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Abstract—This paper presents a survey of applications of
multi-objective evolutionary algorithms in several biotechnology
areas. The application areas covered in the survey include:
molecular docking, metabolic engineering, synthetic biology,
optimization of industrial bio-processes and data processing for
bioinformatics (which covers multiple sequence alignment and
feature selection and classification for diagnosis of diseases).
In the final part of the paper, some potential areas for future
research are briefly discussed.

Index Terms—Multi-objective optimization, biotechnology,
multi-objective evolutionary algorithms, applications.

I. INTRODUCTION

Multi-objective optimization problems are very common
in real-world applications, since many of them have two or
more (often conflicting) objectives that we aim to optimize
at the same time [1]. Multi-objective evolutionary algorithms
originated in the 1980s [2] and in the last 25 years, they have
become a frequent tool to tackle complex and challenging
multi-objective optimization problems in a variety of domains
(see for example [3], [4]).

Biotechnology is a discipline that has become increasingly
popular due to its many applications in our everyday life
that go from the production of bactericides to the generation
of vaccines. Although for several years biology has been
an area with a limited number of applications of multi-
objective evolutionary algorithms (see for example [5]), in
recent years, an increasing number of applications have been
reported in biotechnology. In this paper, we provide a survey
of applications of multi-objective evolutionary algorithms in
biotechnology, including a proposed taxonomy as well as some
possible areas of future research in the area.

II. MULTI-OBJECTIVE EVOLUTIONARY ALGORITHMS

Currently, we have three main families of multi-objective
evolutionary algorithms (MOEAs):

1) Pareto-based MOEAs: In these approaches, a proce-
dure called nondominated sorting or Pareto ranking is
adopted to rank solutions. The core idea is to identify
all the Pareto optimal solutions in the population of
a MOEA and to give them the same probability of
being selected. Clearly, this selection probability will

be higher than the one corresponding to dominated
solutions. Additionally, these approaches normally have
another mechanism called density estimator which aims
to prevent convergence to a single solution. These ap-
proaches originated in the mid-1990s and were very
popular for several years. The main inconvenience of
these approaches is their scalability limitation in ob-
jective function space. Representative approaches from
this family are: the Nondominated Sorting Genetic
Algorithm-II [6] (NSGA-II) and the Strength Pareto
Evolutionary Algorithm 2 [7] (SPEA2).

2) Indicator-based MOEAs: They adopt a performance
indicator to select solutions instead of Pareto optimal-
ity. The popularity of these MOEAs has increased in
recent years, mainly because of their robustness. Their
main inconvenience is that the most commonly adopted
performance indicator for these approaches is the hyper-
volume, which has a very high computational cost for
problems having more than six objectives [8]. Repre-
sentative approaches of this family are: the Indicator-
Based Evolutionary Algorithm (IBEA) [9] and the S
Metric Selection Evolutionary Multiobjective Algorithm
[10] (SMS-EMOA).

3) Decomposition-based MOEAs: These approaches
transform a multi-objective optimization problem into
several single-objective optimization problems which are
then solved simultaneously to generate the nondomi-
nated solutions of the original problem. The use of
decomposition methods relies on a scalarizing function,
but they work properly even if the Pareto front is non-
convex or disconnected. When using decomposition-
based MOEAs, neighborhood search is used to solve si-
multaneously all the single-objective optimization prob-
lems generated from the transformation. The main
known limitation of this sort of approach is that scalar-
izing functions assume that the Pareto front fits within
a simplex and, if that is not the case, then no reliable
approximation can be produced. The most representative
approach of this family is: the Multi-Objective Evolu-
tionary Algorithm based on Decomposition (MOEA/D)
[11].



