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Abstract—In a previous paper presented at CEC’2011, we
reported the implementation of a chess engine based on evo-
lutionary programming with a selection mechanism that relied
on grandmaster’s chess games. The objective was to decide the
virtual players that would pass to the following generation. Here,
we use these same techniques to adjust a larger number of
weights (29 in this work instead of the 5 used in the previous
one). The aim was to improve the rating of our chess engine. We
also introduce here the use of a local search scheme based on the
Hooke-Jeeves algorithm, which is adopted to adjust the weights
of the best virtual player obtained in the evolutionary process. As
our results indicate, this produced a further improvement in the
rating of our chess engine. As in our previous work, the material
values of the additional pieces considered here are similarto the
values known from chess theory.

I. I NTRODUCTION

Chess is a game of perfect information in which there is no
hidden information for the players. This means that, at a given
position on the board, each player knows all of the possible
movements. If one considers all possible movements, chess is
an intractable game, because of its considerably large search
space. Claude Shannon was the first to estimate that the total
number of possible chess games is10120.

Because of its complexity, and the human interest that chess
has attracted during many years, this game has been used,
since the 1950s, as a benchmark to test a variety of artificial
intelligence techniques.

In the 1950s, Alan Turing [19] designed a pioneering chess-
playing program at a time at which getting access to digital
computers was almost impossible. At about the same time,
Claude Shannon [18] proposed two strategies to implement
chess engines. The first used a “brute force” approach by
performing an exhaustive search of the possible positions.This
work was based on the application of the minimax algorithm
on a game-tree. The second strategy proposed by Shannon
adopted “artificial intelligence” to emulate the way in which
humans play chess. Today, practically all chess engines use
one of these two strategies or even combinations of them.

In 1958, Alex Bernstein wrote a chess-playing program that

was able to play full games. However, this game was not very
powerful and could be defeated by novice players.

In 1967, the MacHack VI program developed for the PDP-
6 computer (from DEC) played, for the first time, against
a human in a chess tournament. This program was able to
achieve a rating of 1400 points.

In the1970s, chess tournaments officially began. At the end
of this decade, the top chess programs available could play at
the level of a human chess expert (around2000 rating points).

The programs CHESS and Belle dominated the first two
decades of competitions in the two major computer chess
tournaments: the annualNorth American Computer Chess
Championships(NACCC), and theWorld Computer Chess
Championships(WCCC), which was held every three years.

It is worth indicating that, in the1970s, the main chess
programs introduced the use of hash tables which allowed
the storage of information about positions that had already
been searched. This way, if the same position was reached
again, no search was conducted, since the previously generated
information would be used in that case. Additionally, other
search refinements were also introduced. The most remarkable
were: iterative deepening (which searches down to a certain
level of the game tree), opening books (which include rules or
move sequences that are known to be good to start a game),
and endgame databases (which contain move sequences that
are known to be good for ending a game, or even solutions to
positions with a certain (small) number of pieces).

In 1975, Knuth [15] analyzed in detail the alpha-beta
pruning algorithm. This algorithm uses a pruning technique
which has the advantage of refraining from evaluating some
nodes when unnecessary.

During the early1980s, chess programs based on micropro-
cessors became reachable to a larger audience. However, this
technology also made such programs very limited due to the
small memory capabilities and the slow processors available
at that time.

In 1989, two chess computers developed at Carnegie-Mellon
University (Hitech and Deep Thought) were able to defeat a



human chessmaster each.
By 1996, the computerDeep Thought, which was able to

examine100 million chess positions per second, played a six-
games match versus world chess champion Garry Kasparov.
The final result of the match was4 to 2 in favor of Kasparov.

In 1997, an updated version ofDeep Thought, calledDeep
Blue was released. This computer was used again to play a
six-game match against Garry Kasparov. This time, however,
Kasparov lost the match (he obtained 2.5 points andDeep
Blue obtained 3.5 points). After almost 50 years of research,
the goal of having a computer that was able to defeat the chess
world champion had finally been fulfilled.

