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Abstract—Some real-world optimization problems have hun- The performance of these algorithms has been typi-
dreds or even thousands of decision variables. However, the Ca||y assessed by using benchmark pr0b|ems, such as the
effect that the scalability of parameters has in modern mul Zitzler-Deb-Thiele (ZDT) test problems [19], the Deb-

objective metaheuristic algorithms has not been properly &id- . :
ied (the current benchmarks are normally adopted with ten to Thiele-Laumanns-Zitzler (DTLZ) test problems [7], and the

thirty decision variables). In this paper, we adopt a benchrark ~ Walking-Fish-Group (WFG) test problems [10]). These three
of parameter-wise scalable problems (the ZDT test problen)s problem families are scalable in the number of decision
and analyze the behavior of six multi-objective metaheurisics  variables, and the last two are also scalable in the number
on these test problems when using a number of decision ¢ gpiactives. The methodology commonly adopted in the
variables that goes from 8 up to 2048. The computational o . ) L

effort required by each algorithm in order to reach the true spfamallzed Ilterature Is to compare S_everal a!gorlthmﬂws
Pareto front is also analyzed. Our study concludes that a & fixed (pre-defined) number of objective function evaluzgio
particle swarm algorithm provides the best overall performance, and to compare the values of different quality indicators
although it has difficulties in multifrontal problems. (e_g_’generationm distance []_7] or hyperv0|urne [20], among
others).

o . The motivation driving us is that many real-world prob-
Many real-world optimization problems require the 0Pyemg have hundreds or even thousands of decision variables,

timization of more than one objective function at the samg, 4 the aforementioned benchmarks have been normally
time. These problems are called Multi-objective Optiniat adopted using a maximum of up to 30 variables. Thus, the

Problems (MOPs). Contrary to single-objective optimiaati q,gies currently available do not consider the capabfty

problems, the solution to MOPs is normally never a singlg,rent multi-objective metaheuristic algorithms to pedg

solution, but a set ofondominated solutions called the ga1e when dealing with a very large number of decision
Pareto optimal set. A solution that belongs to this set is said, 4igp|es.

to be aPareto optimum and, when the solutions of this set  Apgiher interesting issue that has been only scarcely
are plotted in objective space, they are collectively kn@sn . ereq in the specialized literature is the analysis of the
the Pareto front. Obtaining the Pareto front is the main goalyepayior of a multi-objective metaheuristic until readhthe

in multi-objective optimization. _ true Pareto front of a problem. Typically, a fixed number of
The fact that MOPs in the real world tend to be nonlineag, »j,ations (and, in consequence, of iterations) is defined

and with objective functions that are very expensive t0-evaj yhe yser, and the performance of the different algorithms
uate, motivates the use afetaheuristics to deal with these g gied is compared. However, this sort of comparison does

problems [1], [9]. Metaheuristics are a family of technigue ot hrovide any indication regarding the computationabeft
comprising Evolutionary Algorithms (EA), Particle Svarm  yha 4 certain algorithm requires to reach the true Pareto

Optimization (PSO),Ant Colony Optimization (ACO), Tabu ot of a problem. We believe that this is an important issue
Search (TS), Scatter Search (SS) and many others. EAS o045 se if we take into account that evaluating the objectiv
are among the most popular metaheuristics in current Usgin tions of a MOP can be very time-consuming, it becomes
and some of the most popular algorithms for multi-objectiveyt jnterest to know how expensive is for a certain algorithm

optimﬁzation, ,SUCh as NSGA-II [6] "’_‘nd SPEAZ [21], '€ reach the true Pareto front. That is the reason why we
Genetic Algorithms (GAs), a subfamily of EAs [3], [S]. present this sort of analysis in this paper.
Other EAs are theEvolution Srategies (ESs) andGenetic In this work, we compare six state-of-the-art multi-

Programming (GP). objective metaheuristics when solving a set of scalable
J.J Durillo, A.J. Nebro, F. Luna, and E. Alba are with the Dégraento parameter-v_wse_ MOPS_' those C‘?mpf's'”g the ZDT bench-
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TABLE |

an algorithm ha§ successfully solv_ed the prob_lemlwh(.en the PARAMETERIZATION (L — INDIVIDUAL LENGTH )
hypervolume of its current population (or archive) is highe

than 95% of the hypervolume of the true Pareto front. _ Parameterization used in MOCell
Obviously, statistical tests need to be performed in order t Population Sze 100 indwviduals {0 x 10)

