
A Comparative Study of the Effect of Parameter
Scalability in Multi-Objective Metaheuristics

Juan J. Durillo, Antonio J. Nebro, Carlos A. Coello Coello, Francisco Luna, Enrique Alba

Abstract—Some real-world optimization problems have hun-
dreds or even thousands of decision variables. However, the
effect that the scalability of parameters has in modern multi-
objective metaheuristic algorithms has not been properly stud-
ied (the current benchmarks are normally adopted with ten to
thirty decision variables). In this paper, we adopt a benchmark
of parameter-wise scalable problems (the ZDT test problems)
and analyze the behavior of six multi-objective metaheuristics
on these test problems when using a number of decision
variables that goes from 8 up to 2048. The computational
effort required by each algorithm in order to reach the true
Pareto front is also analyzed. Our study concludes that a
particle swarm algorithm provides the best overall performance,
although it has difficulties in multifrontal problems.

I. I NTRODUCTION

Many real-world optimization problems require the op-
timization of more than one objective function at the same
time. These problems are called Multi-objective Optimization
Problems (MOPs). Contrary to single-objective optimization
problems, the solution to MOPs is normally never a single
solution, but a set ofnondominated solutions called the
Pareto optimal set. A solution that belongs to this set is said
to be aPareto optimum and, when the solutions of this set
are plotted in objective space, they are collectively knownas
the Pareto front. Obtaining the Pareto front is the main goal
in multi-objective optimization.

The fact that MOPs in the real world tend to be nonlinear
and with objective functions that are very expensive to eval-
uate, motivates the use ofmetaheuristics to deal with these
problems [1], [9]. Metaheuristics are a family of techniques
comprisingEvolutionary Algorithms (EA), Particle Swarm
Optimization (PSO),Ant Colony Optimization (ACO), Tabu
Search (TS), Scatter Search (SS) and many others. EAs
are among the most popular metaheuristics in current use,
and some of the most popular algorithms for multi-objective
optimization, such as NSGA-II [6] and SPEA2 [21], are
Genetic Algorithms (GAs), a subfamily of EAs [3], [5].
Other EAs are theEvolution Strategies (ESs) andGenetic
Programming (GP).

J.J Durillo, A.J. Nebro, F. Luna, and E. Alba are with the Departamento
de Lenguajes y Ciencias de la Computación, University of M´alaga, Spain
(e-mail: {durillo,antonio,flv,eat}@lcc.uma.es)

Carlos A. Coello Coello is with the Department of Computer Science,
CINVESTAV-IPN, Mexico (e-mail:{ccoello@cs.cinvestav.mx)

This work has been partially funded by the Spanish Ministry of Educa-
tion and Science and FEDER under contract TIN2005-08818-C04-01 (the
OPLINK project). Juan J. Durillo is supported by grant AP-2006-03349 from
the Spanish Ministry of Education and Science. Carlos A. Coello Coello
acknowledges support from CONACYT project no. 45683-Y.

The performance of these algorithms has been typi-
cally assessed by using benchmark problems, such as the
Zitzler-Deb-Thiele (ZDT) test problems [19], the Deb-
Thiele-Laumanns-Zitzler (DTLZ) test problems [7], and the
Walking-Fish-Group (WFG) test problems [10]). These three
problem families are scalable in the number of decision
variables, and the last two are also scalable in the number
of objectives. The methodology commonly adopted in the
specialized literature is to compare several algorithms using
a fixed (pre-defined) number of objective function evaluations
and to compare the values of different quality indicators
(e.g.,generational distance [17] or hypervolume [20], among
others).

The motivation driving us is that many real-world prob-
lems have hundreds or even thousands of decision variables,
and the aforementioned benchmarks have been normally
adopted using a maximum of up to 30 variables. Thus, the
studies currently available do not consider the capabilityof
current multi-objective metaheuristic algorithms to properly
scale when dealing with a very large number of decision
variables.

Another interesting issue that has been only scarcely
covered in the specialized literature is the analysis of the
behavior of a multi-objective metaheuristic until reaching the
true Pareto front of a problem. Typically, a fixed number of
evaluations (and, in consequence, of iterations) is defined
by the user, and the performance of the different algorithms
studied is compared. However, this sort of comparison does
not provide any indication regarding the computational effort
that a certain algorithm requires to reach the true Pareto
front of a problem. We believe that this is an important issue
because if we take into account that evaluating the objective
functions of a MOP can be very time-consuming, it becomes
of interest to know how expensive is for a certain algorithm
to reach the true Pareto front. That is the reason why we
present this sort of analysis in this paper.

In this work, we compare six state-of-the-art multi-
objective metaheuristics when solving a set of scalable
parameter-wise MOPs, those comprising the ZDT bench-
mark, considering their formulation ranging from 8 up to
2048 variables. The algorithms are three GAs (NSGA-II [6],
SPEA2 [21], and PESA-II [4]), an ES (PAES [12]), a PSO
(OMOPSO [15]), and a cellular GA (MOCell [13]). In our
study, we also analyze how fast they provide a satisfactory
solution of the problem. Briefly, given that the true Pareto
fronts of the ZDT problems are known, we consider that



an algorithm has successfully solved the problem when the
hypervolume of its current population (or archive) is higher
than 95% of the hypervolume of the true Pareto front.
Obviously, statistical tests need to be performed in order to
assess the significance of the results, so that chance can be
discarded as the responsible for them.

