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ABSTRACT
An emerging trend in the design of multi-objective evolu-
tionary algorithms (MOEAs) is to select individuals through
the optimization of a quality assessment indicator. However,
the most commonly adopted indicator in current use is the
hypervolume which becomes very expensive (computation-
ally speaking) as we increase the number of objectives. In
this paper, we propose, instead, the use of another indicator
called ∆p. Although the ∆p indicator is not Pareto com-
pliant, we show here how it can be incorporated into the
selection mechanism of an evolutionary algorithm (for that
sake, we adopt differential evolution as our search engine) in
order to produce a MOEA. The resulting MOEA (called ∆p-
Differential Evolution, or DDE) is validated using standard
test problems and performance indicators reported in the
specialized literature. Our results are compared with respect
to those obtained by both a Pareto-based MOEA (NSGA-
II) and a hypervolume- based MOEA (SMS-EMOA). Our
preliminary results indicate that our proposed approach is
competitive with respect to these two MOEAs for continuous
problems having two and three objective functions. Addi-
tionally, our proposed approach is better than NSGA-II and
provides competitive results with respect to SMS-EMOA for
continuous many-objective problems. However, in this case,
the main advantage of our proposal is that its computational
cost is significantly lower than that of SMS-EMOA.

Categories and Subject Descriptors
I.2.8 [Computing Methodologies]: Artificial Intelligence—
Problem Solving, Control Methods, and Search.

General Terms
Algorithms, Theory.
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1. INTRODUCTION
A wide variety of evolutionary algorithms (EAs) have been

proposed for solving multi-objective optimization problems
(MOPs) [7]. Since EAs do not guarantee the optimality of
their solution sets, it is of interest to compare their per-
formance. Several quality assessment indicators have been
proposed to evaluate and compare the outcome sets of multi-
objective evolutionary algorithms (MOEAs). Assuming that
a quality assessment indicator provides a good ordering a-
mong sets that represent Pareto approximations, the fit-
ness function used to select individuals may be defined in
such a way that the chosen indicator is optimized. In fact,
the use of performance indicators to guide the search of a
MOEA has been a relatively recent trend regarding algo-
rithmic design [2, 13]. The main motivation has been to
overcome the poor performance exhibited by Pareto-based
selection schemes when dealing with many-objective opti-
mization problems (i.e., MOPs having four or more objec-
tives) [15]. It is worth noting, however, that indicators can
be incorporated into a MOEA in different ways, depending
of our aim. In the specialized literature, we can find three
main approaches to integrate an indicator into a MOEA:

1. As an archiving algorithm:
An indicator is used to decide which subset of the non-
dominated solutions are stored in a bounded archive
[14, 12].

2. As a selection mechanism:
The objective function is recast as the optimization of
an indicator through appropriate selection mechanisms
[22, 2, 19].

3. As a set preference relation:
The optimization problem is viewed as a set problem
where the search space consists of all possible Pareto
set approximations. An indicator can be used to com-
pare such sets [23, 1, 24].

To date, most indicator-based MOEAs rely on Pareto
compliant indicators [25]. However, the only unary Pareto-
dominance compliant indicator currently known is the hy-
pervolume indicator [5].1 The main advantage of the hy-
pervolume indicator is that it has been proved that the

1The Hypervolume (also known as the S metric or the



maximization of this performance measure is equivalent to
finding the Pareto optimal set [11]. This has been empir-
ically corroborated [14, 10] and, in fact, the maximization
of this indicator also leads to sets of solutions whose spread
along the Pareto front is maximized (although the distribu-
tion of such solutions is not necessarily uniform). However,
the main disadvantage of adopting this indicator is that the
best algorithms known to compute the hypervolume have a
computational cost which grows exponentially on the num-
ber of objectives [3, 4].

In spite of the evident disadvantages of the hypervolume,
its nice mathematical properties have triggered an important
amount of research, as well as the development of MOEAs
whose selection mechanism is based on this indicator (see for
example the S Metric Selection-Evolutionary Multiobjective
Optimization Algorithm (SMS-EMOA) [2], which bases its
selection mechanism on the hypervolume combined with the
non-dominated sorting procedure adopted in NSGA-II [8]).

