10000000 0 627913.55 5982.13 (615268,638379)

4000 10000000 0 10000000 0 862118.13 6104.23 (851877,876888)

5000 10000000 0 10000000 0 1183792.22 12822.72 (1160979,1210149)

TABLE II
EVALUATIONS FOR ZDT2

NSGA II GDE3 CCGDE3
Mean SE CI Mean SE CI Mean SE CI

200 139511.64 926.74 (137609,141263) 74300.78 383.90 (73589,75152) 31766.35 236.42 (31331,32251)

500 287201.97 1439.25 (284480,289913) 506293.02 11795.19 (486781,533661) 87862.07 620.00 (86613,88959)

1000 10000000 0 10000000 0 221829.77 6897.47 (214008,254278)

2000 10000000 0 10000000 0 508944.26 5491.12 (498824,520553)

3000 10000000 0 10000000 0 797833.51 14679.82 (772387,830117)

4000 10000000 0 10000000 0 1088563.11 21295.44 (1052706,1140226)

5000 10000000 0 10000000 0 1544704.96 56609.77 (1450560,1685531)

TABLE III
EVALUATIONS FOR ZDT3

NSGA II GDE3 CCGDE3
Mean SE CI Mean SE CI Mean SE CI

200 119416.07 1240.83 (116495,121591) 69935.36 228.51 (69448,70378) 24525.18 188.76 (24112,24886)

500 245161.60 1639.91 (242088,248536) 316581.42 1484.31 (313621,319528) 63566.92 463.12 (62674,64525)

1000 10000000 0 1408341.00 8834.41 (1390794,1425559) 145131.07 900.46 (143306,146744)

2000 10000000 0 5492656.00 33479.38 (5419861,5552752) 345831.12 2234.16 (341108,349741)

3000 10000000 0 9632953.07 54638.04 (9495504,9718228) 562077.37 4226.78 (553467,570352)

4000 10000000 0 10000000 0 777169.50 6922.90 (764062,791999)

5000 10000000 0 10000000 0 1006945.83 7946.20 (995261,1027586)

TABLE IV
EVALUATIONS FOR ZDT6

NSGA II GDE3 CCGDE3
Mean SE CI Mean SE CI Mean SE CI

200 584371.092 1666.53 (581109,587773) 461942.38 2534.61 (457304,467485) 157878.21 783.76 (156356,159437)

500 1150362.232 2223.03 (1146032,1154919) 10000000 0 481930.17 3064.22 (475202,487641)

1000 10000000 0 10000000 0 1283136.32 7555.97 (1266427,1296133)

2000 10000000 0 10000000 0 2810482.71 16512.01 (2778592,2843568)

3000 10000000 0 10000000 0 3892644.27 35764.36 (3805150,3947065)

4000 10000000 0 10000000 0 4859792.40 45586.92 (4785931,4964634)

5000 10000000 0 10000000 0 5768502.88 19085.49 (5723900,5800079)

Now, we will pay attention to the convergence rate, i.e., the
number of function evaluations needed by the algorithms to
find an approximation of the true Pareto front according to
our success condition. In Figures 4, 5, 6 and 7, we plot the
results of the median of the number of evaluations needed by
GDE3, NSGA-II and CCGDE3 to obtain an approximation of

the true Pareto front that has a hypervolume value of 95%.
These plots are shown for ZDT1, ZDT2, ZDT3 and ZDT6.
We have connected with a line the results of the algorithms
for each number of decision variables under consideration.
Thus, we can observe that CCGDE3 is the fastest algorithm,
which means that it scales better than the other two MOEAs



TABLE VI
RUNNING TIME FOR ZDT2

D.V. NSGA II GDE3 CCGDE3

200 0.1964 mins 0.6402 mins 0.0281 mins
500 0.6001 mins 0.7082 mins 0.0997 mins

1000 6.6401 mins 1.0876 mins 0.2968 mins
2000 14.7021 mins 17.4891 mins 1.2929 mins
3000 89.6921 mins 40.4873 mins 2.3151 mins
4000 159.5900 mins 59.7938 mins 3.5489 mins
5000 175.0103 mins 78.4983 mins 7.8487 mins

