An Evolutionary Algorithm for Tuning
a Chess Evaluation Function

Eduardo Vazquez-Fernandez Carlos A. Coello Coello Felitt D. Sagols Troncoso
CINVESTAV-IPN CINVESTAV-IPN CINVESTAV-IPN
(Evolutionary Computation Group) (Evolutionary Computation Group) Departamento de Matematicas
Departamento de Computacion and UMl LAFMIA 3175 Av. IPN No. 2508
Av. IPN No. 2508 CNRS at CINVESTAV-IPN Col. San Pedro Zacatenco

Col. San Pedro Zacatenco Departamento de Computacion Meéxico, D.F. 07360, NEXICO
México D.F. 07300, NEXICO Av. IPN No. 2508 f sagol s@rat h. ci nvest av. edu. nx
eduar dovf @wot mai | . com Col. San Pedro Zacatenco

México D.F. 07300, NEXICO
ccoel l o@s. ci nvest av. nx

Abstract—This paper proposes a method for tuning the weights ~ The main components of a chess engine are: the move
of the evaluation function of a chess program whose search generator, the search function and the evaluation funcfisn
engine is based on evolutionary programming. In our proposé i hame indicates, themove generatogenerates all possible

approach, each individual in the population of the evolutimary . - - .
algorithm represents a virtual player with specific weights of movements from a certain (given) position, gearch function

its evaluation function. This differs from most of the previous (mMainly when using the alpha-beta pruning algorithm) finds
approaches reported in the literature, in which normally a the best variants from a certain (given) position on the thoar

tournament between virtual players is held, and the final reslt and theevaluation functioris used to heuristically determine
(win, loss or draw) is used to decide which players will pastthe iha relative value of a position which is then employed in

following generation. The selection mechanism of our propsed . o .
algorithm uses games from chess grandmasters to decide whic the search algorithm. Additionally, the chess engine can be

virtual player will pass to the following generation. Our results ~Supplemented with quiescent search and hash ta@lesscent
indicate that the weight values obtained by our approach are search[1] allows us to stabilize the positions, ahdsh tables
similar to the values known from chess theory. Additionally the [6] allow us to store positions so that they don’t have to be
standard deviation from the different runs performed, are lower looked for again.

than those reported by authors of previous related approachs.
i : :) The evaluation function is the most important part of a
Index terms:evolutionary algorithms, chess, computat|0nalh : The evaluation function contains arithmetic
intelligence in games. “ness engine. : . I
expressions and weights which encode specific knowledge
that constitutes a very valuable source of information Far t
search engine. If the weights used in the evaluation functio
For the past61 years, chess has been a very activere improved, then the chess engine will be better (i.e., it
area of research in artificial intelligence. 950, Claude will play better). Developers of commercial chess programs
Shannon [20] published the first paper on a computer chessst fine-tune the weights of their evaluation functionsigsi
problem. In that paper, Shannon distinguished two strasegiexhaustive test procedures, so that they can be improved as
the first that looks at all continuations, and the second, thauch as possible. However, a manual fine-tuning of weights
cuts off certain continuations. 11953, Alan Turing [23] is a difficult and time consuming process, and therefore the
provided the first description of how to design a computereed to automate this task.
program capable of playing a full game of chess.1hY5, Most of the previous related work that has been reported
Donald Knuth [17] provided a detailed analysis of the alphan the specialized literature [9], [10], [11], [4], [5], [L6[19]
beta pruning algorithm, which uses a tree to represent tadopts tournaments between virtual players from which the
movements of a game with two adversaries. This is the mdistal result of each game (win, loss or draw) is used for
commonly adopted algorithm within chess-playing programdgeciding which players will pass to the following generatio
and it has the advantage of refraining from evaluating someln the work reported in this paper, we carried out the
nodes when unnecessary (i.e., it uses a pruning techniqwejtomatic tuning of the weights of our evaluation function
The development of these traditional, but computationallsing an evolutionary algorithm. The selection mechanism o
expensive algorithms for playing chess reached a high pothe proposal presented here uses games from chess grandmas-
with the defeat of Garry Kasparov, who was then the Worlgrs to decide which virtual player will pass to the follogin
Chess Champion, by IBM’s chess computer Deep Blue generation. Our results indicate that the weight valueainbd
1997 [7]. This computer had a processing speed of al200t by our proposed approach match the values that are known
million positions per second. from chess theory.