An interesting question, however, is the following: is it
possible to develop a selection mechanism based on another
(computationally inexpensive) performance indicator that
can properly guide the search of a MOEA in an analogous
way as the hypervolume does it? Here, we attempt to an-
swer to this question in a positive way. For that sake, we
explore the use of the ∆p indicator which, in spite of not
being Pareto compliant, has other properties that can be
exploited by a MOEA. As we will see later on, the selection
mechanism that is introduced in this paper has a similar
performance as that of a representative Pareto-based MOEA
(the NSGA-II [8]) and that of a representative hypervolume-
based MOEA (SMS-EMOA [2]). Additionally, when the
number of objectives is increased, our proposed approach
outperforms NSGA-II and remains competitive with respect
to SMS-EMOA, but at a much lower computational cost.

The remainder of this paper is organized as follows. We
define the basic concepts related to the contents of this pa-
per in Section 2. The ∆p indicator is presented in Section
3 while its integration into a MOEA is discussed in Section
4. Section 6 presents our experimental design (indicating
a short description of the test problems and performance
assessment indicators adopted in our experimental study)
and a case study that aims to analyze the scalability of our
proposed approach (regarding the number of objectives). Fi-
nally, Section 7 provides our conclusions and some possible
paths for future research.

2. BASIC CONCEPTS
In multi-objective optimization problems (MOPs), the aim

is to find a set of decision variable vectors which represent
optimal trade-offs among all the objectives. We assume that
each objective function should be minimized.

The most commonly adopted approach for solving MOPs
is to compare their decision variable vectors using the Pareto
dominance relation.

Definition 1. Given two decision variable vectors ~x, ~y ∈
Rn and a function F : Rn → Rk, ~x dominates ~y (~x ≺ ~y) if

∀i ∈ {1, . . . , k} fi(~x) ≤ fi(~y) (1)

∃j ∈ {1, . . . , k} fj(~x) < fj(~y) (2)

Lebesgue Measure) of a set of solutions measures the size
of the portion of objective space that is dominated by those
solutions collectively [20].

otherwise ~x � ~y

Within Pareto dominance, we can distinguish between strong
dominance and weak dominance.

Definition 2. A solution ~x strongly dominates ~y if ~x is
strictly better than ~y in all objectives

Definition 3. A solution ~x weakly dominates ~y if ~x is
better than ~y in at least one objective and is as good as ~y in
all other objectives.

Neither type of Pareto dominance induces a total order
in Rk since some solutions may be incomparable. There-
fore, most MOPs do not have a single solution but a set of
incomparable solutions which is called the Pareto optimal
set.

Definition 4. In a MOP, the Pareto optimal set O is
defined as

O = {~x ∈ Rk|∀~y ∈ Rk ~y � ~x} (3)

Definition 5. Given a MOP and its Pareto optimal set
O, the Pareto front is defined as

PF = {~u = (f1(~x), . . . , fk(~x))|~x ∈ O} (4)

The Pareto front of a MOP is bounded by the ideal and
nadir objective vectors

Definition 6. Given a MOP and its Pareto optimal set
O, the ideal objective vector is defined as

fideal =

„
inf
x∈O

f1(~x), . . . , inf
x∈O

fk(~x)

«
(5)

If the ideal objective vector represents an existing solution,
then the solution of the MOP is unique.

Analogously, the nadir objective vector is defined as

fnadir =

„
sup
x∈O

f1(~x), . . . , sup
x∈O

fk(~x)

«
(6)

3. THE ∆P INDICATOR
The goal of a MOEA is to find a set of solutions that are

as close as possible to the true Pareto front of a MOP. It is
also desirable that such solutions are well-distributed in ob-
jective function space. The quality of the approximation set
generated by a MOEA is often evaluated through quality as-
sessment indicators which allow us to perform a quantitative
comparison of the performance of several MOEAs. Next, we
will discuss a recently proposed performance indicator called
∆p, which is the one adopted for the work reported here.

The ∆p indicator [17], which can be viewed as an aver-
aged Hausdorff distance between an approximation set and
the Pareto front of a MOP, is composed of two (slightly
modified) quality indicators: Generational Distance (GD)
[18] and Inverted Generational Distance (IGD) [6].