TABLE VII
RUNNING TIME FOR ZDT3

D.V. NSGA II GDE3 CCGDE3

200 0.1495 mins 0.3203 mins 0.0241 mins
500 0.4471 mins 0.3448 mins 0.0654 mins

1000 10.3974 mins 2.0606 mins 0.2886 mins
2000 15.7690 mins 12.3773 mins 0.8323 mins
3000 77.6378 mins 29.1153 mins 1.3393 mins
4000 159.5612 mins 59.2153 mins 2.2788 mins
5000 174.8563 mins 78.1015 mins 6.2366 mins

TABLE VIII
RUNNING TIME FOR ZDT6

D.V. NSGA II GDE3 CCGDE3

200 0.7987 mins 14.0197 mins 0.1507 mins
500 2.2383 mins 15.4108 mins 0.5872 mins

1000 7.1561 mins 17.2080 mins 1.9982 mins
2000 42.4543 mins 33.3090 mins 7.0168 mins
3000 102.4043 mins 34.0594 mins 9.6578 mins
4000 159.2021 mins 58.7624 mins 31.1226 mins
5000 174.6141 mins 77.6254 mins 39.1256 mins

when the number of variables is large. The lines clearly show
that CCGDE3 tends to be faster than the other techniques as
the number of decision variables increases, while NSGA-II
and GDE3 experiment the opposite behavior. It is clear that
CCGDE3 is much faster than NSGA-II and GDE3, not only
on terms of number of evaluations, but also in terms of time,
since the time needed for CCGDE3 to get a front with a
hypervolume of 95%, for all the test problems adopted, is
much less than the one needed by NSGA-II and GDE3, as
shown by the results reported in Tables V, VI, VII and VIII.
Also, Tables I, II, III and IV, show narrowed CI values, relative
to the values of the means. Therefore, the results are a very
reliable estimation of the average behavior of the algorithms.

V. CONCLUSIONS AND FUTURE WORK

This paper proposes a new cooperative coevolutionary
framework for solving MOPs with a large number of decision
variables. Combined with GDE3, we presented a novel co-
operative coevolutionary MOEA, called CCGDE3, which was
shown to be able to successfully deal with a large number
of decision variables (up to 5,000). Studies were carried
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Fig. 4. Plot of the number of evaluations needed by each algorithm to obtain
an approximation with 95% of the hypervolume of the true Pareto front, for
ZDT1.
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Fig. 5. Plot of the number of evaluations needed by each algorithm to obtain
an approximation with 95% of the hypervolume of the true Pareto front, for
ZDT2.

out to evaluate the performance of CCGDE3 on the ZDT
benchmark functions. We have estudied the convergence rate
of our proposed CCGDE3 with respect to that of NSGA-II and
GDE3 when solving these problems. The results confirmed
that our proposed approach is very effective and efficient in
tackling large scale MOPs. Although we used GDE3 as the
basic subcomponent optimizer, it should be relatively easy to
incorporate any other MOEA into our framework. Moreover,
more than one kind of MOEA could also be employed as
a subcomponent optimizer, in order to combine different
search biases. Thus, as part of our future work, we aim to
focus on more techniques that can be incorporated into our
framework and we also intend to find a way of simplifying
the parameters setting procedure required by our algorithm
by adapting (online or in a self-adaptive way) the number of
species needed as well as the size of each subpopulation.
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Fig. 6. Plot of the number of evaluations needed by each algorithm to obtain
an approximation with 95% of the hypervolume of the true Pareto front, for
ZDT3.
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Fig. 7. Plot of the number of evaluations needed by each algorithm to obtain
an approximation with 95% of the hypervolume of the true Pareto front, for
ZDT6.
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