C g Neighborhood 1-hop neighbours (8 surrounding solutions)
assess the significance of the results, so that chance can Bection of Parents  binary tournament + binary tournament

discarded as the responsible for them. Recombination simulated binaryp. = 0.9
Mutation polynomial, py, = 1.0/L
Il. RELATED WORK Archive Sze 100 individuals
. . ] Parameterization used in NSGA-I|
Many real world MOPs have many decision variables andpopuiation Sze 100 indviduals

objective functions. To study the search capabilities oftimu  Selection of Parents  binary tournament + binary tournament

objective metaheuristics to solve these types of problemsRecombination simulated binaryp. = 0.9
Mutation polynomial, p,, = 1.0/L

benchmarks of scalable MOPs have been defined: the ZDT Parameterization used in SPEA2
set [19] is composed of six parameter-wise scalable MOPSsPopulation Sze 100 individuals ‘
and the DTLZ [7] and WFG [10] test suites include scalable Sdection of Parents  binary tournament + binary tournament
problems in both the number of parameters and the numbeRecon-]blnatlon simulated binaryp. = 0.9
N Mutation polynomial, p,, = 1.0/L
of objectives. Parameterization used in PESA-II
In the multi-objective research community, the study of Population Sze 100 indiduals _ ,
L . e . . ection of Parents  region based selection + region based selection
objective function scalability is a hot topic (leading t@th0-  goombination simulated binaryp, = 0.9
calledmany-objective optimization). In [11], the performance  Mutation polynomial, p, = 1.0/L
of three multi-objective genetic algorithms (PESA, SPEA, Archive Sze 5 100 individuals S
and NSGA-Il) is studied when solving four DTLZ problems—g—z—— ara”igtoer")za:gggsuse n
with a number of objectives ranging from 2 to 8. In a similar mutation uniform + non-uniform
context, the behavior of NSGA-Il when solving the same Leaders Sze 0w .
problems and the same number of objectives is analyzed. Parameterization used in PAES
. P . “Mutation polynomial, p,, = 1.0/L
in [14], where the concept of classifying nondominated archive Sze 100
solutions is introduced to improve the search capabilities
the NSGA-II.

S . . : 8, 16, 32, 64, 128, 256, 512, 1024, and 2048 variables.
Due to difficulties to solve high dimensional MOPs, some_; . :
. is way, we can study not only what techniques produce
authors have introduced schemes to reduce the number o 4 .
o . . .more accurate fronts when solving problems having many
objectives, such as Brockhoff and Zitzler [2], who investi- . . : )
- ariables, but also if their search capabilities remainstamt
gated whether all the objectives are necessary to predesve

problem characteristics. In [16], Saxena and Deb propos&ﬁ not when the number of problem variables augments.

techniques for Qimensionality reduction and apply them 1O1\/ METAHEURISTICS MULTLOBIECTIVE ALGORITHMS
up to 50-objective MOPs.

While these and other works are focused on objective As indicated before, we adopted six multi-objective meta-
function scalability, the study of parameter scalabiligsh heuristics for our study: (1) the Nondominated Sorting
not been considered before in multi-objective optimizatio Genetic Algorithm 1l NSGA-Il) [6], (2) the Strength
to the best of the authors’ knowledge. As far as we know?areto Evolutionary Algorithm§PEA2) [21], (3) the Pareto
only in [18] a small study using the ZDT1 problem with upArchived Evolution Strategy RAES) [12], (4) the Pareto
to 100 variables is included. Thus, the main motivation oEnvelope-based Search Algorithm for multi-objective epti

this study has been precisely to present an in-depth study Brzation Il (PESA 1) [4]), (5) the “Our” Multi-Objective
this important topic. Particle Swarm OptimizerGMOPSO) [15], and (6) the

Multi-Objective Cellular Genetic AlgorithmMOCell) [13].
The descriptions of these approaches were omitted due to
space constraints (interested readers must refer to their ¢
To carry out our study, it is helpful to use problems whichresponding publications). We have used the implementstion
are scalable in terms of the number of decision variablasf these algorithms provided by jMetal [8], which is a Java-
while keeping an invariable Pareto front. The ZDT teshased framework for developing metaheuristics for solving
function family [19] fulfills this requirement. Additionsl,  multi-objective optimization problems
it offers, a group of problems with different properties:
convex, non-convex, disconnected, multi-frontal, mamy-t V. EXPERIMENTATION

one problems._ These. probl_ems have been widely used "Mn this section, we describe the parameter settings used in
many studies in the field since they were formulated. W

th iments, the methodol have followed in th
omitted problem ZDT5 because it uses binary encoding. © experiments, e methodology we have Tolowed in the

. ) . : . tests, and the results we have obtained.
Since we were interested in studying the behavior of multi-

Ok_’JeCt'Ve metaheuristics when solvmg scalable paramet_er 1iMetal is freely available for download at the following Wetnidress:
wise problems, we have evaluated each ZDT problem witht t p: // neo. | cc. uma. es/ netal /.