Definition 7. Given an approximation set A and a dis-
cretized Pareto front PF= (p1, p2, . . . , p|PF|) of a MOP, the
(slightly modified) GD indicator is defined as [18, 17]

IGDp =

0@ 1

|A|

|A|X
i=1

dp
i

1A 1
p

(7)

where di is the Euclidean distance from ai to its nearest
member of PF.



Definition 8. Given an approximation set A and a dis-
cretized Pareto front PF= (p1, p2, . . . , p|PF|) of a MOP, the
(slightly modified) IGD indicator is defined as [6, 17]

IIGDp =

0@ 1

|PF|

|PF|X
i=1

d̃p
i

1A 1
p

(8)

where di is the Euclidean distance from pfi to its nearest
member of A.

Both IGDp and IIGDp have (weak) metric properties [17]:

• IGDp and IIGDp are non-negative

• IGDp and IIGDp are non-symmetric

• IGDp and IIGDp don’t satisfy the (relaxed) triangle in-
equality

Definition 9. Given an approximation set A and a dis-
cretized Pareto front PF= (p1, p2, . . . , p|PF|) of a MOP, the
∆p indicator is defined as [17]:

I∆p = max
`
IGDp , IIGDp

´
(9)

The ∆p indicator has better metric properties than either
the GD or the IGD indicators [17]:

• It is positive and symmetric: I∆p is a semi-metric.

• If the magnitudes of the sets are bounded, the relaxed
triangle inequality is satisfied and I∆p is a pseudo-
metric.

• If p =∞ then I∆p is a metric (the Hausdorff distance).

The ∆p indicator is not Pareto compliant but its proper-
ties can be exploited by a MOEA to guide its search in a
proper way.

4. OUR PROPOSED APPROACH
The aim of the work reported here was to design a MOEA

which attempted to minimize the ∆p indicator. The idea
was, of course, that such an algorithm would be able to
operate as traditional MOEAs (i.e., that it would provide
solutions as close as possible to the true Pareto front and
with a reasonably good distribution in objective function
space). In our proposed approach, the MOP is recast as:

min I∆p(P ) (10)

where P is the population used by a differential evolution
algorithm (in its DE/rand/1/bin version) where:

• individual fitness is determined according to an indi-
vidual’s contribution to the indicator

• survival selection is replaced with a ∆p-based mecha-
nism

• the outcome of the algorithm is a set instead of an
individual

4.1 Fitness Assignment
As previously stated, our aim is to minimize the ∆p indi-

cator

I∆p = max
`
IGDp , IIGDp

´
(11)

which implies the simultaneous minimization of the GDp

and IGDp indicators.
Therefore, the fitness assignment of an individual must

consider its contribution to IGDp and IIGDp to properly re-
flect its contribution to I∆p .

4.1.1 Individual contribution to the GDp indicator
Since the GDp indicator takes the power mean of the Eu-

clidean distances between the elements of a set A and the
Pareto front PF, an individual’s contribution must reflect
its distance to PF. This leads us to the following definition.

Definition 10. The contribution of an individual ai to
the GD indicator (IGD[ai]) can be defined in a straightfor-
ward manner as:

IGD[ai] = di (12)

where di is the Euclidean distance from ai to its nearest
member of PF.

The elements of A with lower GD contributions are preferred
to those with higher GD contributions.

4.1.2 Individual contribution to the IGDp indicator
The IGDp indicator takes the power mean of the Eu-

clidean distances between the elements of the Pareto front
PF and a set A. Since IIGDp considers only the elements of
A which are closest to at least one element of PF, some ele-
ments of A may not contribute to the value of this indicator
while other elements can have several contributions. This
leads us to the following definition.

Definition 11. Let Q be the set of all elements of the
Pareto front PF for which ai ∈ A is the closest element in
A. The contribution of ai to IIGDp can then be defined as:

IIGD[ai] =

(
p

qP
q∈Q dist(q, ai)p Q 6= ∅

−1 Q = ∅
(13)

where dist is the Euclidean distance between two points.

The elements of A with higher IGD contributions are pre-
ferred to those with lower IGD contributions, since the for-
mer often cover larger sections of the Pareto front.