III. A TAXONOMY OF APPLICATIONS

Based on the current applications of MOEAs reported in the
specialized literature, we propose the following taxonomy:

• Molecular docking
• Metabolic engineering
• Synthetic biology
• Optimization of industrial bio-processes
• Data processing for bioinformatics
In the following subsections, we will review some repre-

sentative publications corresponding to each of the categories
from the above taxonomy. We will also add a brief description
of each topic, since this may be necessary for readers who are
not familiar with biotechnology.

A. Molecular Docking

Molecular docking consists in locating an appropriate po-
sition and orientation for docking a small molecule (ligand)
to a larger receptor molecule and it plays a crucial role in
the computer-aided design of drugs. The goal of molecular
docking is to find an optimized conformation between the
ligand (L) and the receptor (R) that results in a minimum
binding energy. The high complexity of this optimization
problem has motivated the use of metaheuristics to solve it.
In fact, the problem can be posed both as a single-objective
optimization problems or as a multi-objective optimization
problem. If treated as a single-objective problem, the objective
to optimize is usually the final binding energy.

Grosdidier et al. [12] were apparently the first to propose the
use of two objectives: the first uses the sum of intermolecular
and intramolecular energy, neglecting solvent effects and is
used to drive the search towards local minima and it was
adopted before its efficiency and speed. The minima obtained
with this first objective are then exposed to a second, more
selective (and computationally expensive) objective, which
includes the solvation free energy. So, the authors adopt a
lexicographic ordering approach [1] since the objectives are
considered in a sequential manner and not simultaneosuly. The
authors also stored (in some sort of tabu list) the previously
visited unfavorable docking poses, so that they are not re-
visited. Additionally, they performed the sampling with oper-
ators that combine a global and a local search of the conforma-
tional space. Some of these operators are semi-stochastic and
deal with rotations and translations. Other operators, which
are called “smart operators”, aim to cross energy barriers
by traversing the search space in a deterministic way. This
approach was validated using 37 crystallized protein-ligand
complexes featuring 11 different proteins. No details about the
evolutionary algorithm adopted were provided by the authors.

Janson et al. [13] proposed an approach called clustMPSO,
which is based on a multi-objective particle swarm optimizer
(MOPSO). This approach simultaneously optimizes the in-
termolecular and the intramolecular energy. For evaluating
the energy, the authors use the binding free energy function
which is provided in Autodock 3.5. This approach was able to
provide a more diverse set of possible docking conformations

than the Lamarckian Genetic Algorithm combined with sim-
ulated annealing that is incorporated in Autodock 3.5. They
also proposed an approach for the prediction of a docking
trajectory.

These same objectives (i.e., the intermolecular and the
intramolecular energy) are considered by Garcia-Godoy et
al. [14] who present a comparative study in which they
included: two variants of the NSGA-II, the speed-constrained
multi-objective particle swarm optimizer (SMPSO) [15], the
third version of generalized differential evolution (GDE3) [16],
MOEA/D and SMS-EMOA. Results are also compared with
respect to the Lamarckian Genetic Algorithm combined with
simulated annealing that is incorporated in Autodock 3.5.
SMPSO had the best overall performance in terms of both
convergence and diversity.

Oduguwa et al. [17] adopted three objectives: (1) the
intramolecular energy, (2) the intermolecular energy and (3)
the shape of the macromolecule. The performance of three
MOEAs was compared: NSGA-II, the Pareto Archived Evolu-
tion Strategy (PAES) [18] and the Strength Pareto Evolutionary
Algorithm (SPEA) [19]. Three complexes from the protein
Data Bank were adopted to validate the results. The authors
reported that PAES had the best overall performance.

Boisson et al. [20] adopted two criteria: (1) the inter-
molecular energy and (2) a stability criterion which is based
on an entropy calculus on a ligand/receptor complex. This
calculation requires a sampling of neighbor complexes. The
authors adopted the platform called Multi-Objective Evolving
Objects [21] (MOEO) and took two MOEAs included there:
NSGA-II and IBEA. Results were compared in terms of
the Root Mean Square Deviation (RMSD). Domain-specific
mutation operators were adopted by the authors, and a parallel
implementation provided by the platform adopted was properly
exploited. The authors reported that IBEA obtained better
results than NSGA-II.