II. RELATED WORK

Many real world MOPs have many decision variables and
objective functions. To study the search capabilities of multi-
objective metaheuristics to solve these types of problems,
benchmarks of scalable MOPs have been defined: the ZDT
set [19] is composed of six parameter-wise scalable MOPs,
and the DTLZ [7] and WFG [10] test suites include scalable
problems in both the number of parameters and the number
of objectives.

In the multi-objective research community, the study of
objective function scalability is a hot topic (leading to the so-
calledmany-objective optimization). In [11], the performance
of three multi-objective genetic algorithms (PESA, SPEA,
and NSGA-II) is studied when solving four DTLZ problems
with a number of objectives ranging from 2 to 8. In a similar
context, the behavior of NSGA-II when solving the same
problems and the same number of objectives is analyzed
in [14], where the concept of classifying nondominated
solutions is introduced to improve the search capabilitiesof
the NSGA-II.

Due to difficulties to solve high dimensional MOPs, some
authors have introduced schemes to reduce the number of
objectives, such as Brockhoff and Zitzler [2], who investi-
gated whether all the objectives are necessary to preserve the
problem characteristics. In [16], Saxena and Deb proposed
techniques for dimensionality reduction and apply them to
up to 50-objective MOPs.

While these and other works are focused on objective
function scalability, the study of parameter scalability has
not been considered before in multi-objective optimization,
to the best of the authors’ knowledge. As far as we know,
only in [18] a small study using the ZDT1 problem with up
to 100 variables is included. Thus, the main motivation of
this study has been precisely to present an in-depth study on
this important topic.

III. SCALABLE PARAMETER-WISE MULTI -OBJECTIVE

OPTIMIZATION PROBLEMS

To carry out our study, it is helpful to use problems which
are scalable in terms of the number of decision variables
while keeping an invariable Pareto front. The ZDT test
function family [19] fulfills this requirement. Additionally,
it offers, a group of problems with different properties:
convex, non-convex, disconnected, multi-frontal, many-to-
one problems. These problems have been widely used in
many studies in the field since they were formulated. We
omitted problem ZDT5 because it uses binary encoding.

Since we were interested in studying the behavior of multi-
objective metaheuristics when solving scalable parameter-
wise problems, we have evaluated each ZDT problem with

TABLE I
PARAMETERIZATION (L = INDIVIDUAL LENGTH )

Parameterization used in MOCell
Population Size 100 individuals (10 × 10)
Neighborhood 1-hop neighbours (8 surrounding solutions)
Selection of Parents binary tournament + binary tournament
Recombination simulated binary,pc = 0.9
Mutation polynomial,pm = 1.0/L
Archive Size 100 individuals

Parameterization used in NSGA-II
Population Size 100 individuals
Selection of Parents binary tournament + binary tournament
Recombination simulated binary,pc = 0.9
Mutation polynomial,pm = 1.0/L

Parameterization used in SPEA2
Population Size 100 individuals
Selection of Parents binary tournament + binary tournament
Recombination simulated binary,pc = 0.9
Mutation polynomial,pm = 1.0/L

Parameterization used in PESA-II
Population Size 100 individuals
Selection of Parents region based selection + region based selection
Recombination simulated binary,pc = 0.9
Mutation polynomial,pm = 1.0/L
Archive Size 100 individuals

Parameterization used in OMOPSO
Particles 100 particles
Mutation uniform + non-uniform
Leaders Size 100

Parameterization used in PAES
Mutation polynomial,pm = 1.0/L
Archive Size 100

8, 16, 32, 64, 128, 256, 512, 1024, and 2048 variables.
This way, we can study not only what techniques produce
more accurate fronts when solving problems having many
variables, but also if their search capabilities remain constant
or not when the number of problem variables augments.

IV. M ETAHEURISTICS MULTI-OBJECTIVE ALGORITHMS

As indicated before, we adopted six multi-objective meta-
heuristics for our study: (1) the Nondominated Sorting
Genetic Algorithm II (NSGA-II ) [6], (2) the Strength
Pareto Evolutionary Algorithm (SPEA2) [21], (3) the Pareto
Archived Evolution Strategy (PAES) [12], (4) the Pareto
Envelope-based Search Algorithm for multi-objective opti-
mization II (PESA II ) [4]), (5) the “Our” Multi-Objective
Particle Swarm Optimizer (OMOPSO) [15], and (6) the
Multi-Objective Cellular Genetic Algorithm (MOCell ) [13].

The descriptions of these approaches were omitted due to
space constraints (interested readers must refer to their cor-
responding publications). We have used the implementations
of these algorithms provided by jMetal [8], which is a Java-
based framework for developing metaheuristics for solving
multi-objective optimization problems1.

V. EXPERIMENTATION

In this section, we describe the parameter settings used in
the experiments, the methodology we have followed in the
tests, and the results we have obtained.

1jMetal is freely available for download at the following Webaddress:
http://neo.lcc.uma.es/metal/.



A. Parameterization

We have chosen a set of parameter settings aiming to guar-
antee a fair comparison among the algorithms. All the GAs
(NSGA-II, SPEA2, PESA-II, and MOCell) use an internal
population of size equal to 100; OMOPSO is configured with
100 particles, and the size of the archive in PAES is also 100.

In the GAs, we have used SBX and polynomial muta-
tion [5] as operators for crossover and mutation, respectively.
The distribution indexes for both operators areηc = 20 and
ηm = 20, respectively. The crossover probability ispc = 0.9
and the mutation probability ispm = 1/L, whereL is the
number of decision variables. In PAES, we have also used
the polynomial mutation operator, with the same distribution
index. A detailed description of the parameter settings is
shown in Table I.