In spite of its importance, this significant event did not
stop the research in this area. The focus, however, changed
towards the development of chess programs that did not
require specialized hardware (asDeep Bluedid). The advent
of faster processors, cheaper memories and more elaborate
search algorithms (including the use of metaheuristics) has
made possible the development of very powerful chess engines
that can run on conventional personal computers.

The main components of a chess engine are: (1) the move
generator (it generates all possible moves at a given position on
the board), (2) the search function (it finds the best variants
in the search-tree from a given position on the board) and
(3) the evaluation function. Due to the complexity of chess
games it is only possible to represent the search tree down toa
certain depth. Therefore, it is necessary to evaluate the terminal
nodes of the search tree through the evaluation function, which
is responsible for assigning a numerical value to a specific
position on the board.

The evaluation function is the main component of any chess
engine. Clearly, a successful implementation of the evaluation
function allows a chess engine to play better, and, therefore,
that is the focus of the work reported in this paper.

The evaluation function of chess engines relies on the
use of weights (these weights are associated to the pieces
involved in a certain position) to assess the numerical value
of a certain board position. Developers of commercial chess
engines normally carry out the tuning of these weights through
lenghty trial-and-error processes (which make take years). Re-
cently, however, the use of soft computing techniques (namely,
evolutionary algorithms and neural networks) has allowed to
tune these weights in a much faster (and still effective) manner.

The remainder of this paper is organized as follows. In
Section II, we briefly present the previous related work.
The chess engine adopted for our experiments is described
in Section III. Our method is described in Section IV. In
Section V, we present our experimental results. Finally, our
conclusions and some possibe paths for future research are
provided in Section VI.

II. PREVIOUS RELATED WORK

A variety of evolutionary algorithms, including differential
evolution [2], [3], [1], genetic algorithms [5], [6], genetic
programming [11], [12] and evolutionary programming [7],

[8], [17], [9], have been used for tuning the weights of the
evaluation function of a chess engine.

Most of these previous works make use of co-evolution
(tournaments between virtual players) to decide which virtual
players will pass to the next generation, and only two of them
have adopted grandmasters’ games to decide which virtual
player will pass to the following generation.

In [6], the authors used games from chess grandmasters in
the objective function of their genetic algorithm. Additionally,
the authors used co-evolution to improve the adjustment of
the weights of their chess engine. In [20], Vázquez-Fernández
et al. adjusted the weights of both the material values of
the pieces and the mobility factor through an evolutionary
algorithm. The work reported here, differs from this previous
paper in that here, we adopt a larger number of weights (29,
instead of the5 adopted in [20]). Additionally, we incorporate
here a direct search method (i.e., a mathematical programming
technique that does not require gradient information): the
Hooke-Jeeves method. This approach is used as a local search
engine which improves the adjustment of the weights of the
best virtual player obtained during the evolutionary process.
As we will see later on, both our evolutionary algorithm and
the local search engine are able to improve the rating of our
chess engine, which is the main objective of our work.

III. O UR CHESSENGINE

For carrying out our experiments, we developed a chess
engine with the following characteristics:

• Alpha-beta algorithm [15].
• Stabilization of positions through the Quiescence algo-

rithm that takes into account the exchange of material
and king’s checks.

• Use of iterative deepening and hash tables [4].
• Null-move heuristic.

Our chess program evaluates a given position on the board
for a particular side, with the following expression:

eval = pV + mV (1)

where:
pV is the sum of the positional values of chess pieces for a
particular side.
mV is the sum of the material values of chess pieces for a
particular side, and is given by the following expression.

mV =

r∑

i=1

Xi (2)

where:
Xi represents the material value for piecei.
r is the number of pieces of one side in particular, regardless
of the king (r = 5).

pV is given by the following expression:



pV =
s∑

i=1

Pi (3)

where:
Pi represents the positional value for piecei.
s is the number of pieces of one side in particular (s = 6).