IIl. SCALABLE PARAMETER-WISE MULTI-OBJECTIVE
OPTIMIZATION PROBLEMS



A. Parameterization Using the hypervolume in the stopping condition allows

We have chosen a set of parameter settings aiming to gugisi to obtain ahit rate of t_he algorithms, €., .the percent- .
antee a fair comparison among the algorithms. All the GA ge of sgccessful executions. 'A_‘n execution Is successfgl if
(NSGA-II, SPEA2, PESA-II, and MOCell) use an internalt e algorithm stops before getting to the 500,000 function

population of size equal to 100; OMOPSO is configured Witﬁvaluatlons. This way, we can measure the robustness of the

100 particles, and the size of the archive in PAES is also 10&chniques when solving the. problems.
In the GAs, we have used SBX and polynomial muta- We have performed 100 independent runs per each al-

tion [5] as operators for crossover and mutation, respelstiv gc_mthm and _each pTOb'em instance. Since we are d_ea_lllng
The distribution indexes for both operators age— 20 and with stochastic algorithms, we need to perform a statiktica

— 20, respectively. The crossover probabilityzis — 0.9 analysis of the obtained results in order to compare theim wit
er?d the’mutation pro.bability i5,, = 1/L, whereL is the certain level of confidence. Next, we describe the statiktic

number of decision variables. In PAES. we have also usd®St that we have carried out for ensuring such statistical

the polynomial mutation operator, with the same distriati confidence. First, a Kolmogorov-Smirnov test is performed
' in order to check whether the values of the results follow

index. A detailed description of the parameter settings 1% . I
P P 9 a normal (Gaussian) distribution or not. If so, the Levene

shown in Table I. : .

test checks for the homogeneity of the variances. If samples
have equal variance (positive Levene test), an ANOVA test is
done; otherwise, we perform a Welch test. For non-Gaussian

We are interested in two goals: the behavior of the aljstributions, the non-parametric Kruskal-Wallis tesuiged
gorithms when solving the scalable ZDT benchmark and t@ compare the medians of the algorithms.

know which algorithms are faster in reaching the true Pareto \we always consider in this work a confidence level of
front. Given that the true Pareto fronts of the ZDT problemgsoy, (j.e., a significance level of 5% grvalue undei0.05)

are known, a strategy could be to run the algorithms untjh the statistical tests, which means that the differences a
they reach such front, but then it is possible that some Gﬁtheunlikely to have occurred by chance with a probability of
never achieve the optimal front. Our approach is to establi®y5o4 Syccessful tests are marked with “+” symbols in the
a stopping condition based on thegh quality of the Pareto |55t column in the tables containing the results; convgrsel
front found, and we have used the hypervolume [20] quality.” means that no statistical confidence was foupevélue
indicator for that purpose. > 0.05). Looking for homogeneity in the presentation of the
The hypervolume computes the volume (in the objecesults, all the tables include the medianand interquartile

tive space) covered by members of a nondominated set gihge, 7QR, as measures of location (or central tendency)
solutions @ for problems where all objectives are to beand statistical dispersion, respectively.

minimized. Mathematically, for each solutioh € @, a
hypercubev; is constructed with a reference poilit and C. Analysis of results
the solutioni as the diagonal corners of the hypercube. The Tables 11, Il IV, V, VI show the median and the in-

reference point can simply be found by constructing aVec“f(rerquartile range of the number of evaluations needed by

e enty ooy he diferen apimzers fo ZDTL, ZDT2, 20T, 2T,
using: and ZDT6, respectively. When an optlmlger is not a_l_ble to
' reach an acceptable front in 500,000 function evaluatibss,
result appears as “-”, and it is not taken into account in the
statistical tests. To facilitate the analysis of the tabteg
cells containing the lowest number of function evaluations

Higher values of the hypervolume metrics are desirable. Aave a grey colored background. There are two grey levels:
property of this quality indicator is that it measures botih€ darker grey indicates the best (lowest) value, while the
convergece to the true Pareto front and diversity of thighter grey points out the second best value.
obtained fronts. Next, we analyze the results obtained for each of the
In our experiments, each algorithm is executed untiproblems. To make the results clearer, we include a figure
a maximum of 500,000 function evaluations have beefUmmarizing the values, using a logarithmic scale, inaude
computed. Every 100 evaluations (that is, each iteratidfl the corresponding table. The discussion is organized in
in the population based metaheuristics) we measure tHee following order: first, we analyze the success of the al-
hypervolume of the nondominated solutions found so faporithms when solving the different instances of the prople
Therefore, in NSGA-Il and SPEA2 we have considereg§econd, we study the hit rate values; finally, we consider the
the nondominated solutions in each generation, in PESA-§Peed to obtain the Pareto front.
PAES and MOCell the external population and, in OMOPSO, « ZDT1: Table Il and Figure 1 show the evaluations
the leaders archive. We consider as stopping condition to needed to find the Pareto fronts for problem ZDT1.
obtain a hypervolume value of 95% of the hypervolume of = We can observe that all the optimizers successfully
the true Pareto front, or to reach 500,000 evaluations. solved this problem up to 512 variables, four out of the