B. Methodology

We are interested in two goals: the behavior of the al-
gorithms when solving the scalable ZDT benchmark and to
know which algorithms are faster in reaching the true Pareto
front. Given that the true Pareto fronts of the ZDT problems
are known, a strategy could be to run the algorithms until
they reach such front, but then it is possible that some of them
never achieve the optimal front. Our approach is to establish
a stopping condition based on thehigh quality of the Pareto
front found, and we have used the hypervolume [20] quality
indicator for that purpose.

The hypervolume computes the volume (in the objec-
tive space) covered by members of a nondominated set of
solutions Q for problems where all objectives are to be
minimized. Mathematically, for each solutioni ∈ Q, a
hypercubevi is constructed with a reference pointW and
the solutioni as the diagonal corners of the hypercube. The
reference point can simply be found by constructing a vector
of worst objective function values. Thereafter, a union of all
hypercubes is found and its hypervolume (HV ) is calculated
using:

HV = volume





|Q|
⋃

i=1

vi



 . (1)

Higher values of the hypervolume metrics are desirable. A
property of this quality indicator is that it measures both
convergece to the true Pareto front and diversity of the
obtained fronts.

In our experiments, each algorithm is executed until
a maximum of 500,000 function evaluations have been
computed. Every 100 evaluations (that is, each iteration
in the population based metaheuristics) we measure the
hypervolume of the nondominated solutions found so far.
Therefore, in NSGA-II and SPEA2 we have considered
the nondominated solutions in each generation, in PESA-II,
PAES and MOCell the external population and, in OMOPSO,
the leaders archive. We consider as stopping condition to
obtain a hypervolume value of 95% of the hypervolume of
the true Pareto front, or to reach 500,000 evaluations.

Using the hypervolume in the stopping condition allows
us to obtain ahit rate of the algorithms, i.e., the percent-
age of successful executions. An execution is successful if
the algorithm stops before getting to the 500,000 function
evaluations. This way, we can measure the robustness of the
techniques when solving the problems.

We have performed 100 independent runs per each al-
gorithm and each problem instance. Since we are dealing
with stochastic algorithms, we need to perform a statistical
analysis of the obtained results in order to compare them with
certain level of confidence. Next, we describe the statistical
test that we have carried out for ensuring such statistical
confidence. First, a Kolmogorov-Smirnov test is performed
in order to check whether the values of the results follow
a normal (Gaussian) distribution or not. If so, the Levene
test checks for the homogeneity of the variances. If samples
have equal variance (positive Levene test), an ANOVA test is
done; otherwise, we perform a Welch test. For non-Gaussian
distributions, the non-parametric Kruskal-Wallis test isused
to compare the medians of the algorithms.

We always consider in this work a confidence level of
95% (i.e., a significance level of 5% orp-value under0.05)
in the statistical tests, which means that the differences are
unlikely to have occurred by chance with a probability of
95%. Successful tests are marked with “+” symbols in the
last column in the tables containing the results; conversely,
“-” means that no statistical confidence was found (p-value
> 0.05). Looking for homogeneity in the presentation of the
results, all the tables include the median,x̃, and interquartile
range,IQR, as measures of location (or central tendency)
and statistical dispersion, respectively.

C. Analysis of results

Tables II, III, IV, V, VI show the median and the in-
terquartile range of the number of evaluations needed by
the different optimizers for ZDT1, ZDT2, ZDT3, ZDT4,
and ZDT6, respectively. When an optimizer is not able to
reach an acceptable front in 500,000 function evaluations,its
result appears as “–”, and it is not taken into account in the
statistical tests. To facilitate the analysis of the tables, the
cells containing the lowest number of function evaluations
have a grey colored background. There are two grey levels:
the darker grey indicates the best (lowest) value, while the
lighter grey points out the second best value.

Next, we analyze the results obtained for each of the
problems. To make the results clearer, we include a figure
summarizing the values, using a logarithmic scale, included
in the corresponding table. The discussion is organized in
the following order: first, we analyze the success of the al-
gorithms when solving the different instances of the problem;
second, we study the hit rate values; finally, we consider the
speed to obtain the Pareto front.

• ZDT1: Table II and Figure 1 show the evaluations
needed to find the Pareto fronts for problem ZDT1.
We can observe that all the optimizers successfully
solved this problem up to 512 variables, four out of the



TABLE II
EVALUATIONS FOR ZDT1

Algorithm 8 16 32 64 128 256 512 1024 2048
MOCell 1.70e+033.0e+02 3.80e+036.0e+02 9.20e+031.2e+03 2.17e+042.2e+03 4.97e+043.9e+03 1.13e+057.3e+03 2.58e+051.2e+04 – –
NSGA-II 3.30e+032.0e+02 5.70e+035.0e+02 1.01e+047.0e+02 1.91e+041.2e+03 3.77e+041.9e+03 8.32e+044.5e+03 1.94e+051.0e+04 4.63e+051.9e+04 –
SPEA2 4.10e+034.0e+02 7.25e+034.0e+02 1.28e+041.0e+03 2.33e+041.1e+03 4.45e+042.2e+03 9.29e+044.0e+03 2.08e+057.5e+03 4.75e+051.6e+04 –
PESA-II 2.70e+037.5e+02 5.40e+031.6e+03 1.09e+042.0e+03 2.27e+042.0e+03 5.17e+043.8e+03 1.24e+056.5e+03 3.04e+051.4e+04 – –