|I. INTRODUCTION

The remainder of this paper is organized as follows. Imechanisms. This work presented a better convergence than
Section II, we briefly review the previous related work. Therevious related work.
chess engine adopted for our experiments is described it is important to emphasize that in all of the previous work
Section Ill. Our proposed approach is described in Section Ireviewed in this section, in which evolutionary algorithms
In Section V, we present our experimental results. Finally, were adopted in some way, the proposed approaches use the
conclusions and some possible paths for future research fimal results of a game (win, loss or draw) to decide which

provided in Section VI. individuals will pass to the following generation. None of
them uses information from chessmaster’'s games to make this
Il. PREVIOUS RELATED WORK decision, as we do in this paper.
The first program which learned to play chess from final l1l. OUR CHESSENGINE

outcomes was NeuroChess [22] and its evaluation functionn order to conduct our experiments, we created a chess
was represented by neural networks. This work also includpgbgram that could incorporate a variety of learning stiate
both temporal difference learning [21] and explanatiosdf to improve the rating of our search engine. In our program, in
learning [8]. The Deep Thought (later called Deep Blugjrder to select a movement at each player's turn, a minimax
team tuned the weights of their evaluation function usingtfee is generated and the alpha-beta algorithm with pruning
database of grandmaster-level games [14]. In this case, {bh@] is applied to a fixed depth ol (as recommended
authors did not incorporate any sort of evolutionary algon in [14]). Quiescence is used to extend the search tree to
into their chess engine. Instead, they adopted two appesachsteady positions in which material exchanges cannot infiesen
the first, was based on a standard hillclimbing algorithm anbe resulting evaluation of the position. The program also
simulated annealing to avoid getting stuck at local optimadopts hash tables and iterative deepening [6]. During the
and the second was based on the system of equalities f@folutionary process, our chess program uses the same type

mulation [14]. Beal and Smith [2] used temporal-differencef evaluation function adopted by Boskovit et al. in [4]:
learning to determine the piece values of a chess program.

In a further paper, they incorporated piece-square valies i 5
their work [3]._ G_omboc [1_3] proposed an empiric_al gradie_rgval = Xy (Munite _Mblack)+ZXi(Ny,white — Ny prack)
method to optimize the weights of a chess evaluation functio s
The resulting weights turned out to be very similar to a set of (1)
hand-tuned weights. In this equation,X; represents the weights for all pieces
Evolutionary algorithms have also been used before fekcept for the king. The king's weight was not taken into
tuning the weights of the evaluation function of a chessm@sgi account because in eq. (1), its associated term is zerce(ther
Kendall and Whitwell [16] showed how the outcome of thelways a king for each side on the boarJ,,n:+. represents
game (win, loss or draw) can be used to adjust the weighke number of available moves (mobility) for the white pigce
of a chess engine evaluation function. Nasreddine et a]. [181d My, represents the mobility for the black pieces,,
proposed a new strategy called “dynamic boundary strategg’the mobility weight.Ny ,pite @nd Ny piacr are the number
in which the boundaries of the interval of each parameter aw&y pieces for the white or the black pieces, respectively.
dynamic. Fogel et al. [9] presented an evolutionary alparit can denote a queen, rook, bishop or knight. The weight for
in a computer chess program to learn chess by playing gantles pawn is alwayg00.
against itself. They improved the rating of its prograniii The main aim of the work reported here is to show that
rating points and tuned the material values of the pieces; ththe weights of the evaluation function from eq. (1) can be
positional values, and the weights of three neural networkened using an evolutionary algorithm (in our case, we agtbpt
In a second work, Fogel et al. [10] evolved their prograravolutionary programming [12]), so that they closely match
during 7462 generations, reaching a rating @650. The the values derived from chess theory. This sort of evalaatio
resultant program was call®®londie25 In a third work Fogel function is relatively simple, but still provides a reasblya
et al. [11], incorporated tdlondie25a heuristic for time good search strategy for our chess engine. It is worth adding
management, achieved a rating 2635 points against the that the training of our search engine was conducted using a
programFritz8.0 who was rated#5 in the world.Blondie25 database of games from chess grandmasters.
was also the first machine learning based chess program
able to defeat a human chess master. BoSkovic et al. [4]
presented a differential evolution algorithm for tuningeth As indicated before, our proposed approach is based on
chess material values and the mobility factor of a chessxengian evolutionary algorithm which has a selection mechanism
The weights obtained with this method, matched the valubased on a database of chess grandmasters games. The idea is
known from chess theory. In a further work, BoSkovic ethat the weights adopted in our evaluation function are such
al. [5] also used differential evolution to adjust the wegh that the movement performed is equal to the one that was
of the evaluation function of a chess program. In this worlerformed by a human chess master in a particular game from
they employed adaptation and opposition-based optimizatithe database. This similarity is used to decide which virtua