B. Methodology

lQl
HV = volume U vi | . (1)

i=1



TABLE Il

EVALUATIONSFORZDT1

Algorithm 8 16 32 64 128 256 512 1024 2048
MOCell 1.708“'033,064,02 3.806"‘035,064,02 9.206+031_28+03 2.17e+042_2€»,+03 4.976"‘043_964,03 1.136+057_3e+03 2.586“'051_264,04 - -
NSGA-II 3.30e+032. 0402 | 5.70e+035.0c402 | 1.01€+047.0c402 | 1.91€+04; 2.403 | 3.77€+04;1.9c103 | 8.32€+044.5.403 | 1.94€+051.0c404 | 4.63€+051.9c404 -
SPEA2 4.10e+034.0c402 | 7.25€+034.0e402 | 1.288+041.0c403 | 2.33€+041.1c403 | 4.45€+042. 20103 | 9.29€+044.0c403 | 2.086+057.5.403 | 4.75€+051 . 6e404 -
PESA-II 2.70e+037. 5402 | 5.40e+03;.6c403 | 1.09e+042.0c403 | 2.27€+045.0c403 | 5.17€+043.8c103 | 1.24e+05.5c103 | 3.04€+051 4c404 - -
OMOPSO | L.106%035 00402 | 2.506%037 0c102 | 57567081 4c403 | L.I16%0%1 7or0s | 2.48670% 50403 | 5.706%0%5 sor0s | LAT6705; 4eq01 | 4106+055 30501 =
PAES | 2.356+031.80103 | 4056703 50403 | 7.256+035 30403 | 16267041 10404 | 3.056%04 .0c40a | 5.776%04 20104 | L.06E¥055 50401 | 2.0767051 00105 | 47167061 50505
¥ ¥ ¥ ¥ ¥ ¥ + ¥ B
TABLE Il
EVALUATIONS FOR ZDT2
Algorithm 8 16 32 64 128 256 512 1024 2048
MOCell 2.80e+03; .3¢+03 5.10e+03; .4¢403 8.50e+032 5403 1.56e+041 1¢404 4.29e+04; 5¢404 1.25e+054 4404 2.91e+059.gc+03 - -
NSGAT | 4.506+031 50102 | 81067035 00102 | 14904 10t05 | 2.82670%; 70105 | 5.536%0% 20105 | L.156+055 10405 | 2.516+05s 10403 - -
SPEA?2 6.40e+037 gc 402 | 1.20e+04; 5403 | 2.09€+04; 6403 | 3.70e+045 4403 | 6.99€+043 2. 103 | 1.38€+057.1.403 | 2.86e+057 gc103 - -
PESA-II 4.80e+03;.7¢403 | 8.30e+03;.6c403 | 1.56€+042.0c403 | 3.25€+04.58c403 | 7.21€+044.3.103 | 1.66e+057.9c103 | 3.92e+05.0ct04 - -
OMOPSO | 1.20e+033 ge+02 2.40e+037 e 402 5.15e+03; .7 403 9.50e+03; 5403 2.02e+043 1c 403 4.27e+045 oe403 1.03e+051 .2¢ 404 2.59e+05; 6404 =
PAES 2.70e+032 003 | 5.40e+033.2¢403 | 1.02e+044 0c403 | 1.97€+045.0c403 | 3.43€+042 4cq04 | 7.37€+045 6c404 | 1.43€4+057.6e404 | 2.59€+05; get05 | 5.008+057.8¢+04
¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ B
TABLE IV
EVALUATIONS FORZDT3
Algorithm 8 16 32 64 128 256 512 1024 2048
MOCell 2.00e+035. 0er02 | 4.20e+039.5c402 | 1.01e+041.7c103 | 2.35€+043.20403 | 5.21e+043.9c403 | 1.16€+055. 804103 | 2.54€+05; 1c404 - -
NSGAT | 3.206%033 00102 | 55567035 50102 | 9.806703; 0102 | L.O0E¥0% 50405 | 3.856+0% e 403 | 8.356%0%1 9c+05 | L.OL6705: oyos | 4466706170008 | =
SPEA2 4.05e+034.gc+02 7.10e+037 pe+02 1.26e+043 5402 2.32e+042 g 403 4.53e+042 7c103 9.58e+04¢.3¢+03 2.10e+058 5403 4.67e+05;1 7¢404 -
PESAT | 2506703 0c 02 | 5.306%03; 104105 | L.106%04; 4oy05 | 2416704 g, 03 | 5.526%04; 20105 | 1.326%059 7c 403 | 3.256%052 0o 04 - =
OMOPSO | 1.60e+037 ge+02 3.90e+03; .0c+03 7.90e+03; 1c403 1.74e+04; gc 403 4.44e+045 6c403 1.15e+05; .5¢ 404 3.10e+05 4c 404 - -
PAES 5.50e+03g 5¢403 | 9.80€+031.1¢404 | 2.07€4+042 sct04 | 5.608+047 5c404 | 9.34€+041 0ct05 | 1.76€+05 4c405 | 3.47€+05.9¢405 | 5.00€+051 gcto5 -
¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ -
TABLE V
EVALUATIONS FOR ZDT4
Algorithm 8 16 32 64 128 256 | 512 | 1024 | 2048
MOCell 8.806+032.1e+03 2.129+045.1e+03 5-939+O41,4e+04 1.616+052.4e+04 4.54e+055,1e+04 - - - -
NSGA-II 1.3Oe+042_76+03 2.916+044_7€»,+03 7.62€+041_3e+04 2.2oe+053_4€»,+04 - - - - -
SPEA2 1.82e+043.7c 103 | 3.83e+046.4c103 | 1.03e+052.2c404 | 2.788+055.0c404 - - - - -
PESA-II 1.22e+043 1¢c403 2.79e+046 . 4¢+03 7.36€+041 5¢404 2.09e+053.7¢ 404 - - - - -
OMOPSO - - - - — - - — -
PAES | 1.306+04s 30105 | 4.206+04 70101 | 1086705500701 | 2.8067055.207 01 - — - -
Z - - z + Z Z - Z
TABLE VI
EVALUATIONS FOR ZDT6
Algorithm 8 16 32 64 128 256 512 1024 2048
MOCell | L.096+0% 0o roo | 2.586+0% oor0s | 5.71670% 30105 | L.1867055.001705 | 2.4767055 10105 - - - -
NSGA-II 1.75e+043_5€»,+02 3-506+041.Ge+03 6.806+041_9€»,+03 1.316+053_5€»,+03 2.57e+055_58+03 - - - -
SPEA2 2.39e+041 2c103 | 4.71e+041 . 9c403 | 8.97e+04 9c103 | 1.67€+054.20403 | 3.18e+057.5¢ 103 - - - -
PESA-II 1.396+041_1€»,+03 3.17e+041_9e+03 6.896+043_3€»,+03 1.44e+054_6€»,+03 3.05e+058_7e+03 - - - -
OMOPSO 2.209+031.3e+03 3-559+031,7e+03 6.4Oe+032,1e+03 1.329+043.5e+03 2.759"‘0454564,03 5.926+049.4e+03 1.27e+051,98+04 2.749"‘0544164,04 -
PAES 4.75e+033 9¢403 8.15e+039.6¢+03 1.69e+04; 3¢404 3.97e+043 . 7¢ 404 7.93e+046.3¢+04 1.46e+05; ge405 3.31e+05 5¢ 405 5.00e+053.7¢ 404 -
¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ B