Sandoval-Perez et al. [22] adopted NSGA-II and considered
two objectives: (1) the energy contributions from the covalent
bonds between the atoms (bonding terms), and (2) an objective
related to the molecular interactions where a covalent bond
does not occur (e.g., electrostatic attractions, repulsion forces
and van der Waals forces). The authors incorporated a method,
based on angles [23], to select a single solution from the
“knee” of the Pareto front. The authors argued that the use
of a MOEA allowed them to identify molecular complexes
with 3D structures relatively close to the ones reported for the
analyzed structures. Also, their proposed approach was able
to find good complexes when the ligand had a high number
of rotatable bonds, which they reported as remarkable, since
other available methods had problems in those situations and
this approach even outperformed the single-objective solutions
generated by Autodock 3.5.

Gu et al. [24] considered three scoring functions: (1)
the force-field-based, (2) the empirical-based and (3) the
knowledge-based. However, all of them were combined in a
linear aggregating function which was optimized by a (single-
objective) genetic algorithm. A comprehensive evaluation of



the proposed approach (called MoDock) showed the benefits
of using a multi-objective strategy, since it produced nearly
70% good docking solutions.

López-Camacho et al. [25] considered two objectives: (1)
the Root Mean Square Deviation (RMSD) difference in the
coordinates of ligands and (2) the intermolecular energy.
The performance of four MOEAs was compared: NSGA-
II, SMPSO, GDE3 and MOEA/D. The authors reported that
SMPSO had the best overall performance.

Garcı́a Nieto et al. [26] considered two objectives: (1)
minimize the intermolecular energy and (2) minimize the
Root Mean Square Deviation (RMSD) between the atom
coordinates of the co-crystallized and the predicted ligand con-
formations. The authors adopted several types of MOPSOs that
used different archiving and leader selection strategies. These
approaches were compared using 75 molecular instances from
the Protein Data Bank database (PDB) characterized by dif-
ferent sizes of HIV-protease inhibitors. Their results indicated
that SMPSOhv [27] and MPSO/D [28] showed the best overall
performance.

Garcı́a-Godoy et al. [29] provided not only a comprehensive
review on the use of MOEAs in molecular docking, but also
presented a study in which three objectives were considered:
(1) the intermolecular energy, (2) the intramolecular energy
and (3) the RSMD. Three MOEAs were compared: SMPSO,
MOEA/D and MPSO/D. The authors reported that SMPSO
had the best overall performance in terms of both convergence
and diversity.

Recent work on molecular docking has focused more on
single-objective formulations of the problem, but using hybrids
between evolutionary algorithms and mathematical program-
ming techniques (see for example [30] in which the proposed
approach tackles two important problems: (1) the disruptive
effect of crossover operators and (2) the high dimensionality
of the docking problem when the chosen ligand has many
rotatable bonds).

It would be interesting to incorporate geometric constraints
to avoid ignoring possible good locations. These constraints
would allow the exploration of cavities that are not accessible
to the solvent or whose shape can produce collisions between
the ligand and the receptor [22]. Also, the use of machine
learning techniques (adopting multi-objective versions of the
problem) for drug discovery is another promising research area
[31]. High scalability and accuracy of the optimization process
are also issues that deserve further research.

B. Metabolic engineering

Metabolic engineering refers to the intentional modification
of a cellular metabolism for the production of desired com-
pounds. With the advent of recombinant DNA technology,
a variety of organisms can be manipulated (e.g., bacteria,
fungi, pland and animal cells) to produce several important
industrial products such as amino acids, biofuels, polymers
and recombinant proteins among many others.