OMOPSO 1.10e+033.0e+02 2.50e+037.0e+02 5.75e+031.4e+03 1.11e+041.7e+03 2.48e+042.8e+03 5.71e+045.8e+03 1.47e+051.4e+04 4.10e+053.2e+04 –
PAES 2.35e+031.8e+03 4.05e+033.3e+03 7.25e+035.3e+03 1.62e+041.1e+04 3.05e+041.9e+04 5.77e+044.2e+04 1.06e+055.8e+04 2.17e+051.9e+05 4.71e+051.8e+05

+ + + + + + + + -

TABLE III
EVALUATIONS FOR ZDT2

Algorithm 8 16 32 64 128 256 512 1024 2048
MOCell 2.80e+031.3e+03 5.10e+031.4e+03 8.50e+032.5e+03 1.56e+041.1e+04 4.29e+042.5e+04 1.25e+054.4e+04 2.91e+059.0e+03 – –
NSGA-II 4.50e+034.3e+02 8.10e+035.0e+02 1.49e+041.1e+03 2.82e+041.7e+03 5.53e+042.2e+03 1.15e+055.1e+03 2.51e+058.1e+03 – –
SPEA2 6.40e+037.0e+02 1.20e+041.5e+03 2.09e+041.6e+03 3.70e+042.4e+03 6.99e+043.2e+03 1.38e+057.1e+03 2.86e+057.8e+03 – –
PESA-II 4.80e+031.7e+03 8.30e+031.6e+03 1.56e+042.0e+03 3.25e+042.8e+03 7.21e+044.3e+03 1.66e+057.9e+03 3.92e+052.0e+04 – –

OMOPSO 1.20e+033.0e+02 2.40e+037.0e+02 5.15e+031.7e+03 9.50e+032.5e+03 2.02e+043.1e+03 4.27e+045.0e+03 1.03e+051.2e+04 2.59e+052.6e+04 –
PAES 2.70e+032.0e+03 5.40e+033.2e+03 1.02e+044.0e+03 1.97e+048.0e+03 3.43e+042.4e+04 7.37e+043.6e+04 1.43e+057.6e+04 2.59e+051.6e+05 5.00e+057.8e+04

+ + + + + + + + -

TABLE IV
EVALUATIONS FOR ZDT3

Algorithm 8 16 32 64 128 256 512 1024 2048
MOCell 2.00e+035.0e+02 4.20e+039.5e+02 1.01e+041.7e+03 2.35e+042.2e+03 5.21e+043.9e+03 1.16e+055.8e+03 2.54e+051.1e+04 – –
NSGA-II 3.20e+033.0e+02 5.55e+035.5e+02 9.80e+037.0e+02 1.90e+041.3e+03 3.85e+042.6e+03 8.35e+044.9e+03 1.91e+051.0e+04 4.46e+051.7e+04 –
SPEA2 4.05e+034.0e+02 7.10e+037.0e+02 1.26e+048.5e+02 2.32e+042.0e+03 4.53e+042.7e+03 9.58e+046.3e+03 2.10e+058.5e+03 4.67e+051.7e+04 –
PESA-II 2.50e+036.0e+02 5.30e+031.1e+03 1.10e+041.4e+03 2.41e+042.6e+03 5.52e+044.2e+03 1.32e+059.7e+03 3.25e+052.0e+04 – –

OMOPSO 1.60e+037.0e+02 3.90e+031.0e+03 7.90e+032.1e+03 1.74e+042.8e+03 4.44e+046.6e+03 1.15e+051.5e+04 3.10e+052.4e+04 – –
PAES 5.50e+036.5e+03 9.80e+031.1e+04 2.07e+042.8e+04 5.60e+047.5e+04 9.34e+041.0e+05 1.76e+052.4e+05 3.47e+052.9e+05 5.00e+051.0e+05 –

+ + + + + + + + -

TABLE V
EVALUATIONS FOR ZDT4

Algorithm 8 16 32 64 128 256 512 1024 2048
MOCell 8.80e+032.1e+03 2.12e+045.1e+03 5.93e+041.4e+04 1.61e+052.4e+04 4.54e+055.1e+04 – – – –
NSGA-II 1.30e+042.7e+03 2.91e+044.7e+03 7.62e+041.3e+04 2.20e+053.4e+04 – – – – –
SPEA2 1.82e+043.7e+03 3.83e+046.4e+03 1.03e+052.2e+04 2.78e+055.0e+04 – – – – –
PESA-II 1.22e+043.1e+03 2.79e+046.4e+03 7.36e+041.5e+04 2.09e+053.7e+04 – – – – –

OMOPSO – – – – – – – – –
PAES 1.39e+048.3e+03 4.29e+041.7e+04 1.08e+053.0e+04 2.80e+058.4e+04 – – – – –

- - - - + - - - -

TABLE VI
EVALUATIONS FOR ZDT6

Algorithm 8 16 32 64 128 256 512 1024 2048
MOCell 1.09e+049.0e+02 2.58e+041.6e+03 5.71e+042.2e+03 1.18e+053.6e+03 2.47e+055.4e+03 – – – –
NSGA-II 1.75e+048.5e+02 3.50e+041.6e+03 6.80e+041.9e+03 1.31e+053.5e+03 2.57e+055.6e+03 – – – –
SPEA2 2.39e+041.2e+03 4.71e+041.9e+03 8.97e+042.9e+03 1.67e+054.2e+03 3.18e+057.5e+03 – – – –
PESA-II 1.39e+041.1e+03 3.17e+041.9e+03 6.89e+043.3e+03 1.44e+054.6e+03 3.05e+058.7e+03 – – – –