TABLE VII
HIT RATE FORZDT1

1.00E+06

Algorithm | 8 | 16 | 32 | 64 | 128 | 256 512 | 1024 | 2048
MOCell 1 1 1 1 1 1 1 0 0
NSGA-II 1 1 1 1 1 1 1 1 0
SPEA2 1 1 1 1 1 1 1 0.97 0 T
PESA-II 1 1 1 1 1 1 1 0 0 H
OMOPSO | 1 1 1 1 1 1 1 1 0 H
PAES 1 1 1 1 1 0.98 | 0.98 | 0.89 0.56 3
E

1.00E+04

six algorithms solved the problem with 1024 variables,
and only PAES was able to find solutions with 2048
variables. This last result is certainly surprising, given"=*
that PAES is the simplest algorithm in our experiments.
If we analyze the hit rate (see Table VII), all the
algorithms excepting PAES achieved a 100% up to 512
variables. The hit rate of PAES when solving the 2048
instance (0.56), indicates that the problem was solved
only in about half of the 100 independent runs executed.
Attending to the speed of the techniques, OMOPSO
reached first the desired results in the instances up 256
variables, and it ranked second when dealing with both
512 and 1024 variables. PAES was the fastest approach
in the largest instances and the second fastest algorithm
in the instances ranging from 32 to 256 variables.