Maia et al. [32] used SPEA2 and NSGA-II for the in
silico multi-objective optimization of mutant strains. The

objectives considered were: (1) maximizing the production
of some compound and (2) maximizing the biomass (i.e.,
keeping the organism viable). The authors used as a case
study the production of succinic acid, adopting E. coli. Results
were compared with respect to the use of a single-objective
formulation of the problem in which evolutionary algorithms
and simulated annealing were adopted as search engines. The
main advantage of using MOEAs in this case was that the
authors were able to produce different trade-offs between a
desired compound production and the viability of the strain
measured by a biomass flux.

Patané et al. [33] proposed a multi-objective formulation of
the metabolic engineering problem in which the production
of one or more metabolites of interest and the production of
biomass are the objectives to be optimized. They used NSGA-
II combined with global sensitivity analysis and robustness
analysis. The authors compared their results with respect
to those obtained by other (single-objective) metaheuristics
in two problems: 1) the overproduction of 1,4-butanediol
in Escherichia coli and 2) the overproduction of fatty acid
using the Redirector framework for enzymes-up and down-
regulation. The results reported by the authors indicated that
the NSGA-II was able to obtain more efficient designs (in
terms of metabolite of interest production) at a lower cost
than when using other metaheuristics. Additionally, the authors
indicated that the most valuable outcome of their study was
the set of Pareto optimal solutions produced, which allows
to explore the different trade-offs between synthetic and bio-
logical objectives, which is something essential for industrial
purposes.

Patané et al. [34] proposed the multi-objective metabolic
engineering (MOME) algorithm, which is based on the use of
the NSGA-II. MOME is tailored for the analysis of metabolic
networks and is applied to the problem associated with the
overproduction of ethanol in flux balance analysis (FBA)
models of: (1) S. aureus, (2) S. enterica, (3) Y. pestis, (4)
S. cerevisiae, (5) C. reinhardtii, and (6) Y. lipolytica. The
use of a MOEA in this problem allowed the authors the
explore the trade-offs between the production rate of ethanol
and the modelled organism biological objective. The use of
a MOEA allowed the authors to identify sets of key genetic
manipulations which lead to strains overproducing ethanol (the
overproduction is of more than 830%) with a sensible growth
(as predicted by the FBA model). This reduces the knock-
out cost and allows for an increased biomass production that
would allow a sustained industrial process. The authors also
used clustering to map the relationship between phenotype and
genotype, with the aim of identifying patterns on knocked-out
genes from the Pareto optimal strains. Additionally, they ana-
lyzed information on the essential genes and other constraints
on the growth rate and the external simulated rich media, so
that more realistic scenarios could be simulated. This led to a
maximum increase in the ethanol production of around 195%.

Fan et al. [35] used multi-objective differential evolu-
tion to improve the accuracy of Genome-Scale Metabolic
Model (GSMM) simulations of cell metabolism results. The



objectives considered were: maximum specific growth rate,
minimum ATP production, minimum NADH production and
minimum NADPH production. Their study focused on the sim-
ulation of Aspergillus niger, which is an important filamentous
fungi that is widely used in the production of organic acids
and enzymes because of its good ability to express and secrete
proteins. Industrial enzymes produced by A. niger have played
a major role in industries such as brewing and fermentation.
The authors adopted a simple method (based on locating the
“knee” of the Pareto front) to select a single solution. The
results reported produced a significant improvement in the
accuracy of simulating Aspergillus niger.

Several authors have developed novel multi-objective mod-
els that have been solved using mathematical programming
techniques (e.g., the ε-constraint method) and that could
clearly be solved using MOEAs (see for example [36] in
which the authors proposed a model with four objectives for
cancer metabolism: (1) maximization of biomass synthesis,
(2) maximization of ATP production, (3) minimization of total
abundance of metabolic enzymes and (4) minimization of total
carbon uptake). Other authors have considered dynamic multi-
objective optimization models, for example, to identify the
combination of targets (i.e., enzymatic modifications) and to
determine the degree of up- or down-regulation that must be
performed on them (see for example [37] in which a large-
scale metabolic model of Chinese Hamster Ovary cells is used
for antibody production in a fed-batch process).