4.1.3 Individual contribution to the ∆p indicator
An individual’s contribution to the ∆p indicator must con-

sider its contributions to both the GD and the IGD indica-
tors. Since the indicator is to be minimized, individuals with
lower ∆p contributions should be preferred with respect to
those with higher ∆p contributions.

Definition 12. Let A be an approximation set for a MOP
with Pareto front PF. Given two elements ai, aj ∈ A, ai con-
tributes less than aj to I∆p if one of the following conditions
holds:

1. ai contributes to IIGDp and aj does not.

IIGD[ai] > 0 and IIGD[aj ] < 0 (14)



2. ai contributes more to IIGDp than aj

IIGD[ai] > IIGD[aj ] (15)

3. ai and aj contribute equally to IIGDp but ai is closer
to the Pareto front

IIGD[ai] = IIGD[aj ] and IGD[ai] < IGD[aj ] (16)

In our proposed approach, an individual’s contribution to
the IGD indicator is given more importance than its contri-
bution to the GD indicator since IIGDp reflects an individ-
ual’s importance in terms of both convergence and coverage
of the Pareto front while IGDp only reflects its contribution
to convergence.

4.2 Reference Set Construction
The ∆p indicator needs two sets:

• the approximation set A:
given by the population of the MOEA

• the reference set R:
a (discretized) Pareto front for the MOP

Since the true Pareto front is normally unknown, an approx-
imation must be constructed to be used as the reference set
for the MOEA. Some desirable properties for the reference
set are the following:

1. All elements in A should be dominated by elements of
R.

2. R should be (easily) updated if A is slightly modified.

3. No element in R must (strongly) dominate other ele-
ments in the reference set

4. The elements of R should be evenly spaced.

Our proposal for building the reference set is described in
Algorithm 1.

Algorithm 1 Reference set construction

1: Approximate the ideal and nadir objective vectors (see
Section 4.2.1)

2: Build an upper k-dimensional frame bounded by the
ideal and nadir vectors (see Section 4.2.2)

3: Fit the frame to the non-dominated points in A (see
Section 4.2.3)

4: Remove duplicated points (see Section 4.2.4)

4.2.1 Ideal and nadir vector approximation
The approximate ideal vector is set as the known mini-

mum for each objective function:

~bi =

„
min
~x∈A

f1(~x), min
~x∈A

f2(~x), . . . , min
~x∈A

fk(~x)

«
(17)

where A contains all known non-dominated solutions to the
MOP. An element of the approximate ideal vector is updated
whenever an improvement is achieved in the corresponding
objective function.

The approximate nadir vector is defined using only the
non-dominated solutions in the current generation G

~bn =

„
max
~x∈G

f1(~x), max
~x∈G

f2(~x), . . . , max
~x∈G

fk(~x)

«
(18)

To reduce the computational cost of building the reference
set too often, an element of the nadir vector approximation is

only updated when the corresponding element in ~bi changed
or the difference between the current value and the updated
value is “large enough”.

4.2.2 Frame building
In order to approximate the Pareto front, a box of uni-

formly distributed points is set bounded by ~bi and ~bn. How-
ever, only the walls of the box which contain the approxi-
mate nadir vector are included in the frame. The frame is
built by setting k independent (k− 1)-dimensional walls. A
point ~x in the i-th wall should only be added to the frame if

∃~y ∈ Q ∀j ∈ {1, . . . , k}\{i} fj(~x) ≤ fj(~y) (19)

where Q is the set of non-dominated solutions in the current
population. Since each wall of the frame has some points on
the edges of the box, those points will appear duplicated.

The distance between points should be

s =

Pk
j=1(bn[j]− bi[j])

kr
(20)

where r is the resolution (average number of points on the
edges of the frame) of the reference set which is given as a
parameter to the MOEA.

4.2.3 Frame fitting
Since the frame was built using the nadir point, several

points in the frame could be dominated by points in the
population. Therefore, the dominated points must be rear-
ranged to ensure that none of the frame points is strongly
dominated and that every element in the population is (weak-
ly) dominated by at least one element in the frame.

The reference set is fitted as described in Algorithm 2.