The king’s positional value is given by:

Pking =

4∑

i=1

Xking,i ∗ Fking,i (4)

where:
Xking,i is the weight of factorFking,i. A factor is a positional
characteristic of a particular piece; for example, its mobility,
its column type, etc.
Fking,1 is the sum of material values of pieces that defend
their king, i.e., those pieces whose movements act on its
king’s square or on its king’s adjacent squares.
Fking,2 is the sum of material values of pieces that attack the
king, i.e., those pieces whose movements act on its opposite
king’s square or on its opposite king’s adjacent squares.
Fking,3 is true if the king is castled; otherwise, it is false.
Fking,4 is the number of pawns that protect their king.

The queen’s positional value is given by (at the moment,
let’s consider only the queen’s mobility):

Pqueen = Xqueen,1 ∗ Fqueen,1 (5)

where:
Xqueen,1 is the weight of factorFi.
Fqueen,1 is the queen’s mobility.

The rook’s positional value is given by:

Prook =

7∑

i=1

Xrook,i ∗ Frook,i (6)

where:
Xrook,i is the weight of factorFrook,i.
Frook,1 is the rook’s mobility.
Frook,2 is true if on the rook’s column there are no pawns;
otherwise, it is false.
Frook,3 is true if on the rook’s column there are only
adversary pawns; otherwise, it is false.
Frook,4 is true if on the rook’s column there are pawns for
both sides and the rook is on front of its pawns; otherwise, it
is false.
Frook,5 is true if on the rook’s column there are pawns for
both sides and the rook is behind of its pawns; otherwise, it
is false.
Frook,6 is true if the rook is on the seventh row; otherwise,
it is false.
Frook,7 is true if there are at least two rooks on the seventh

row; otherwise, it is false.

The bishop’s positional value is given by:

Pbishop = Xbishop,1 ∗ Fbishop,1 (7)

where:
Xbishop,1 is the weight of factorFbishop,1.
Fbishop,1 is the bishop’s mobility.

The knight’s positional value is given by:

Pknight =
7∑

i=1

Xknight,i ∗ Fknight,i (8)

where:
Xknight,i is the weight of factorFknight,i.
Fknight,1 is the mobility of the knight.
Fknight,2 is true if the knight is defended by a pawn;
otherwise, it is false.
Fknight,3 is true if the knight cannot be evicted by an enemy
pawn; otherwise, it is false.
Fknight,4 is true if the knight is in the squaresa1, . . . , a8,
b1, . . . , g1, h1, . . . , h8, and b8, . . . , g8 (which corresponds to
the squares on the periphery of the board); otherwise, it is
false.
Fknight,5 is true if the knight is in the squaresb2, . . . , b7,
c2, . . . , f2, g2, . . . , g7, andc7, . . . , f7; otherwise, it is false.
Fknight,6 is true if the knight is in the squaresc3, . . . , c6,
d3, e3, f3, . . . , f6, andd6, . . . , e6; otherwise, it is false.
Fknight,7 is true if the knight is in the squaresd4, e4, d5, e5;
otherwise, it is false.

We expected thatXknight,4 < Xknight,5 < Xknight,6 <
Xknight,7 because if the knight is located in the center of the
board its positional value will be better.

The pawn’s positional value is given by:

Ppawn =

5∑

i=1

Xpawn,i ∗ Fpawn,i (9)

where:
Xpawn,i is the weight of factorFpawn,i.
Fpawn,1 is true if the pawn is doubled; otherwise, it is false.
Fpawn,2 is true if the pawn is isolated; otherwise, it is false.
Fpawn,3 is true if the pawn is backwards; otherwise, it is
false.
Fpawn,4 is true if the pawn is central (i.e., if it is inc4, c5,
d4, d5, e4, e5, f4 or f5 square); otherwise, it is false.
Fpawn,5 is true if the pawn is passed; otherwise, it is false.

The material value of the piecePi corresponds to its static
value. We assigned300, 330, 500 and 900 points for the
knight, bishop, rook and queen, respectively (as Shannon did
in his work [18]). The material value for the pawn is100.



The positional value of a piece is a dynamic value and
depends on the characteristics of the position such as mobility,
board location, strength, etc. In other works (Fogel et al. [7]
for example) the piece’s positional value is represented by
positional value tables. The disadvantage of these methods
is that the positional value of a piece is a static value (a
knight in f6 square always has the same value regardless of
their location and relationship with the other pieces). In this
sense, one of the main ideas of our proposal is that the chess
positional values depend directly on the characteristics of the
position. Of course, while more features are taken into account
in calculating the positional value of a piece, the positional
value will be more accurate, and therefore, the position will
be better evaluated.