IV. OUR PROPOSEDAPPROACH

player (individuals in the population) will pass to the falling Begin

generation.

Fig. 1 shows the flow chart of our proposed evolutionary Initialize population
algorithm for tuning the weights of the evaluation function
given in eq. (1).

At first, the weights ofNV virtual players are initialized with .
random values within their corresponding boundaries. In ou
experimentsN is equal to ten. Subsequently, a virtual player’s n virtual players
score is incremented in one for each movement ofttgames '
on the database for which the virtual player did the sameicti = best virtual players + Selection
as the human chess master. z offspring mutated

The value of the parametd? is provided by the user and
refers to the number of games that will be (randomly) chosen

Initial values of weights
Y

Calculate score

Tuning weights

% best virtual players

Y

from the database to calculate the score of a virtual player f Mutation
a generation. The selection procedure choosegifievirtual Optimal values of weights
players that achieved the highest score. These virtuakmay

are allowed to pass to the next generation and, consequently End

will be allowed to generate offspring using mutation, inerd
to give rise to the new population @f virtual players. In our
experiments, this procedure is repeated dubifigenerations.

The procedure for computing the score of each virtug8. Mutation

playe_r is desc_ribed in Algorithm IV.1. Ling gets the set 4 offspring was created by mutating all weights from
S which consists ofP” games chosen at random from the,ch gyrviving parent with a probability of 90% (we carried
database. ParametErranges froml to the number of games o+ several runs using mutation ratessofs, 85%, 90%, 95%

available in the database (in our ca®2). In lines2 10 4, 5,4100%, and found thad0% produced the best convergence

we establish the score counter to zero for each virtual playgg standard deviation values). The values that were nalitate
Line 5 choosesd training games fromS. Line 6 sets the |, .. the following:

i:iclenn%eﬁgrs:t:‘(r)gmo{hg]e agn?;ndd.FthQIT 7822?;?; ;lhelgeé(rt « The material values of the knight, bishop, rook and queen.
9 ' Y. play The pawn’s weight was fixed a0 points.

calculates his next move, and if this movement matches the . -
« The mobility of the position.

movementm, this virtual player increases his scorelin)))))

Our implementation adopted Michalewicz’s non-uniform
mutation operator [18]. In this operator, the mutated weigh
Vk/ (obtained from the previous weight,) is obtained with
the following expression:

Fig. 1. Flowchart of our proposed evolutionary algorithm.

Algorithm IV.1 : scoreCalculation()

1 S = chooseGames);
2 for each virtual player: do

3 | scorefi] = 0;

4 end

5 for each ga}r_neg@in S do v {Vk +A(t,UB-V;) if R=TRUE @

6 setPositiond); k= _ _ if R=

7 for each movement: in gamed do Vi A(t’ Vi LB) if R=FALSE

s for e:c:h r:’g:‘ﬁ'o\?'e?%’gﬁﬁgo where the weight, is within the rangé LB, UB] andR =
10 if m——nthen flip(0.5). The functionflip(p) simulates the tossing of a coin
11 | score[i++; and returns TRUE with a probability. Michalewicz suggests
12 end using'

13 end)

14 end

15 end A(tyy) = y* (1 — 0=t/ 3)

wherer is a random real number betweénand 1. T is
the maximum number of generations ahis a user-defined
A. Initialization parameter. In our casé,= 2.