Algorithm 2 Reference set fitting

1: for each objective function fi do
2: for each point x on the i-th wall of the frame do
3: Q← {q ∈ non-dominated solutions |fm(q) ≤ x[m]},

m = {1, . . . , k}\{i}
4: qmin ← minq∈Q(fi(q))

5: xi ← bn[i]− dbn[i]−qmin[i]e
s

s
6: end for
7: end for

4.2.4 Removing duplicated points
The fitting proposed before, can lead to several points

located in the same position on the reference set. Such
points would bias the MOEA towards sections with dupli-
cated points which is evidently, undesirable. Thus, all but
one point in a given position are marked as duplicates with
only unmarked points contributing to the fitness assignment.
The points cannot be completely deleted from the reference
set since a future fitting could have those points in different
positions.

5. THE ALGORITHM
The full description of our proposed approach (called ∆p-

Differential Evolution (DDE) is shown in Algorithm 3. It
is worth remarking that some modifications were done to
DE/rand/1/bin to adapt the algorithm for multi-objective



optimization using the proposed ∆p-based selection mecha-
nism:

• The creation and update of the reference set (lines 3
and 18) was included

• ∆p contributions must be computed considering the
objective function values of the population and the ref-
erence set (lines 4 and 19)

• The (1+1)-selection mechanism was replaced by an
(NP+NP)-selection (lines 17-20)

• The outcome of DE is its final population instead of a
single individual (line 22)

Algorithm 3 DE/rand/1/bin with ∆p-based selection
(DDE)

1: Generate initial population (A) of NP individuals ran-
domly

2: Evaluate the objective function for each individual
3: Initialize the reference set S
4: Compute the I∆p contributions of each individual ac-

cording to S
5: repeat
6: {N} ← ∅
7: for each individual ~x ∈ A do
8: Pick three distinct individuals ~b,~c, ~d ∈ A.
9: Pick an index R ∈ {1, . . . , D}

10: for i = 1, . . . , D do
11: Pick ri ∈ (0, 1) uniformly at random
12: if (i = R or ri <CR) then yi = bi + F (ci − di)
13: else yi = xi

14: end for
15: {N} ← {N}+ ~y
16: end for
17: Evaluate the objective function for all the generated

offspring N
18: Update S
19: Compute the I∆p contributions of A∪N according to

the updated S
20: A← the NP individuals which the lowest I∆p contri-

butions
21: until a stopping criterion is met
22: return the final population

Our proposed approach assumes that the real Pareto front
of the problem is (k−1)-dimensional and continuous. There-
fore, we don’t expect our proposed approach to work well
with functions where the Pareto front lost dimensionality or
where it is discontinuous.

5.1 Influence of the resolution parameter
The resolution r for the reference set was included as an

additional parameter to our proposed approach. This pa-
rameter has a strong influence on both the quality of the
outcome set of DDE as well as on its computational cost.
The main issues to consider are the following:

• If the reference set is too small (i.e., if it has less points
than the population), then the quality of the outcome
set drastically decreases since it cannot distribute well
all the points in the population (the Pareto front would
be under-sampled)

• If the reference set is too large (i.e., if it has at least
twice as many points as the population), then the com-
putational cost of our approach increases (because of
the cost of building and updating a large reference set),
while the quality of the outcome set does not improve.

Ideally, the reference set should have approximately the same
size as the population for the MOEA since in that scenario,
the Pareto front is appropriately sampled for the number of
solutions used while maintaining the computational cost as
low as possible.

We recommend the value of r to be at least

r = max(3,
k−1
√

N) (21)

where N is the size of the population since any value lower
than 3 would consider only the extreme known values for the
functions and any value less than k−1

√
N would under-sample

the Pareto front. However, it is important to consider that
more points are deleted from the reference set in higher di-
mensions which implies that, for many-objective problems,
the value of r should be larger than the given bound.

6. PERFORMANCE ASSESSMENT
Our proposed DDE was tested on 12 problems from the

Zitzler-Deb-Thiele (ZDT) [21] and the Deb-Thiele-Laumanns-
Zitzler (DTLZ) [9] test suites. These test problems were
adopted with the settings shown in Table 1.