The purpose of this work is to tune the weights of equa-
tions (2), (4), (5), (6), (7), (8) and (9) using evolutionary
programming [10] and a database of chess grandmasters. The
aim is that the adjustment of the weights performed by our
approach leads to an increase in the rating of our chess engine.

IV. OUR PROPOSEDAPPROACH

Our proposal consists of the following steps:

• Exploration search. It is the first step of our pro-
posal, and is based on evolutionary programming [10]
which has a selection mechanism based on a database
of chess grandmaster games (supervised learning). The
selection mechanism allows that the virtual players with
more positions properly solved from a database of chess
grandmaster games acquire the right to pass to the next
generation. In our previous work [20], we conducted this
phase in a similar way, but now we adjusted a larger
number of weights (we went from5 to 29 weights).

• Exploitation search. It is the second step of our proposal,
and we carried out a local search procedure, aiming to
improve the best virtual player obtained in the previ-
ous step. For that sake, we applied the Hooke-Jeeves
algorithm to the best virtual player obtained from the
evolutionary process. The objective function incorporated
into the Hooke-Jeeves method also used a database of
chess grandmaster games to carry out the adjustment of
the weights under consideration.

Algorithm 1 EvolutionaryAlgorithm()
1: intializePopulation();
2: g = 0;
3: while g++< Gmax do
4: scoreCalculation();
5: selection();
6: mutate();
7: g++;
8: end while

The exploration search of our proposal was carried out
with the evolutionary algorithm shown in Algorithm 1. The
algorithm description is as follows. Line1 initializes the

Algorithm 2 scoreCalculation()
1: for i = 0 → N − 1 do
2: score[i] = 0;
3: end for
4: for each positionp in databaseS do
5: m = grandmasterMovement(p);
6: setPosition(p);
7: for each virtual playeri do
8: n = nextMovement(i);
9: if m == n then

10: score[i]++;
11: end if
12: end for
13: end for

weights ofN virtual players with random values within their
corresponding boundaries. Line2 sets the generations counter
equal to zero. Lines3 to 8 carry out the adjusting of the
weights for virtual players duringGmax generations. In line4,
we calculate the score for each virtual player (in Algorithm2
we will describe in more detail this aspect). In Line5 we apply
the selection mechanism so that only the bestN/2 virtual
players pass to the following generation. In line6, we mutate
the first half of the population in order to obtain the second
half of the virtual players. That is, all the weights from each
surviving parent were mutated to create one offspring (the
weights that were mutated are shown in Table I). As done
in [20], we adopted here Michalewicz’s non-uniform mutation
operator. Since we adopted evolutionary programming, no
crossover operator is employed in our case. Finally, line7
increases the generation counter by1.

The procedure for computing the score of each virtual player
is described in Algorithm 2. In lines1 to 3, we establish
the score counter to zero for each virtual player. Line4
choosesp training positions from databaseS. Line 5 chooses
chess grandmaster movements for positionp. Line 6 sets the
position p (this allows to each virtual player to calculate its
next movement). Finally, each virtual player calculates its next
move n, and if this movement matches movementm, this
virtual player increases its score by1.

In the exploitation search, we employed the Hooke-Jeeves
method to further adjust the weights of the best virtual player
obtained during the exploration search step. The Hooke-Jeeves
method is a direct search algorithm originally proposed in
1961 [13]. This method carries out a deterministic local search
with a local descent algorithm, which does not make use of
the objective function derivatives.

Algorithm 3 shows the method of Hooke-Jeeves. In this
algorithm:

• x0 is the best virtual player obtained in the exploratory
search step.

• xk represents the current virtual player.
• xk−1 represents the previous virtual player.
• xk+1

p represents the pattern virtual player.
• xk+1 represents the next or new virtual player.