Since we adopted evolutionary programming, no crossover
The population of our evolutionary algorithm was initi#&éz operator is employed in our case.

with 10 virtual players § parents and offspring in subsequent

generations). The weight values for these virtual playezeew C- Database of Games

random values generated with a uniform distribution witthie The database that we adopted consist81af games taken
allowable bounds. The allowable bound for each piece and foom the Linares super tournament in its editidi$99, 2001,
mobility weight are described in Section V. 2002, 2003, 2004, 2005, 2008 and 2010. These games can

be downloaded fromhttp://www.chessbase.con@learly, the The average weight values and their standard deviations for
database can be expanded so that a more robust tuningg@fienerations are shown in Figs. 2 and 3, respectively.
weights can be performed, but this is not particularly rafdv From the obtained results, we can see that the tuning process
at this point, since our main aim here is to present some proafter 50 generations resulted in standard deviation values

of-principle results of our proposed methodology. which are lower than those reported by [4] and [19]. This
indicates that our proposed approach is more robust.
V. EXPERIMENTAL RESULTS The computational time required by our proposed approach

to run during50 generations wa8 minutes with34 seconds

under the operating system openSuse, using a PC with a
In our experiments, we tuned the weights of the pieces afidl bits architecture, having two cores running a8 Ghz.

their mobility as shown in eq. (1)V (our population size) Unfortunately, most of the references that we consulted do

was set tal0, and the number of training gaméswas set to not report any CPU times to have an idea of the efficiency

6. Initialization took place using randomly generated valuef our approach. The only reference in which we found such

within the vicinity of their “theoretical” values#200 points). information is [9], in which Fogel reported using a 2.2-Ghz

The “theoretical” values of the pieces aB#0, 330, 500 and Celeron PC with 128 MB of RAM. His program requir&d

900 for the knight, bishop, rook and queen, respectively. TH®urs for executing0 generations. However, it is important

“theoretical” value of the mobility weight i$0, and its bounds to indicate that he optimized many more weights that our

are [0, 300]. The “theoretical” values are obtained from [20]approach (namely, the weights of three neural networks, the

If any of the parameters fell outside its allowable boundsraf weights of the positional values, etc.) and adopted a search

mutation, it was set to its maximum or minimum allowabl@epth of4 ply. Thus, this execution time is not comparable

value, depending on the boundary exceed#runs were with ours and is provided here just as a reference.

carried out under these conditions, and in all of them, thelt is also worth indicating that the CPU time required by

“theoretical” values were reached for all pieces. our proposed approach depends on the number of games that
In order to visualize better the convergence process, wee randomly chosen from the database to compute the score

carried out an additional run (numbtr) in which the material of a virtual player during a generation of our evolutionary

values were generated within the rangi®0,500] and the algorithm. In our case, we adoptdtl= 6.

mobility weight was set in the interval, 300]. For this run,

the average weight values and their standard deviations greAdditional Games

shown in Table I.

A. Tuning weights

We also performed an additional experiment. We carried out
TABLE | 100 games in which the first virtual player adopted the average
AVERAGE WEIGHT VALUES AND THEIR STANDARD DEVIATIONS FOR RUN Welghts from generatloﬁ Of our evolutlonary algorlthm and
NUMBER 31 (GENERATIONO) . .
the second adopted the average weights from generation

Weight Value | Standard deviation The scores achieved by them wes¢ of the second player
Xpawn 100.00 0.00 (who used the weights from generatiéfl) versus16 from
Xinight | 499.42 34.98 the first player. In Appendix A, we show one of the games in
Xbishop 464.60 88.67 which the second virtual player defeated the first (whichduse
Xrook 469.85 122.75 the average weights from generation

Xqueen 437.57 85.90 We also carried outt00 games between the best virtual
Xomobitity | 9719 173.67 player in generatiof versus the best virtual player in genera-

tion 50, with a score o885 to 15 in favor of the second virtual
player. In Appendix B, we show one of the games in which
At the end of run31, and after50 generations, the averagethe second virtual player defeated the first virtual player.
weight values and their standard deviations are shown inAdditionaIIy, we carried outl0 games between a virtual
Table II. player which adopted the average weights from generation
50 and a (human) player ranked &00 points. The result