OMOPSO 2.20e+031.3e+03 3.55e+031.7e+03 6.40e+032.1e+03 1.32e+043.5e+03 2.75e+045.8e+03 5.92e+049.4e+03 1.27e+051.9e+04 2.74e+054.1e+04 –
PAES 4.75e+033.9e+03 8.15e+039.6e+03 1.69e+041.3e+04 3.97e+043.7e+04 7.93e+046.3e+04 1.46e+051.0e+05 3.31e+052.5e+05 5.00e+053.7e+04 –

+ + + + + + + + -



TABLE VII
HIT RATE FOR ZDT1

Algorithm 8 16 32 64 128 256 512 1024 2048
MOCell 1 1 1 1 1 1 1 0 0
NSGA-II 1 1 1 1 1 1 1 1 0
SPEA2 1 1 1 1 1 1 1 0.97 0
PESA-II 1 1 1 1 1 1 1 0 0

OMOPSO 1 1 1 1 1 1 1 1 0
PAES 1 1 1 1 1 0.98 0.98 0.89 0.56

six algorithms solved the problem with 1024 variables,
and only PAES was able to find solutions with 2048
variables. This last result is certainly surprising, given
that PAES is the simplest algorithm in our experiments.
If we analyze the hit rate (see Table VII), all the
algorithms excepting PAES achieved a 100% up to 512
variables. The hit rate of PAES when solving the 2048
instance (0.56), indicates that the problem was solved
only in about half of the 100 independent runs executed.
Attending to the speed of the techniques, OMOPSO
reached first the desired results in the instances up 256
variables, and it ranked second when dealing with both
512 and 1024 variables. PAES was the fastest approach
in the largest instances and the second fastest algorithm
in the instances ranging from 32 to 256 variables.
For all cases, except the last column, Table II indicates
that the results have statistical confidence (see the “+”
in the last row). The “-” in the last column is due to the
fact that PAES was the only algorithm that obtained
a solution, and thus, the other algorithms were not
considered.

TABLE VIII
HIT RATE FOR ZDT2

Algorithm 8 16 32 64 128 256 512 1024 2048
MOCell 1 1 1 1 1 1 1 0.02 0
NSGA-II 1 1 1 1 1 1 1 0 0
SPEA2 1 1 1 1 1 1 1 0 0
PESA-II 1 1 1 1 1 1 1 0 0

OMOPSO 1 1 1 1 1 1 1 1 0
PAES 1 1 1 1 1 1 0.97 0.87 0.49

• ZDT2: The evaluations needed to solve the ZDT2

ZDT1

1.00E+03

1.00E+04

1.00E+05

1.00E+06

8 16 32 64 128 256 512 1024 2048

Number of variables

N
u

m
b

e
r

o
f

e
v
a
lu

a
ti

o
n

s

MOCell NSGA-II SPEA2 PESA-II OMOPSO PAES

Fig. 1. Number of evaluations when solving ZDT1.

ZDT2

1.00E+03

1.00E+04

1.00E+05

1.00E+06

8 16 32 64 128 256 512 1024 2048

Number of variables

N
u

m
b

e
r

o
f

e
v
a
lu

a
ti

o
n

s

MOCell NSGA-II SPEA2 PESA-II OMOPSO PAES

Fig. 2. Number of evaluations when solving ZDT2.

problem are included in Table III and Figure 2. In
this problem, only OMOSPO and PAES found the
solution with 1024 variables, and again PAES is the only
technique that was successful with the largest instance.
The hit rate (see Table VIII) produces results similar to
those obtained in ZDT1. All the algorithms found the
Pareto front up to 256 variables, and PAES obtained a
value of 0.49 in the instance with 2048 variables.
OMOPSO was the fastest algorithm in the instances up
512 variables, and it ranked second with 1024 variables.
PAES was the second best technique, achieving the best
values in the two most difficult instances and was the
second best in four other instances. As in ZDT1, all the
results have statistical confidence.

ZDT3

1.00E+03

1.00E+04

1.00E+05

1.00E+06

8 16 32 64 128 256 512 1024 2048

Number of variables

N
u

m
b

e
r

o
f

e
v
a
lu

a
ti

o
n

s

MOCell NSGA-II SPEA2 PESA-II OMOPSO PAES

Fig. 3. Number of evaluations when solving ZDT3.

TABLE IX
HIT RATE FORZDT3

Algorithm 8 16 32 64 128 256 512 1024 2048
MOCell 1 1 1 1 1 1 1 0 0
NSGA-II 1 1 1 1 1 1 1 1 0
SPEA2 1 1 1 1 1 1 1 1 0
PESA-II 1 1 1 1 1 1 1 0 0

OMOPSO 1 1 1 1 1 1 1 0 0
PAES 1 1 1 1 0.96 0.83 0.64 0.36 0.21



• ZDT3: Table IV and Figure 3 show the evaluations
needed to solve the ZDT3 problem. In this case, none of
the metaheuristics solved the problem with 2048 vari-
ables, and only NSGA-II, SPEA2, and PAES succeeded
with the instance having 1024 variables. However, if we
take a look to the hit rates in Table IX, we observe that
PAES had a 0.21 of success when dealing with the 2048
instance; as we are considering the median of 100 runs,
the problem appears as not solved in Table IX (we have
to note that theIQR only considers the values between
the 25th and the75th percentiles).
Concerning the speed of the algorithms, OMOPSO
is the fastest in the instances ranging from 8 to 64
variables, while NSGA-II is the best technique in the
instances from 128 to 1024 variables. The last row in
Table 3 indicates that all the results are significant.