Algorithm 3 hookeJeeves()
1: Step 1. Define:
2: The initial virtual playerx(0).
3: The increments∆i for each weight fori = 1, . . . , WN .
4: The step reduction factorα > 1.
5: A termination parameterǫ > 0.
6: Step 2. Perform exploratory search.
7: Step 3. Was the exploratory search successful (i.e, was a

better virtual player found)?
8: Yes: Go to step5.
9: No: Continue.

10: Step 4. Check for termination.
11: Is ||∆|| < ǫ?
12: Yes: Stop: return the best current virtual player.
13: No: Reduce the increments:
14: ∆i = ∆i/α for i = 1, . . . , WN
15: Go to step2.
16: Step 5. Perform patterns move.
17: xk+1

p = xk + xk − xk−1

18: Step 6. Perform exploratory search usingxk+1
p as the base

virtual player; let the result bexk+1.
19: Step 7. Is f(xk+1) > f(xk)
20: Yes: Setxk−1 = xk; xk = xk+1

21: Go to step5.
22: No: Go to step4.

• WN is the number of weights for each virtual player.
• f is the objective function.

The objective function returns the number of positions
solved by each virtual player. In our case, we randomly chose
M = 20 positions from chess grandmaster games that were
not solved by any virtual player during the exploratory search.

A. Initialization

During the exploratory search step, the initial population
consisted ofN = 20 virtual players (10 parents and10
offspring in subsequent generations). Their weights (described
in equations (2), (4), (5), (6), (7), (8) and (9)) were randomly
generated with a uniform distribution within their allowable
bounds (these bounds for each weight are shown in Table I).

B. Database of Games

In our experiments, we used a database consisting of1000
games from chess grandmasters having a rating above2600
Elo (see Appendix A). The games were taken from the Linares
tournaments, from matches for the world chess championship,
and from the Wijk aan Zee tournaments, among others.

V. EXPERIMENTAL RESULTS

We carried out three experiments. The first experiment
was based on the exploration and the exploitation stages of
the search. In the second experiment, we performed matches
between the virtual player obtained after the exploration phase

TABLE I
RANGES OF THE WEIGHTS FOR EACH VIRUAL PLAYER.

Weight Wlow Whigh

X1 (PAWN VALUE) 100 100

X2 (KNIGHT VALUE) 200 400

X3 (BISHOP VALUE) 200 400

X4 (ROOK VALUE) 400 600

X5 (QUEEN VALUE) 800 1000

Xking,1 0 4000

Xking,2 −4000 0

Xking,3 0 100

Xking,4 0 100

Xrook,1 0 100

Xrook,2 −50 50

Xrook,3 −50 50

Xrook,4 −50 50

Xrook,5 −50 50

Xrook,6 0 100

Xrook,7 0 100

Xbishop,1 0 100

Xknight,1 0 100

Xknight,2 0 100

Xknight,3 0 100

Xknight,4 −50 50

Xknight,5 −50 50

Xknight,6 −50 50

Xknight,7 −50 50

Xpawn,1 −50 50

Xpawn,2 −50 50

Xpawn,3 −50 50

Xpawn,4 −50 100

Xpawn,5 −50 100

and the virtual player obtained after the exploitation phase. Fi-
nally, in the third experiment, we carried out matches between
our virtual players and the chess programChessmaster.

In these experiments, our chess engine used the database
Olympiad.abkin the opening phase. This database is included
with the graphical user interfaceArena1. In the following sub-
sections we describe the experiments performed.

A. First experiment

The first experiment was divided in the two steps described
in Section IV. In the first step, we applied exploration search
to adjust the weights shown in Table I. In this case, we
performed30 runs, and in each of them, we usedGmax = 200
generations,N = 20 virtual players, andp = 1000 of training
positions for chess grandmaster games. The best virtual player
from these runs at generation0, and at generation200, were
calledV P 0

exploration, andV P 200
exploration, respectively.