C. Synthetic biology

Synthetic biology refers to the re-design of organisms for
useful purposes by engineering them to have new (useful)
abilities. Researchers from this area aim to harness the power
of nature to solve a wide variety of problems in medicine,
manufacturing and agriculture.

Boada et al. [38] proposed a multi-objective optimization
tuning framework to obtain a set of model-based guidelines
for the selection of the kinetic parameters required to build a
biological device (for which a certain behavior is expected).
The authors applied this methodology to the design of a
genetic incoherent feed-forward circuit showing adaptive be-
havior. Two objectives were considered: (1) sensitivity, which
is defined as the ratio between the absolute total variation of
the output signal and the variation of the input signal, and (2)
precision, which is defined as the inverse of the normalized
output error. The search engine adopted is called spMODE,
and is based on the use of differential evolution. Additionally,
they filtered out the nondominated solutions obtained in order
to select a robust configuration. The authors indicated that
their proposed multi-objective framework was able to generate
effective guidelines to tune biological parameters so as to
achieve a certain (desired) circuit behavior.

González Sánchez et al. [39] used the multi-objective shuffle
frog leaping algorithm (MOSFLA) to maximize the expres-
sion levels of proteins. MOSFLA combines parallel searches,
multiple operators and memetic strategies. In this case, a
solution represents an encoded protein. Three objectives were

considered: (1) maximize the minimum Codon Adaptation
Index value of a solution (the aim is to use the codons with
the highest fequency values), (2) find the pair of CDSs that
contain more identical subsequences (same subsequences in
the same positions), by maximizing the minimum Hamming
distance between two CDSs and (3) decrease the length of
repeated or common substrings occurring between a pair of
CDSs. Results were compared with respect to Tadei et al.
[40] who used a multi-objective genetic algorithm adopting the
same objectives. Results indicated that MOSFLA was able to
outperform the approach from Tadei et al. [40] with respect to
three performance indicators: hypervolume, set coverage and
maximum spread.

Boada et al. [41] used a MOEA for parameter identification
of biological models. Two objectives were considered, related
to the minimization of the error between: (1) the time-
course plate reader experimental observations and open-loop
model predictions and (2) the steady-state flow cytometry
experimental observations and close-loop model predictions.
The authors adopted spMODE, which is based on the use of
differential evolution. Also, they incorporated a multi-criteria
decision making stage and used visualization tool diagrams
to correlate design objectives with decision variables. The
proposed approach produced good identification results.

Gaeta et al. [42] developed an open-source Python software
called Multi-Objective Optimisation algorithm for DNA De-
sign and Assembly (MOODA) for the design and assembly of
DNA molecules. MOODA takes as its input an annotated DNA
sequence, and it optimizes it with respect to the user-defined
objectives. Four objectives were considered: (1) the GC con-
tents of each designed DNA fragment must be within the limits
specified by a given DNA synthesis, (2) maximize the use
of frequent codons, (3) maximize the blocks of homogenous
size and (4) minimize the number of blocks required for the
assembly. MOODA is based on the NSGA-II, but incorporates
specialized edit and assembly operators. The edit operators
are local search procedures (four edit procedures were defined
by the authors to edit both DNA sequences and blocks). This
approach was able to find near-optimal manufacturable designs
for arbitrary long and complex DNA molecules.

D. Optimization of industrial bio-processes

There are several industrial bio-processes in which it is
possible to improve productivity by optimizing certain task.
Most of them have multi-objective formulations that allow
finding solutions that are more realistic and/or appropriate.