AVERAGEWEIGHTVALUESANJ?EIE_IER ISITANDARD DEVIATIONS FORRUN Was 9 to 1 in favor of the human player. Based on these
NUMBER 31 (GENERATION50) played games, we used the Bayeselo ‘tdol estimate the

Weight Value | Standard deviation ratings for both the human player and the chess engine using
Xpawn 100.00 0.00 a minorization-maximization algorithm [15]. The obtained
Xienight 310.89 0.22 ratings are shown in Table Ill. In this table we can see that
Xpishon 395.32 0.45 the rating obtained for the human player was7 and for the
X,ooh 514.92 1.96 chess engine waki63. In Appendix C, we can see the game
Xgucen 241.61 2.62 that was won by the virtual player.
Xomobility 5.62 1.34

http://remi.coulom.free.fr/Bayesian-Elo/

900 T T T T

800 |- .) S

700 F
600 | &~
500 &/ |

400

Average weight value

300

200

100

T
Knight —8—
Bishop?-e=¥-9-4
":oo' ——
o’ 04 Queen —o—
Mobility —e—

50

Generation

Fig. 2. Average weight values of the population durB@generations.

It is worth indicating that in these games both virtual playe contrasting with our approach, which is based on a database
used a database for openings and the depth of the search efagrandmaster games.

set to4 ply.

TABLE Il
RATINGS FOR THE HUMAN PLAYER AND THE CHESS ENGINE IN A SIX
GAMES MATCH. THE FINAL RESULT WAS9 TO 1 FOR THE HUMAN PLAYER.

Rank

Name

Games

Score
(%)

Oppo.

Draws
(%)

Human player

1737

132

92

10

90%

1463

0%

Chess engine

1463

92

132

10

10%

1737

0%

VI. CONCLUSIONS ANDFUTURE WORK

As part of our future work, and aiming to create a chess
program that will be able to play at the level of master or a
ches master level, we plan to tune more weights (e.g., king
security, doubled pawns, isolated pawns, past pawns, rooks
in open columns, rooks in seventh row, control center of the
board, and so on) using our proposed evolutionary algorithm
We plan to carry out more experiments varying the population
size and increasing the number of games in the database.
Additionally, we plan to use better strategies to explore th
search space. Our aim is to increase the rating of our chess
engine as much as we can, adopting relatively inexpensive
approaches (computationally speaking).

ACKNOWLEDGEMENTS

: We have reported_ here an eyolutionary algorithm which The first author acknowledges support from CINVESTAV-
Incorporates a sel_ect|o_n mechanism that favors virtugiepia IPN, CONACyT and the National Polytechnical Institute (PN
that are able to “visualize” (or match) more movements fro% pursue graduate studies at the Computer Science Depart-

those registered in a database of chessmaster games.

¥Rt of CINVESTAV-IPN. The second author acknowledges

information is used to tune the weights of our evaluatioghppOrt from CONACYT project no. 103570.

function, which is relatively simple to implement.
Our results indicate that the weight values obtained by our

APPENDIXA

proposed approach closely match the known values from chestn this Appendix, we show a game between the “average

theory. Additionally, the standard deviations obtainemhfrour

weights in generation)” (with white pieces) versus the

runs were lower than those reported by other authors. Aghou‘average weights in generatidiv” (with black pieces). The
similar weight values had been reported by other reseacheecond virtual player won the game.
all of them had adopted tournaments between several players