Figure 1 shows the evolutionary process for the exploration
search. The plot shows the number of positions solved (a
total of 1000) for the best virtual player and the average
weight values of the20 virtual players during200 generations.
At generation0, the number of positions solved for the
average weight values was187 (which corresponds to18.7%
of the positions), and208 for the best virtual player (which
corresponds to20.8% of the positions). At generation200,
the number of positions solved for the average weight values

1http://www.playwitharena.com/



and the best virtual player was328 (which corresponds to
32.8% of the positions). Note that this value is competitive
with the value reported in [6]. At generation200, the number
of positions solved for the average weight values and the best
virtual player was the same because we used Michalewicz’s
non-uniform mutation operator [16].

In the second step of the first experiment, we applied the
exploitation search to the best virtual player obtained with the
exploration search. In this case, we applied the Hooke-Jeeves
algorithm with the following parameters:

• The step reduction factorα = 2.
• The termination parameterǫ = 0.5.
• The increments∆i = 30 for i = 1, . . . , WN (WN is

the number of weights).

The second column of the Table II shows the tuning of
weights for the virtual playerV P 200

exploration (the best virtual
player obtained after the exploration search). In the third
column, we show the tuning of weights for the virtual player
V Pexploitation (the virtual player obtained after the exploita-
tion search). In both cases, we can see that the material values
of the pieces are close to their “theoretical” values.

Next, we used the resulting weights of the virtual player
V Pexploitation to test them with the1000 training positions
from chess grandmaster games. In this case, the virtual player
V Pexploitation successfully resolved483 of the1000 positions
(which corresponds to48.3%). Therefore, we can see that
the number of positions solved using both exploration and
exploitation was larger than when we used only exploration
(from 32.8% to 48.3%). We consider that the number of
positions solved by our method was satisfactory because we
used only a depth of one ply in the search tree. It is noteworthy
that David-Tabibi et al. [6] also used one ply in their work.

With the completion of the exploration and exploitation
search, we used an additional1000 positions for testing the
virtual playerV Pexploitation. We let this virtual player perform
a 1-ply search on each of these positions, and the percentage
of correctly solved positions was47.9%. This indicates that
the first 1000 positions used for training cover most of the
types of positions that can arise.

B. Second experiment

In this experiment, our chess engine used a search depth
of four ply. We carried out200 games between the virtual
player V P 200

exploration and the virtual playerV Pexploitation

(each virtual player played100 games with black pieces and
100 with white pieces). The virtual playerV Pexploitation won,
drew, and lost142, 25, and32 games, respectively, versus the
virtual playerV P 200

exploration.
Next, we used the Bayeselo tool2 to estimate the ratings

of our chess engine using a minorization-maximization algo-
rithm [14]. The obtained ratings are shown in Table III. In
this table, we can see that the rating for the virtual player
V Pexploitation was2425, and the rating for the virtual player
V P 200

exploration was2205, representing an increase of220 rating

2http://remi.coulom.free.fr/Bayesian-Elo/

TABLE II
VALUES OF THE WEIGHTS AFTER THE EXPLORATION SEARCH(SHOWN IN

THE SECOND COLUMN) AND AFTER THE EXPLOITATION SEARCH(SHOWN

IN THE THIRD COLUMN).

Weight V P 200

exploration
V Pexploitation

X1 (PAWN VALUE) 100 100

X2 (KNIGHT VALUE) 297 302

X3 (BISHOP VALUE) 315 319

X4 (ROOK VALUE) 502 506

X5 (QUEEN VALUE) 923 910

Xking,1 1650 1675

Xking,2 −1430 −1425

Xking,3 47 45

Xking,4 65 72

Xrook,1 62 73

Xrook,2 45 46

Xrook,3 27 33

Xrook,4 32 27

Xrook,5 −8 −7

Xrook,6 63 68

Xrook,7 78 82

Xbishop,1 72 76

Xknight,1 64 68

Xknight,2 56 72

Xknight,3 52 73

Xknight,4 −12 −15

Xknight,5 03 6

Xknight,6 15 26

Xknight,7 42 43

Xpawn,1 −32 −44

Xpawn,2 −47 −48

Xpawn,3 −44 −41

Xpawn,4 43 48

Xpawn,5 48 49

points between the virtual player obtained with exploration
plus exploitation search and the virtual player obtained only
with exploration search. In this table the absolute level for the
Bayeselo tool was set in2200 rating points.