Problem # variables # objectives
ZDT 1-3 30 2
ZDT 4,6 10 2
DTLZ 1 13 3

DTLZ 2-6 12 3
DTLZ 7 22 3

Table 1: Test problem settings

We compared our approach with respect to NSGA-II [8]
(which is a Pareto-based MOEA representative of the state-
of-the-art) and SMS-EMOA [2] (which is a hypervolume-
based MOEA representative of the state-of-the-art) using
the hypervolume [20] and the ∆1 [16] indicators.

6.1 Parameters Settings
30 independent runs of each algorithm were performed

with the parameters shown in Table 2. The three MOEAs
adopted a population size of 100 individuals and were run
during 200 generations.

DDE NSGA-II SMS-EMOA
F = 1.0 pc = 0.9
Cr= 0.4 pm = 1/|~x| pm = 1/|~x|
p = 1.0 nc = 15 nc = 15

r = d k−1
√

100e nm = 20 nm = 20

Table 2: Parameters used for each MOEA

The outcome sets were compared using the hypervolume
indicator [20] and the ∆1 indicator [16]. For the ∆1 indica-
tor, a set of ≈ 150 evenly distributed points of the Pareto
front was used.



Test I∆1 IH

problem DDE NSGA-II SMS-EMOA DDE NSGA-II SMS-EMOA Reference point

ZDT1 0.004625 0.005314 0.003912 0.870584 0.868009 0.871766 (1.1, 1.1)
ZDT2 0.004638 0.005488 0.004093 0.536988 0.533828 0.538295 (1.1, 1.1)
ZDT3 0.008469 0.006065 0.007855 0.945797 0.951098 0.951629 (0.9, 1.1)
ZDT4 0.011449 0.020748 0.053781 0.854655 0.845837 0.825166 (1.1, 1.1)
ZDT6 0.003549 0.016471 0.008221 0.502041 0.4823269 0.494348 (1.1, 1.1)

DTLZ1 0.678735 10.2047 1.426136 1.020308 0.000000 0.399135 (1.1, 1.1, 1.1)
DTLZ2 0.058214 0.074047 0.063697 0.722791 0.690814 0.757763 (1.1, 1.1, 1.1)
DTLZ3 2.561606 32.001436 11.754814 103.861710 0.169759 11.16606 (5.0, 5.0, 5.0)
DTLZ4 0.058748 0.165438 0.063790 0.719107 0.650300 0.757853 (1.1, 1.1, 1.1)
DTLZ5 0.297309 0.005608 0.004923 0.292570 0.437321 0.439354 (1.1, 1.1, 1.1)
DTLZ6 0.009725 1.379611 0.460537 0.436414 0.000000 0.090737 (1.1, 1.1, 1.1)
DTLZ7 0.092193 0.085428 0.110085 2.946258 2.933973 3.041450 (1.1, 1.1, 7.0)

Table 3: Comparison of the average results obtained by NSGA-II, SMS-EMOA and DDE for the ZDT and DTLZ test problems

6.2 Results
The comparison of results is shown in Table 3. We can see

in this table that the values obtained by the three MOEAs
are, in most cases, very similar. Thus, and because of the
obvious space limitations, we will focus our discussion on
three particular types of problems:

• Problems with a discontinuous Pareto front

• Problems in which the Pareto front is not (k − 1)-
dimensional

• Multi-frontal problems

As previously stated, we expected our approach to pro-
duce bad outcome sets for problems with discontinuous Pa-
reto fronts with the solutions clustering around the bound-
aries of the Pareto front. Such a behavior can be observed
in DTLZ7 (see Figure 1). However, it is interesting to note
that the quality of the outcome sets generated by DDE in
this case was not much worse than those produced by either
NSGA-II or SMS-EMOA in terms of the chosen indicators.
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Figure 1: Graphical results for DTLZ7

We also indicated that our proposed approach was not ex-
pected to work well for problems in which the Pareto front

loses dimensionality. Both DTLZ5 and DTLZ6 have this
feature (see Figure 2). Although it is clear that our ap-
proach has difficulties for solving DTLZ5 (which has a bias
towards solutions close to the Pareto front) it could easily
solve DTLZ6, which is normally considered to be a harder
MOP than DTLZ5.
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Figure 2: Graphical results for DTLZ5 and DTLZ6