300 T T T T T T T R T
Knight —8—
Bishop —x—
Rook —e—
Queen —o—
250 Mobility —e— |
200
c
S
8
2
5 150
S
%
n
100
50
0
Generation
Fig. 3. Standard deviation of weights in the population w80 generations.
[White: "Average weights in generation 07] 23 RXel RXel+
[Black: "Average weights in generation 507 24 Kd2 RXal
[Result: "0-1"] 25 KXd3 Ne5+
26 Ke2 Bd4
27 Nd5 NXc4
1 da d5 28 NXf6+ BXf6
2 ca4 c5 29 Kd3 NXb2+
3 Nc3 Nf6 30 Kc2 RXa4
4 dXc5 d4 31 g3 Red+
6 e3 e5 33 h4 b5
7 eXd4 eXd4 34 h5 gXh5
8 Nf3 BXc5 35 g4 hXg4
9 Bd3 0.0 36 Ka3 g3
10 Bg5 Re8t 37 Kb3 92
11 Be2 Qe7 38 Ka3 91Q
12 BXf6 gXfe 39 Ka2 Nd3
13 a3 a5 40 Kb3 Qb1+
14 a4 Bf5 41 Ka3 Qb2
15 Na3 d3 ++
16 Nh4 QXe2+
17 QXe2 RXe2+ APPENDIXB
18 Kd1 Bg6 In this Appendix, we show a game between “the best
19 NXg6 Xg6 virtual player in generatiofi” (with white pieces) versus “the
20 Rf1 Rae8 best virtual player in generatios0” (with black pieces). The
21 Nb5 BXf2 second virtual player won the game.

22 Nc3 Rel+

[White: "The best virtual player in generation 0" |
[Black: "The best virtual player in generation 50| 8 Z//
[Result: "0-1"] %
M)
7
1 Nf3 ds 6 //
2 d4 Nf6 5%
3 c4 c6 7 >
4 Nc3 e6 4 ‘ /
5 c5 Ne4 3% E
6 Nbl Be7 17 y
7 b4 Qc7 9 7
8 g3 g5 7
9 Qd3 Nd7 1%
10 Bh3 h5 a b ¢ d e f g h
11 QXed dXe4
12 Ngl as Fig. 4. Final position for the Appendix C game between hurmapgy ranked
13 Bg2 5 at 1600 points (with white pieces) versus “average weighigeneratiors0”
14 bXa5 QXa5+ (with black pieces).
15 Bd2 Qa4
16 Bc3 Bd8
17 Bb2 Qc2
18 Ba3 Ba5+ 18 d4 Ned7
19 Nc3 QXc3+ 19 Bg5 h6
20 Kf1 QXal+ 20 BXf6 NXf6
21 Bcl QXcl 21 Racl Qd7
22 Nf4 b6
+ 23 Rf2 Rads
24 Rcfl Re7
APPENDIXC 25 b4 NXd5
In this Appendix, we show a game between a human 26 Nh5 Ne3
player ranked at 1600 points (with white pieces) versus the 27 Qf3 NXf1
“average weights in generatidi9” (with black pieces). The 28 RXf1 QXda+
virtual player won the game. 29 Kh2 Qe3
30 h4 Rd2+
[White: "Human player”] 31 Kh3 QXf3
[Black: "Average weights in generation 50| 32 RXf3 g6
[Result: "0-1”] 33 Nf6+ Kg7
34 Ng4 h5
35 Nh2 Ree?2
1 c4 €5 36 Nf1 Ra2
3 e4 Bbd 38 RXf2 RXf2
4 Nge2 0O 39 Nh2 hXg4+
> h3 c6 40 NXg4 Rf3+
6 a3 BXc3 41 Kg2 RXa3
7 NXc3 d5 42 Ne5 Ra4
8 Xd5 cXd5 43 Nc6 Khé
9 exds ed 44 Kg3 Kh5
11 Bg2 Qcs 46 Ne5 a5
12 3 eXf3 47 Nd7 Rb4
13 QXf3 Rest 48 NXb6 RXb5
14 Ne2 Bed 49 Nc4 ad
15 Qf2 BXg2 50 Na3 Rb3+
16 QXg2 Nbd7

17 o0 Nc5 White resigns (see the final position in Figure 4).

(1]
(2]

(3]

(4]

(5]

(6]

(7]
(8]
El

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]
(18]

[19]

[20]

[21]

[22]

[23]

REFERENCES

D. F. Beal. A generalised quiescence search algorithiutificial
Intelligence 43(1):85-98, April 1990.

D. F. Beal and M. C. Smith. Learning piece values usinggeral
differences.Journal of The International Computer Chess Association
20(3):147-151, September 1997.

D. F. Beal and M. C. Smith. Learning piece-square valussgitemporal
differences.Journal of The International Computer Chess Association
22(4):223-235, December 1999. .