For all cases, except the last column, Table Il indicates
that the results have statistical confidence (see the “+”
in the last row). The “-” in the last column is due to the
fact that PAES was the only algorithm that obtained
a solution, and thus, the other algorithms were not
considered.

Number of evaluations

TABLE VIII
HIT RATE FORZDT2

Algorithm | 8 | 16 | 32 | 64 | 128 | 256 | 512 | 1024 | 2048

MOCell 1| 1 1 1 1 1 1 0.02 0 1o0E0e
NSGA-l | 1 | 1 1 1 1 1 1 0 0

SPEA2 | 1 | 1 T 1 1 1 1 0 0

PESAI | 1 | 1 T 1 1 1 1 0 0

OMOPSO | 1 | 1 T 1 1 1 1 1 0 J—
PAES T 1 T 1 1 1 | 097 | 087 | 049

e ZDT2: The evaluations needed to solve the ZDT2

Z 1.00E+04

ZDT1

1.00E+06 1.00E+03

ZDT2

32 64 128 256 512 1024 2048

Number of variables

[mMOCel mNSGA-I ISPEA2 OPESA-Il BOMOPSO BPAES |

Fig. 2. Number of evaluations when solving ZDT2.

problem are included in Table Il and Figure 2. In
this problem, only OMOSPO and PAES found the
solution with 1024 variables, and again PAES is the only
technique that was successful with the largest instance.
The hit rate (see Table VIII) produces results similar to
those obtained in ZDT1. All the algorithms found the
Pareto front up to 256 variables, and PAES obtained a
value of 0.49 in the instance with 2048 variables.
OMOPSO was the fastest algorithm in the instances up
512 variables, and it ranked second with 1024 variables.
PAES was the second best technique, achieving the best
values in the two most difficult instances and was the
second best in four other instances. As in ZDT1, all the
results have statistical confidence.

ZDT3

8 16 32 64 128 256 512 1024 2048
Number of variables
EMOCell ENSGA-Il OSPEA2 OPESA-Il BOMOPSO mPAES
1008 1 Fig. 3. Number of evaluations when solving ZDT3.
TABLE IX
R I HIT RATE FORZDT3
Algorithm 8 16 32 64 128 256 512 1024 | 2048
MOCell 1 1 1 1 1 1 1 0 0
I NSGA-II 1 1 1 1 1 1 1 1 0
8 16 32 64 128 256 s12 1024 048 SPEA2 1 1 1 1 1 1 1 1 0
Number of variables PESA-” 1 1 1 1 1 1 1 O 0
\-moch ENSGA-Il SPEA2 OPESA-II BOMOPSO upAEs\ OMOPSO 1 1 1 1 1 1 1 0 0
PAES 1 1 1 1 0.96 | 0.83 | 0.64 | 0.36 0.21

Fig. 1. Number of evaluations when solving ZDT1.



Number of evaluations

1.00E+06

o ZDT3: Table IV and Figure 3 show the evaluations
needed to solve the ZDT3 problem. In this case, none of
the metaheuristics solved the problem with 2048 vari-
ables, and only NSGA-II, SPEA2, and PAES succeeded
with the instance having 1024 variables. However, if we
take a look to the hit rates in Table IX, we observe that
PAES had a 0.21 of success when dealing with the 2048
instance; as we are considering the median of 100 runs,
the problem appears as not solved in Table IX (we have
to note that thd @R only considers the values between
the 25" and the75" percentiles).

Concerning the speed of the algorithms, OMOPSO
is the fastest in the instances ranging from 8 to 64
variables, while NSGA-II is the best technique in the
instances from 128 to 1024 variables. The last row |§1
Table 3 indicates that all the results are significant. ¥

ZDT4

1.00E+06

1.00E+05

1.00E+04

1.00E+03

128 variables, 0.84, indicates that not all its executions
were successful.

Attending to the search speed, MOCell is the best
option for all problem instances, followed by PESA-
Il. However, if we observe the last row of Table V,
we see that there is no statistical confidence in the
experiments, so we cannot make any assumptions about
the differences in the speed of the metaheuristics.