Sarkar and Modak [43] used a multi-objective genetic
algorithm in two case studies. In the first of them, they used
a lysine fermentation model. The authors considered this as a
multi-objective control problem in which both productivity and
the yield are to be maximized. In the second case study, they
considered the optimal nutrient and inducer feeding strategy
for the fed-batch production of induced foreign protein using
recombinant bacteria. Again, this was considered as a multi-
objectie control problem in which they wanted to maximize
the amount of protein while minimizing simultaneously the



volume of inducer. In both cases, the authors adopted the
NSGA-II. In these two case studies, the authors reported
the advantages of finding a variety of trade-off solutions and
argued about the importance of providing the decision maker
with more immediate information about the optimal operating
regime of the process.

Al-Siyabi et al. [44] used multi-objective differential evo-
lution to improve the microbial fermentation to produce ly-
sine. As in [43], the authors considered two objectives: the
maximization of the productivity and the yield. The authors
adopted two versions of multi-objective differential evolution
called MODE III [45] and Harmonic MODE [46] and re-
ported better results with the second of them. Constraints
were handled using both penalty methods and tournament
selection. In their analysis of results, the authors indicated
that for a constant feeding rate, the solutions obtained using
the Harmonic MODE algorithm were uniformly distributed,
while MODE III produced solutions that were highly crowded
towards higher productivity and slightly scattered wth respect
to yield. For a varied feeding rate, the results obtained with the
Harmonic MODE algorithm were widely spread and showed
good convergence.

Since the approval of the first monoclonal antibody (mAb)
in 1986, they have been frequently adopted for biotherapeutics
research and development for the treatment of several human
diseases including cancer, arthritis, Alzheimer and metabolic
and transmissible diseases such as Covid-19 and HIV. Conse-
quently, there has been an increasing demand for mAbs, which
are mainly produced in a fed-batch bioreactor with temperature
and media composition as key control variables. Kumar et al.
[47] developed a mathematical model that incorporates the
effect of temperature, biomass, glucose, protein, and lactate
concentration on mAb productivity. The parameter values of
such model were estimated using particle swarm optimization
to minimize the normalized error function. Then, they adopted
a multi-objective model in which the objectives were to
maximize the mAb production while minimizing the reactor
run time. The goal was to find the optimal feed strategy
and temperature shift time while operating the reactor in a
sequential combination of the batch, fed-batch and perfusion
modes. The authors adopted the NSGA-II and reported an
estimation of a 5% increase in mAb prouction for a reactor
run time of 15 days.

Villegas-Quiceño et al. [48] used a multi-objective genetic
algorithm to improve process productivity in plant cell sus-
pension cultures of Thevetia preuviana. The two objectives
considered were: maximize the biomass growth rate and
minimize substrate consumption. The authors extracted (by
observation) a single solution, located in the “knee” of the
Pareto front and conducted an experimental validation of it.
Their experiments corroborated that this solution was indeed
capable of increasing the productivity in terms of metabolite
production for the plant cell considered in the study.

E. Data Processing for Bioinformatics
The potential benefit of multi-objective optimization in

bioinformatics has been recognized for a long time (see for
example [49]). We will discuss next two particular application
areas of MOEAs within bioinformatics: multiple sequence
alignment and feature selection and classification for diagnosis
of diseases.

1) Multiple Sequence Alignment: A problem that is particu-
larly interesting because of its complexity is multiple sequence
alingment (MSA), which is the process of aligning three or
more biological sequences (DNA, RNA, protein). MSA has
a variety of applications in computational biology, including:
protein structure predictions, biological function analyses and
phylogenetic modeling. MSA is known to be an NP-complete
optimization problem in which the time complexity of finding
an optimal alignment grows exponentially with the number of
sequences and their lengths. Additionally, it is also important
to provide an efficient method to measure alignment accuracy,
but there is no consensus on how to do it, and several scores
have been proposed for that purpose. Examples of scores are:
STRIKE [50] (which estimates the molecular contacts from
protein structures to calculate alignment accuracies), totally
conserved columns (TCC) percentage, and gaps and non-gaps
percentage.