ZDT4

1.00E+03

1.00E+04

1.00E+05

1.00E+06

8 16 32 64 128 256 512 1024 2048

Number of variables

N
u

m
b

e
r

o
f

e
v
a
lu

a
ti

o
n

s

MOCell NSGA-II SPEA2 PESA-II OMOPSO PAES

Fig. 4. Number of evaluations when solving ZDT4.

TABLE X
HIT RATE FOR ZDT4

Algorithm 8 16 32 64 128 256 512 1024 2048
MOCell 1 1 1 1 0.84 0 0 0 0
NSGA-II 1 1 1 1 0.01 0 0 0 0
SPEA2 1 1 1 1 0 0 0 0 0
PESA-II 1 1 1 1 0.02 0 0 0 0

OMOPSO 0 0 0 0 0 0 0 0 0
PAES 1 1 1 1 0.02 0 0 0 0

• ZDT4: Table V and Figure 4 include the results for the
ZDT4 problem. This problem is particularly interesting
for us, since several multi-objective metaheuristics have
difficulties to solve it due to its multifrontal nature.
Indeed, for this problem, none of the optimizers pro-
duced an acceptable front in instances having more
than 128 variables. It is remarkable that OMOPSO is
unable to find the Pareto front for this problem in any
configuration. The most salient algorithm is MOCell,
which is the only metaheuristic yielding satisfactory
results for 128 variables.
The analysis of the hit rate (see Table X) confirms
that the problem is solved in the 100 independent runs
performed by all the algorithms, excepting OMOPSO,
up to 64 variables. The value obtained by MOCell with

128 variables, 0.84, indicates that not all its executions
were successful.
Attending to the search speed, MOCell is the best
option for all problem instances, followed by PESA-
II. However, if we observe the last row of Table V,
we see that there is no statistical confidence in the
experiments, so we cannot make any assumptions about
the differences in the speed of the metaheuristics.

ZDT6

1.00E+03

1.00E+04

1.00E+05

1.00E+06

8 16 32 64 128 256 512 1024 2048

Number of variables

N
u

m
b

e
r

o
f

e
v
a
lu

a
ti

o
n

s

MOCell NSGA-II SPEA2 PESA-II OMOPSO PAES

Fig. 5. Number of evaluations when solving ZDT6.

TABLE XI
HIT RATE FORZDT6

Algorithm 8 16 32 64 128 256 512 1024 2048
MOCell 1 1 1 1 1 0 0 0 0
NSGA-II 1 1 1 1 1 0 0 0 0
SPEA2 1 1 1 1 1 0 0 0 0
PESA-II 1 1 1 1 1 0 0 0 0

OMOPSO 1 1 1 1 1 1 1 1 0
PAES 1 0.98 0.96 0.96 0.96 0.92 0.74 0.33 0

• ZDT6: Table VI and Figure 5 include the evaluations
needed to find the Pareto fronts for problem ZDT6. We
observe that all the algorithms successfully solved this
problem up to 128 variables, and only OMOPSO and
PAES solved the problem up to 1024 variables. The hit
rate (see Table XI) clearly shows that OMOPSO is the
best algorithm in this problem, achieving the 100% of
success in all the experiments. PAES, however, is not
so robust, and its hit rate values decreases progressively
with the number of variables. Concerning the search
speed, OMOPSO is the fastest algorithm, followed by
PAES. For all cases, the results have statistical confi-
dence.

VI. D ISCUSSION OF THE RESULTS

In this section, we analyze the results globally, with
the goal of identifying the strengths and weaknesses of
the algorithms analyzed, when solving the full set of test
problems. To facilitate this discussion, we have made a rank
of the three best algorithms according to their ability to solve
the problems with a higher number of decision variables
(scalability) and to the number of evaluations required to find



TABLE XII
RANKING OF THE ALGORITHMS: SCALABILITY

Ranking ZDT1 ZDT2 ZDT3 ZDT4 ZDT6
1 PAES PAES NSGA-II MOCell OMOPSO
2 OMOPSO OMOPSO SPEA2 PESA-II PAES
3 NSGA-II MOCell PAES NSGA-II MOCell

TABLE XIII
RANKING OF THE ALGORITHMS: SPEED

Ranking ZDT1 ZDT2 ZDT3 ZDT4 ZDT6
1 OMOPSO OMOPSO NSGA-II MOCell OMOPSO
2 PAES PAES OMOPSO PESA-II PAES
3 NSGA-II MOCell MOCell NSGA-II MOCell

the Pareto fronts (speed). The two rankings are presented in
Tables XII and XIII, respectively.

A. Scalability and speed

The ranking in Table XII considers the algorithms solving
the problems with a higher number of decision variables. The
ties are broken considering the hit rate and the iterations in
the most difficult instances. According to this ranking, PAES
is the most salient technique: it achieves the best results in
ZDT1 and ZDT2, the second best in ZDT6, and the third best
in ZDT3. OMOPSO is the second technique according to this
ordering; however, its noticeable inability to deal with ZDT4
makes it the least robust algorithm considering the whole
benchmark. Concerning the rest of the approaches evaluated,
NSGA-II stands out in the disconnected problem ZDT3 and
MOCell in the multifrontal problem ZDT4.