ZDTé

o ZDT4: Table V and Figure 4 include the results for the
ZDT4 problem. This problem is particularly interesting
for us, since several multi-objective metaheuristics have
difficulties to solve it due to its multifrontal nature.
Indeed, for this problem, none of the optimizers pro-
duced an acceptable front in instances having more
than 128 variables. It is remarkable that OMOPSO is
unable to find the Pareto front for this problem in any
configuration. The most salient algorithm is MOCaell,

8 16 32 64 128 256 512 1024 2048
Number of variables
11008205 [ EMOCell ENSGA-Il OSPEA2 OPESA-II BOMOPSO mPAES
Fig. 5. Number of evaluations when solving ZDT6.
1.00E+04 L |
TABLE XI
HIT RATE FORZDT6
e © » o 28 - o we | oam | Algorithm | 8 | 16 | 32 | 64 | 128 | 256 | 512 | 1024 | 2048
Number of variables MoCe" l l l l l O 0 0 O
EMOCell ENSGA-Il OSPEA2 OPESA-Il BOMOPSO EPAES NSGA_“ l l l l l O 0 0 O
SPEA2 | 1| 1 1 T 1 0 0 0 0
. . . PESAN | 1| 1 1 1 1 0 0 0 0
Fig. 4. Number of evaluations when solving ZDT4. SMOPSO T 1 i 1 1 1 1 1 1 5
PAES | 1| 098 | 0.96 | 0.96 | 0.96 | 0.92 | 0.74 | 033 | O
TABLE X ) _ )
HIT RATE FORZDT4 « ZDT6: Table VI and Figure 5 include the evaluations
Algorithm | 8 | 16 | 32 | 64 | 128 | 256 | 512 | 1024 | 2048 needed to find the Pareto fronts for prOblem ZDT6. We
MOCell [ 1] 1 [ 1 [ 1]084] 0 0 0 0 observe that all the algorithms successfully solved this
NSGAN | 1] 1 [ 1 | 1 [00L] O 0 0 0 .
SPEA? T 1T 1T T 1T T 1 0 T o 10 5 o problem up to 128 variables, and only OMOPSO and
PESAN | 1| 1 | 1 | 1 |002] 0 0 0 0 PAES solved the problem up to 1024 variables. The hit
OMOPSO | 0| 0 | 0 | 0 | © 0 0 0 0 :
AEs 1T T T oo 5 3 5 rate (see Table XI) clearly shows that OMOPSO is the

best algorithm in this problem, achieving the 100% of
success in all the experiments. PAES, however, is not
so robust, and its hit rate values decreases progressively
with the number of variables. Concerning the search
speed, OMOPSO is the fastest algorithm, followed by
PAES. For all cases, the results have statistical confi-
dence.

VI. DISCUSSION OF THE RESULTS

In this section, we analyze the results globally, with

which is the only metaheuristic yielding satisfactorythe goal of identifying the strengths and weaknesses of

results for 128 variables.

the algorithms analyzed, when solving the full set of test

The analysis of the hit rate (see Table X) confirmgroblems. To facilitate this discussion, we have made a rank
that the problem is solved in the 100 independent runsf the three best algorithms according to their ability téveo
performed by all the algorithms, excepting OMOPSOthe problems with a higher number of decision variables
up to 64 variables. The value obtained by MOCell with(scalability) and to the number of evaluations requiredrnd fi



TABLE XIl TABLE XIV

RANKING OF THE ALGORITHMS: SCALABILITY GRIEWANK AND ACKLEY SINGLE-OBJECTIVE FORMULATION

Ranking ZDT1 ZDT2 ZDT3 ZDT4 ZDT6 Problem Functions Variables

1 FAES PAES | NSGAT | MOCel | OMOPSO ) — _— .

2 OMOPSO | OMOPSO | SPEA2 | PESAIl | PAES Griewank | f(z) =1+ 3’7 g0 — [Ty cos % 10

3 NSGA-I | MOCell PAES | NSGA-I | MOCell Ackley | f(x) =20+ e+ —20eap(~0.2,/7 7 a? 3

TABLE XIIl
RANKING OF THE ALGORITHMS: SPEED - Ackley
- —— True Pareto Front

Ranking | ZDT1 7072 ZD73 7074 ZD76 . OMOPSO

T OMOPSO | OMOPSO | NSGAT | MOCell | OMOPSO o NSGA-II

2 PAES PAES | OMOPSO | PESAII PAES 200}

3 NSGA-l | MOCell | MOCell | NSGA-Il | MoOCell :

the Pareto fronts (speed). The two rankings are presented in
Tables XllI and XIlI, respectively.

A. Scalability and speed

The ranking in Table Xl considers the algorithms solving
the problems with a higher number of decision variables. The
ties are broken considering the hit rate and the iteratians i
the most difficult instances. According to this ranking, FAE

100+

is the most salient technique: it achieves the best results i ‘ ' ' ' f;
ZDT1 and ZDT2, the second best in ZDT6, and the third best _ ‘
in ZDT3. OMOPSO is the second technique according to this Fig. 6.  OMOPSO solving Ackley test problem.

ordering; however, its noticeable inability to deal with ZH

makes it the least robust algorithm considering the whole _ | ) )
benchmark. Concerning the rest of the approaches evaluated-rhls problerrj has local or global Pareto-optimal solutions
NSGA-II stands out in the disconnected problem ZDT3 an&waﬂ)' wherex is the locally or globally minimum solution
MOCell in the multifrontal problem ZDT4. of ¢(7), respectively, and:; can take any value.