Also, our proposed approach seems less prone to get trapped
in local optima than both NSGA-II and SMS-EMOA. The
results obtained by our approach in highly multi- frontal
problems such as DTLZ1 and DTLZ3 (see Figure 3) are
significantly better than those obtained by the two other
MOEAs with respect to which it was compared.
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Figure 3: Graphical results for DTLZ1 and DTLZ3



6.3 Many-Objective Optimization: A Case
Study

In order to evaluate the ability of our proposed approach
to deal with many-objective optimization problems, we scaled
the DTLZ2 test problem from 2 to 10 objectives, in order
to use it as our case study. Again, we compared the perfor-
mance of our approach to both NSGA-II and SMS-EMOA.
In this case, however, only 10 independent runs of each al-
gorithm were performed, mainly because of the high com-
putational cost of SMS- EMOA. For these runs, we used a
population of 200 individuals running for 200 generations
using the same parameters as before but adjusting the res-
olution values for DDE as shown in Table 4.

Objectives (k) 2 3 4 5 6 7 8 9 10
Resolution (r) 200 15 6 4 3

Table 4: Resolution values for DDE

The outcome sets of the algorithms were compared us-
ing the exact generational distance indicator (which, due to
the geometry of the Pareto front for DTLZ2, can be com-

puted as
P|NP|

i=1

“qPk
j=1 fj(ai)2 − 1

”
, the hypervolume in-

dicator(using
−→
1.1 as the reference point), and the running

time of each MOEA.
We can see in Figure 4 how NSGA-II has a quick per-

formance degradation as we increased the number of ob-
jectives. This does not occur with SMS- EMOA or with
our proposed DDE. However, it is clear that SMS-EMOA
is better than our proposed approach in terms of the per-
formance indicators adopted. However, quantitatively, the
difference is not significant, since our approach reached only
slightly worse results than SMS-EMOA. Our proposed DDE
obtained, on average, over 95% of the best hypervolume
value found by SMS-EMOA. In terms of computational time,
however, there is a significant difference, since our proposed
approach required less than 0.1% of the computational time
consumed by SMS-EMOA (see Figure 5).
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Figure 5: Running time for DTLZ2

These preliminary results lead us to claim that our pro-
posed DDE constitutes a viable alternative for solving MOPs,

and we particularly encourage its use in many-objective opti-
mization problems. As we have seen, SMS-EMOA, which is
also an indicator-based MOEA, can properly handle many-
objective optimization problems. However, its high com-
putational cost can easily make it unaffordable for MOPs
having more than 5 objectives. This high computational
cost is evidently due to the hypervolume calculation that
SMS-EMOA requires.

7. CONCLUSIONS AND FUTURE WORK
We have proposed a MOEA based on the minimization of

a performance indicator called ∆p. Our proposed approach
was shown to obtain competitive results when compared to
NSGA-II and SMS-EMOA using several test problems and
performance indicators taken from the specialized literature.

As we saw in our results, when dealing with problems hav-
ing two or three objectives, our proposed approach has a sim-
ilar performance as both NSGA-II and SMS-EMOA. We also
saw that in these low dimensionality MOPs, our proposed
approach produced significantly better results than NSGA-II
and SMS-EMOA in highly multi-frontal MOPs (i.e., prob-
lems having many false Pareto fronts). Conversely, the main
limitation of our proposed approach is that it is not well-
suited for MOPs in which the Pareto front is discontinuous
or is not (k− 1)-dimensional. However, in our experiments,
we found the first feature to generate difficulties to NSGA-II
and SMS-EMOA as well, while the second feature did not
have a significant impact on performance all the time. Nev-
ertheless, these features require more attention and will be
the focus of our future work. We believe that it is possible
to improve the procedure to construct the reference set, so
that we can properly deal with these features, and that will
be part of our future work.

When dealing with a MOP having many objectives, our
proposed approach performed better than NSGA-II and was
outperformed by SMS-EMOA. However, the values of the in-
dicators did not show a significant difference in performance
and we showed how our proposed approach was significantly
faster than SMS-EMOA as we increased the number of ob-
jectives of a MOP. These results are very encouraging, but it
is clear to us that a more thorough study of the scalability of
our proposed approach is required and that is, indeed, part
of our ongoing research.
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