The ordering in Table XIII relies on the algorithms requir-
ing (globally) the lowest number of evaluations to find the
Pareto front. In the case of incomparable results, the number
of evaluations when solving the most difficult instances is
taken into account. We do not consider here the hit rate. If
we omit the ZDT4 problem, OMOPSO is clearly the best
algorithm: it requires the lowest number of evaluations in
problems ZDT1, ZDT2, ZDT6, and it is the second one in
ZDT3. PAES is the second best algorithm in terms of the
speed.

An interesting fact is that, if we observe the two tables, the
rankings are similar with only few exceptions. This seems to
imply that when an algorithm scales well with a problem, it
also requires a low number of function evaluations to obtain
the desired front.

B. OMOPSO and Multifrontal problems

If we do not take into account problem ZDT4, the most
outstanding algorithm in our study is, considering both
scalability and speed, OMOPSO. In this section we analyze
whether its inefficacy when dealing with ZDT4 is particular
to that problem, or if it happens with multifrontal problems
in general.

To explore this issue, we have defined two multifrontal
problems using the methodology described in [5]. Deb points
out that given a functiong(~x), a two-objective problem is
defined as the minimization of

f1(x1, ~x) = x1

f2(x1, ~x) = g(~x)/x1

TABLE XIV
GRIEWANK AND ACKLEY SINGLE-OBJECTIVE FORMULATION

Problem Functions Variables

Griewank f(x) = 1 +
Pp

1

x2
i

400
−

Qp

1
cos

xi
√

i
10

Ackley f(x) = 20 + e + −20exp(−0.2
q

1
p

Pp

1
x2

i
) 3

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

50

100

150

200

250

f
1

f 2

Ackley

True Pareto Front
OMOPSO
NSGA−II

Fig. 6. OMOPSO solving Ackley test problem.

This problem has local or global Pareto-optimal solutions
(x1, ~x), where~x is the locally or globally minimum solution
of g(~x), respectively, andx1 can take any value.

This way, given a single-objective problem with local op-
timal solutions, we can construct a multifrontal bi-objective
MOP. We have selected two well-known problems having
local minimal solutions, Griewank and Ackely (see Table
XIV). The resulting problems have been solved by the six
metaheuristics we are dealing with. The conclusion is that
all the algorithms but OMOPSO converge to the true Pareto
front. To illustrate this fact, we include in Figures 6 and 7
the fronts obtained by OMOPSO and NSGA-II.

An explanation of this behavior of OMOPSO with mul-
tifrontal problems could be due to an unbalance between
diversification and intensification. The fact that OMOPSO is
the fastest algorithm can be due to the high intensification
capabilities of the technique; this produces a negative effect
in the diversification when searching. This issue is partic-
ularly harmful when trying to solve multifrontal problems.
However, this hypothesis does not seem to be satisfactory
enough to explain the good behavior of OMOPSO when the
problems have a high number of decision variables. A deeper
study should be carried out in order to draw a more solid
conclusion on this behavior.

VII. CONCLUSIONS ANDFUTURE WORK

We have evaluated six metaheuristics over a set of
parameter-wise scalable MOPs in order to study the per-
formance of the algorithms concerning their capabilities to
solve problems having a large number of decision variables.
We have also studied their velocity to obtain a good quality



0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

2

4

6

8

10

12

14

16

18
Griewank

f
1

f 2

True Pareto Front
OMOPSO
NSGA−II

Fig. 7. OMOPSO solving Griewank test problem.

Pareto front using a stopping condition based on the hyper-
volume of the true Pareto front.

Regarding scalability, PAES seems to be the most com-
petitive algorithm. This is a surprising result, because PAES
is the simplest algorithm used in our study. It also provides
good results in terms of speed, but its hit rate values indicate
that it is not as robust as the other approaches analyzed.

OMOPSO is the best algorithm in terms of speed and the
second best in terms of scalability. Unfortunately, it is unable
to solve any instance of the ZDT4 problem. We have studied
this issue by defining two additional multifrontal problems,
and we found that OMOPSO exhibited in them the same
poor behavior as before.

The three genetic algorithms, NSGA-II, SPEA2, and
PESA-II, have not produced particularly remarkable results,
in particular SPEA2. Notwithstanding, NSGA-II is the best
when solving ZDT3, the partitioned problem.

MOCell, the cellular genetic algorithm, stands out in
problem ZDT4. It is the fastest algorithm in that problem,
and the only one able to produce results with 128 variables.
In terms of scalability, it is behind NSGA-II and SPEA2;
concerning speed, it ranked third.

We have presented a first study of the behavior of multi-
objective metaheuristics concerning their parameter scala-
bilty and convergence speed. The next step is an extension of
this study, which includes more scalable problems (e.g., the
DTLZ and WFG test problems) in order to assess whether
the features of the problems (convexity, non-convexity, etc.)
affect, in some way, the results obtained in this work. This
sort of study can also lead to the design of new multi-
objective metaheuristics that can overcome the limitations
of those in current use.

REFERENCES

[1] C. Blum and A. Roli. Metaheuristics in Combinatorial Optimization:
Overview and Conceptual Comparison.ACM Computing Surveys,
35(3):268–308, 2003.

[2] Dimo Brockhoff and Eckart Zitzler. Are all objectives necessary? on
dimensionality reduction in evolutionary multiobjectiveoptimization.
In PPSN, pages 533–542, 2006.