B. Boskovi¢, S. Greiner, J. Brest, and Xumer. A differential evolution
for the tuning of a chess evaluation function.2006 IEEE Congress on
Evolutionary Computationpages 1851-1856, Vancouver, BC, Canada,
July 16-21 2006. |IEEE Press. .

B. BoSkovic, S. Greiner, J. Brest, A. Zamuda, andZvmer. An Adap-
tive Differential Evolution Algorithm with Opposition-Bed Mecha-
nisms, Applied to the Tuning of a Chess Program. In U. Chakisth
editor, Advances in Differential Evolutipnpages 287-298. Springer,
Studies in Computational Intelligence, Vol. 143, HeidetheGermany,
2008.

D. Breuker, J. W. H. M. Uiterwijk, and H. J. V. D. Herik. lofmation

in transposition tablesAdvances in Computer Chesspages 199-211,
1997.

M. Campbell, A. J. Hoane, Jr., and F.-h. Hsu. Deep blagif. Intell.,
134:57-83, January 2002.

T. Ellman. Explanation-based learning: a survey of pamgs and
perspectivesACM Computing Survey®1(2):163-221, June 1989.

D. B. Fogel, T. J. Hays, S. L. Hahn, and J. Quon. A selfiazy
evolutionary chess programProceedings of the IEEES2(12):1947—
1954, 2004.

D. B. Fogel, T. J. Hays, S. L. Hahn, and J. Quon. Furtheluion

of a self-learning chess program. Rroceedings of the 2005 IEEE
Symposium on Computational Intelligence and Games (CIGf¥ges
73-77, Essex, UK, April 4-6 2005. IEEE Press.

D. B. Fogel, T. J. Hays, S. L. Hahn, and J. Quon. The ble28li
chess program competes against fritz 8.0 and a human chestsrma
In S. J. Louis and G. Kendall, editorBroceedings of the 2006 IEEE
Symposium on Computational Intelligence and Games (ClG@)es
230-235, Reno, Nevada, USA, May 22-24 2006. IEEE Press.

L. J. Fogel. Artificial Intelligence through Simulated Evolutionlohn
Wiley, New York, 1966.

D. Gomboc, M. Buro, and T. Marsland. Tuning evaluatiomdtions by
maximizing concordanceTheoretical Computer Scienc849(2):202—
229, 2005.

F. Hsu, T. Anantharaman, M. Campbell, and A. Nowatzyk.eep
thought. InComputers, chess and cognitiochapter 5, pages 55-78.
Springer, Berlin, 1990.

R. Hunter. Mm algorithms for generalized bradleyyemodels. The
Annals of Statistics32:2004, 2004.

G. Kendall and G. Whitwell. An evolutionary approach the tuning of

a chess evaluation function using population dynamicsPrteedings
of the 2001 Congress on Evolutionary Computation CEC206tLime 2,
pages 995-1002. IEEE Press, May 2001.

D. E. Knuth and R. W. Moore. An analysis of alpha-betanimg.
Artificial Intelligence 6(4):293-326, 1975.

Z. Michalewicz. Genetic Algorithms + Data Structures = Evolution
Programs Springer-Verlag, second edition, 1996.

H. Nasreddine, H. Poh, and G. Kendall. Using an Evohdiy
Algorithm for the Tuning of a Chess Evaluation Function Bhss a
Dynamic Boundary Strategy. Iroceedings of 2006 IEEE international
Conference on Cybernetics and Intelligent Systems (C0O6Rpages 1—
6. IEEE Press, 2006.

C. Shannon. Programming a computer for playing chBdlosophical
Magazine 7(41):256-275, 1950.

R. S. Sutton and A. G. Barto. A temporal-difference modé
classical conditioning. IMinth Annual Conference of the Cognitive
Science Societypages 355-378, Hillsdale, New Jersey, USA, July 1987.
Lawrence Erlbaum Associates, Inc.

S. Thrun. Learning to play the game of chess. In G. Tesaur
D. Touretzky, and T. Leen, editor@dvances in Neural Information
Processing Systems (NIPS)pages 1069-1076, Cambridge, MA, 1995.
MIT Press.

A. Turing. Digital Computers Applied to Games, of Faster than Thought
chapter 25, pages 286-310. Pitman, 1953.