Ortuño et al. [51] proposed an approach (based on the
NSGA-II) called Multiobjective Optimizer for Sequence Align-
ments based on Structural Evaluations (MO-SAStrE). In this
case, three objectives were optimized: (1) STRIKE score,
(2) non-gaps percentage and (3) totally conserved columns.
The authors showed that their proposed approach outper-
forms other aligners (in a statistically significant way), includ-
ing: ClustalW, Multiple Sequence Alignment Genetic Algo-
rithm (MSA-GA), PRRP, DIALIGN, Hidden Markov Model
Training (HMMT), Pattern-Induced Multi-sequence Align-
ment (PIMA), MULTIALIGN, Sequence Alignment Genetic
Algorithm (SAGA), PILEUP, Rubber Band Technique Genetic
Algorithm (RBT-GA) and Vertical Decomposition Genetic
Algorithm (VDGA).

Rubio-Largo et al. [52] proposed H4MSA, which is based
on the Shuffled Frog-Leaping Algorithm, for solving the MSA
problem. Two objectives were considered: the weighted sum-
of-pairs function with affine gap penalties (WSP) and the
number of totally conserved columns score. Results were
compared with respect to 16 well-known aligners and six
tailored genetic algorithms. The authors reported that the
results obtained with H4MSA had a remarkable accuracy.

Zambrano-Vega et al. [53] proposed a more efficien and
effective version of MO-SAStrE [51], called M2Aligh, which
is based on the NSGA-II and can be executed in parallel
in multi-core systems. The authors used the same objectives
as in [51]. M2Align was able to outperform MO-SAStrE in
the STRIKE and TCC scores, but also obtained results with
significant time reductions using up to 20 cores.

There are several more papers available on multiple se-
quence alignment which are not included here due to space
constraints (see for example [54]).



2) Feature selection and classification for diagnosis of
diseases: Several problems in medicine involve the diagnosis
of a disease based on a number of tests done on the patients.
Improvements in technology have caused the creation of very
large databases which makes very difficult to discover mean-
ingful relationships buried in data. In recent years, machine
learning has been used for this task, and the use of MOEAs has
allowed to perform more complex and accurate classifications.

Valenzuela et al. [55] used the NSGA-II for optimizing
the volumes of interest (VOIs) to extract three-dimensional
textures from Magnetic Resonance Images in order to diagnose
Alzheimer’s Disease (AD), Mild Cognitive Impairment con-
verter, Mild Cognitive Impairment nonconverter and Normal
subjects. The idea was to use the MOEA to search for small
regions in the brain that are related to AD, since this can
lead to a better diagnosis. Two objectives were considered: (1)
minimize the complexity (number of VOIs) and (b) maximize
the accuracy of the classifier (they adopted one-versus-all sup-
port vector machine classifier). The authors reported obtaining
excellent results in multi-class classification, with accuracies
of up to 94.4%, while also extracting significant information
on the location of the most relevant points of the brain.

Wang et al. [56] adopted a multi-objective particle swarm
optimization-based hybrid algorithm (MOPSOHA) for cancer
subtype diagnosis. The authors considered four objectives: (1)
accuracy, (2) the number of features, and two entropy-based
measures: (3) relevance and (4) redundancy. The proposed ap-
proach was tested with 41 cancer datasets including thirty-five
cancer gene expression datasets and six independent disease
datasets. MOPSOHA had a high subtype discrimination power
for cancer subtype diagnosis.