[3] C.A. Coello, D.A. Van Veldhuizen, and G.B. Lamont.Evolutionary
Algorithms for Solving Multi-Objective Problems. Genetic Algorithms
and Evolutionary Computation. Kluwer Academic Publishers, 2002.

[4] David W. Corne, Nick R. Jerram, Joshua D. Knowles, and Martin J.
Oates. Pesa-ii: Region-based selection in evolutionary multiobjective
optimization. InGenetic and Evolutionary Computation Conference
(GECCO-2001), pages 283–290. Morgan Kaufmann, 2001.

[5] K. Deb. Multi-Objective Optimization Using Evolutionary Algorithms.
John Wiley & Sons, 2001.

[6] Kalyanmoy Deb, Amrit Pratap, Sameer Agarwal, and T. Meyarivan.
A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE
Transactions on Evolutionary Computation, 6(2):182–197, 2002.

[7] Kalyanmoy Deb, Lothar Thiele, Marco Laumanns, and Eckart Zitzler.
Scalable Test Problems for Evolutionary Multiobjective Optimiza-
tion. In Ajith Abraham, Lakhmi Jain, and Robert Goldberg, editors,
Evolutionary Multiobjective Optimization. Theoretical Advances and
Applications, pages 105–145. Springer, USA, 2005.

[8] Juan J. Durillo, Antonio J. Nebro, Francisco Luna, Bernabé Dor-
ronsoro, and Enrique Alba. jMetal: a Java Framework for Developing
Multi-objective Optimization Metaheuristics. TechnicalReport ITI-
2006-10, Departamento de Lenguajes y Ciencias de la Computación,
University of Málaga, E.T.S.I. Informática, Campus de Teatinos, 2006.

[9] F. W. Glover and G. A. Kochenberger.Handbook of Metaheuristics.
Kluwer, 2003.

[10] Simon Huband, Luigi Barone, R. Lyndon While, and Phil Hingston.
A scalable multi-objective test problem toolkit. In C.A. Coello,
A. Hernández, and E. Zitler, editors,Third International Conference on
Evolutionary MultiCriterion Optimization, EMO 2005, volume 3410
of Lecture Notes in Computer Science, pages 280–295. Springer, 2005.

[11] Vineet Khare. Performance scaling of multi-objectiveevolutionary
algorithms. MSc Thesis, University of Birmingham, September 2002.

[12] Joshua D. Knowles and David W. Corne. Approximating the
Nondominated Front Using the Pareto Archived Evolution Strategy.
Evolutionary Computation, 8(2):149–172, 2000.

[13] Antonio J. Nebro, Juan J. Durillo, Francisco Luna, Bernabé. Dor-
ronsoro, and Enrique Alba. A cellular genetic algorithm formul-
tiobjective optimization. In David A. Pelta and Natalio Krasnogor,
editors,Proceedings of the Workshop on Nature Inspired Cooperative
Strategies for Optimization (NICSO 2006), pages 25–36, Granada,
Spain, 2006.

[14] Kata Praditwong and Xin Yao. How well do multi-objective evolu-
tionary algorithms scale to large problems. InProceedings of the 2007
IEEE Congress on Evolutionary Computation CEC’07, pages 3960–
3966, Singapore, September 2007. IEEE Press.

[15] Margarita Reyes Sierra and Carlos A. Coello Coello. Improving PSO-
Based Multi-objective Optimization Using Crowding, Mutation and
ǫ-Dominance. In Carlos A. Coello Coello et al., editor,Evolutionary
Multi-Criterion Optimization. Third International Conference, EMO
2005, pages 505–519, Guanajuato, México, March 2005. Springer.
Lecture Notes in Computer Science Vol. 3410.

[16] Dhish Kumar Saxena and Kalyanmoy Deb. Non-linear dimensionality
reduction procedures for certain large-dimensional multi-objective
optimization problems: Employing correntropy and a novel maximum
variance unfolding. In S. Obayashi et al., editor,Evolutionary Multi-
Criterion Optimization. 4th International Conference, EMO 2007,
volume 4403 ofLecture Notes in Computer Science, pages 772–787.
Springer, 2007.

[17] D. A. Van Veldhuizen and G. B. Lamont. Multiobjective Evolutionary
Algorithm Research: A History and Analysis. Technical Report TR-
98-03, Dept. Elec. Comput. Eng., Graduate School of Eng., Air Force
Inst. Technol., Wright-Patterson, AFB, OH, 1998.

[18] Qingfu Zhang and Hui Lim. MOEA/D: A Multiobjective Evolutionary
Algorithm Based on Decompositionn.IEEE Transactions on Evolu-
tionary Computation, 11(6):712–731, December 2007.

[19] E. Zitzler, K. Deb, and L. Thiele. Comparison of multiobjective
evolutionary algorithms: Empirical results.IEEE Transactions on
Evolutionary Computation, 8(2):173–195, 2000.

[20] E. Zitzler and L. Thiele. Multiobjective EvolutionaryAlgorithms: A
Comparative Case Study and the Strength Pareto Approach.IEEE
Transactions on Evolutionary Computation, 3(4):257–271, 1999.

[21] Eckart Zitzler, Marco Laumanns, and Lothar Thiele. SPEA2: Improv-
ing the Strength Pareto Evolutionary Algorithm. In K. Giannakoglou
et al., editor, EUROGEN 2001. Evolutionary Methods for Design,
Optimization and Control with Applications to Industrial Problems,
pages 95–100, Athens, Greece, 2002.