The ordering in Table XIII relies on the algorithms requir-  1his way, given a single-objective problem with local op-
ing (globally) the lowest number of evaluations to find thdimal solutions, we can construct a multifrontal b|—objeet_
Pareto front. In the case of incomparable results, the numb¥OP- We have selected two well-known problems having
of evaluations when solving the most difficult instances i{ocal minimal solutions, Griewank and Ackely (see Table
taken into account. We do not consider here the hit rate. 1f!V)- The resulting problems have been solved by the six
we omit the ZDT4 problem, OMOPSO is clearly the besfnetaheur|st!cs we are dealing with. The conclusion is that
algorithm: it requires the lowest number of evaluations ifll the algorithms but OMOPSO converge to the true Pareto
problems ZDT1, ZDT2, ZDT6, and it is the second one ifront. To illustrate this fact, we include in Figures 6 and 7
ZDT3. PAES is the second best algorithm in terms of thée fronts obtained by OMOPSO and NSGA-II.
speed. An explanation of this behavior of OMOPSO with mul-

An interesting fact is that, if we observe the two tables, th#frontal problems could be due to an unbalance between
rankings are similar with 0n|y few exceptions' This seems tglverSIflcatlon and intensification. The fact that OMOPSO is
imply that when an algorithm scales well with a problem, ithe fastest algorithm can be due to the high intensification
also requires a low number of function evaluations to obtaif@Pabilities of the technique; this produces a negativeceff

the desired front. in the diversification when searching. This issue is partic-
] ularly harmful when trying to solve multifrontal problems.
B. OMOPSO and Multifrontal problems However, this hypothesis does not seem to be satisfactory

If we do not take into account problem ZDT4, the mostnough to explain the good behavior of OMOPSO when the
outstanding algorithm in our study is, considering botlproblems have a high number of decision variables. A deeper
scalability and speed, OMOPSO. In this section we analyzudy should be carried out in order to draw a more solid
whether its inefficacy when dealing with ZDT4 is particularconclusion on this behavior.
to that problem, or if it happens with multifrontal problems
in general. VII. CONCLUSIONS ANDFUTURE WORK

To explore this issue, we have defined two multifrontal ) o
problems using the methodology described in [5]. Deb points We have evaluated six metaheuristics over a set of

out that given a functiony(z), a two-objective problem is parameter-wise scalable MOPs in order to study the per-
defined as the minimization of formance of the algorithms concerning their capabilities t

filz1,Z) = x4 solve problems having a large number of decision variables.
fo(x1, @) = g(@)/x1 We have also studied their velocity to obtain a good quality
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Fig. 7. OMOPSO solving Griewank test problem.

El

Pareto front using a stopping condition based on the hypd#]
volume of the true Pareto front.

Regarding scalability, PAES seems to be the most com-
petitive algorithm. This is a surprising result, becausé&BA
is the simplest algorithm used in our study. It also provideg’l]
good results in terms of speed, but its hit rate values iridicaj12]
that it is not as robust as the other approaches analyzed.

OMOPSO is the best algorithm in terms of speed and t 83
second best in terms of scalability. Unfortunately, it ieble
to solve any instance of the ZDT4 problem. We have studied
this issue by defining two additional multifrontal problems
and we found that OMOPSO exhibited in them the same
poor behavior as before. [14]

The three genetic algorithms, NSGA-Il, SPEA2, and
PESA-II, have not produced particularly remarkable result
in particular SPEA2. Notwithstanding, NSGA-II is the bes{15]
when solving ZDT3, the partitioned problem.

MOCell, the cellular genetic algorithm, stands out in
problem ZDT4. It is the fastest algorithm in that problem,
and the only one able to produce results with 128 variableﬁa]
In terms of scalability, it is behind NSGA-Il and SPEA2;
concerning speed, it ranked third.

We have presented a first study of the behavior of multi-
objective metaheuristics concerning their parameterascal
bilty and convergence speed. The next step is an extension of
this study, which includes more scalable problems (e.g., th!’]
DTLZ and WFG test problems) in order to assess whether
the features of the problems (convexity, non-convexity,)et
affect, in some way, the results obtained in this work. Thib8l
sort of study can also lead to the design of new multi-
objective metaheuristics that can overcome the limitatior19]
of those in current use.
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