The identification of biomarkers is essential for the diag-
nosis and prognosis of certain diseases, such as cancer. The
purpose of gene selection is to find the minimum number of
genes that can properly classify (i.e., tumour or normal) a
sample with a high accuracy. Then, the selected genes can
be studied as potential biomarkers. Coleto-Alcudia and Vega-
Rodrı́guez proposed a two-step gene selection method. The
first step consisted of a filtering process of the most relevant
genes of a gene expression dataset. In this step, the authors
combined three feature selection methods commonly adopted
in gene selection. Since the gene selection process itself in-
volves two objectives (minimize the number of selected genes
and maximize the classification accuracy), the second step is
performed with the Artificial Bee Colony based on Dominance
(ABCD) algorithm which is a Pareto-based version of the ABC
algorithm [57]. The authors concluded that their proposed
approach is effective in gene selection for the identification
of cancer biomarkers from RNA-seq data.

Singh and Singh [58] proposed a stacking-based evolu-
tionary ensemble learning system called NSGA-II-Stacking
for predicting the onset of Type-2 diabetes mellitus within
five years. In the proposed approach, four different types
of learners are adopted as base learners which are trained
with five boostrapped samples generated by crossvalidation.
Then, the NSGA-II is used to select models from 20 trained

base learners. Two objectives were considered: maximizing
the classification accuracy and minimizing the assembly com-
plexity. The authors indicated that their proposed approach
outperformed several individual machine learning approaches
and conventional ensemble approaches, achieving an accuracy
of up to 83.8%.

IV. FUTURE RESEARCH AREAS

In the applications reviewed, more work is still required as
described next:

• Parallel computing: Applications in biotechnology are
computationally demanding and the need for parallel
computing is evident. Although some researchers have
developed parallel implementations of their MOEAs (see
for example [53]), the development of more efficient
parallel implementations of MOEAs is clearly required
[59].

• Incorporation of preferences: In most applications of
MOEAs in biotechnology, researchers are interested in
extracting a single solution from the Pareto front. In
fact, many researchers suggest extracting the solution at
the “knee” of the Pareto front, since it represents the
best possible compromise (particularly when dealing with
only two objectives). However, there is a wide variety of
methods to incorporate user’s preferences that could be
used instead [60].

• Improvement of the current databases: There is an evi-
dent need to consolidate and curate many of the databases
that are required for some applications in biotechnology,
since many of them are incomplete or require of some
additional processing. This would allow a more extensive
application of MOEAs in biotechnology.

• Big data: Some areas such as systems biology and omics
require huge amounts of data and there is a clear need
for computational techniques that allow a more efficient
processing of such massive volumes of information. The
use of multiobjective optimization in big data analytics
has been already suggested (see for example [61]) and
could bring important benefits.

• Machine learning: Machine learning has been used in a
wide variety of biotechnology applications [62] and it is
possible to find intersections between machine learning
and multi-objective optimization in both directions. We
can either use multi-objective concepts to produce new
machine learning models or we can use machine learning
techniques that can improve the performance of multi-
objective evolutionary algorithms. In the first case, multi-
objective optimization has already shown to produce ben-
efits to machine learning techniques (e.g., by producing
solutions or hyperparameters that produce more balanced
classifiers in terms of accuracy and computational cost
[63]). In the second case, there are already practical
applications of the use of machine learning techniques
to aid multi-objective optimizers (see for example [64]).



V. CONCLUSIONS

Like many other application areas, biotechnology has a
great potential for the use of multi-objective evolutionary
algorithms. This area contains a wide number of complex and
computer demanding problems in which it is desirable to op-
timize two or more objectives simultaneously. Researchers in
this area also have a great interest in selecting a single solution
out of the many that conform the Pareto front approximation
generated by the multi-objective optimizer, mainly because
such solution can be compared with respect to the output of the
single-objective optimizers previously used in this domain, but
also because for validation purposes (in an experimental way).
After reviewing several application areas within biotechnology
that have benefitted from the use of MOEAs, we provided a
few possible paths for future research. Finally, we believe that
it is important to develop tools that facilitate the integration
and application of MOEAs in biotechnology. This would help
to extend the use of these techniques in this domain.
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[52] Álvaro Rubio-Largo, M. A. Vega-Rodrı́guez, and D. L. González-
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