TABLE III
RATINGS OF THE SECOND EXPERIMENT.

Name Elo + - Games Score Oppo.
(%)

V Pexploitation 2425 25 24 200 77% 2205

V P 200

exploration
2205 24 25 200 23% 2425

We can have an idea of the playing strength of our virtual
players using the classification of the United States Chess
Federation (see Appendix A). From Table V, we can see that
the strength of the virtual playerV P 200

exploration (2205 rating
points) is at the level of a master in chess, and the strength of
the virtual playerV Pexploitation (2425 rating points) is at the
level of a senior master in chess.

C. Third experiment

In this experiment, we carried out200 games among the vir-
tual playersV P 0

exploration, V P 200
exploration, V Pexploitation, and

the popular chess programChessmaster(grandmaster edition)
which was set at2500 rating points. The results are shown in
Figure 2. In this figure, we can see thatChessmaster2500’s
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wins, draws, and losses were68, 118, and 14, respectively,
versus the virtual playerV Pexploitation (denoted as the his-
togram H1 in the Figure). Also,Chessmaster2500’s wins,
draws, and losses, were158, 28, and14, respectively, versus
the virtual playerV P 200

exploration (denoted as the histogram H2
in the Figure), respectively, and so on.

Based on these played games, we used again the
Bayeselo tool to estimate the ratings ofChessmaster2500

(CM2500 in Table IV), and the virtual playersV Pexploitation,
V P 200

exploration, and V P 0
exploration. The obtained ratings are

shown in Table IV. In this table we can see that the rat-

ing for the virtual playersV P 0
exploration, V P 200

exploration, and
V Pexploitation were 1600, 2197, and 2424, respectively. In
this experiment, our chess engine used a search depth of six
ply. In this table the absolute level for the Bayeselo tool was
set in2500 rating points.

TABLE IV
RATINGS OF THE THIRD EXPERIMENT.

Name Elo + - Games Score Oppo. Draws
(%) (%)

CM2500 2499 23 23 600 83% 2074 24%

V Pexploitation 2424 28 28 200 37% 2499 59%

V P 200

exploration
2197 39 43 200 14% 2499 14%

V P 0

exploration
1600 144 348 200 0% 2499 0%

VI. CONCLUSIONS ANDFUTURE WORK

In this work, we used two steps to carry out the tuning of
the weights of a chess engine. In the first step, we performed
an exploration search through an evolutionary algorithm with
supervised learning. The selection mechanism of our evo-
lutionary algorithm used games from chess grandmasters to
decide which virtual player would pass to the following
generation. This step is similar to our previous work presented
at CEC’2011 with the difference that now we adjusted a
larger number of weights (form5 to 29 weights). With this
increase in the number of weights, we obtained an increase
in the rating of our chess engine, since we went from1463
to 2205 (the value of1463 was obtained in10 games against
a human player who has1737 rating points). We believe that



TABLE V
ELO RATING SYSTEM

Interval Level
2400 and above Senior Master
2200 − 2399 Master
2000 − 2199 Expert
1800 − 1999 Class A
1600 − 1799 Class B
1400 − 1599 Class C
1200 − 1399 Class D
1000 − 1199 Class E

this confirms the proper working of our evolutionary algorithm
in adjusting weights of our chess engine.

In the second step, we used the Hooke-Jeeves algorithm
to continue the adjustment of the weights for the best virtual
player obtained in the previous step. Using this algorithm as
a local search engine, we increased the rating of our chess
engine from2205 to 2425 points (in the second experiment),
and from 2197 to 2424 points (in the third experiment).
Therefore, we conclude that the local search procedure based
on the Hooke-Jeeves algorithm was successful.

On the other hand, we can see that the number of positions
solved using exploration plus exploitation search was larger
than when we only used exploration search (from32.8% to
48.3%). We believe that the number of positions solved by
our method was satisfactory because we used only a depth of
one ply in the search tree. Furthermore, this value is greater
than that obtained in the previous related work.

As part of our future work, we plan to adjust more weights
with the idea of creating a chess program that is able to play
better. We also plan to perform more experiments varying the
population size and increasing the number of games in the
chessmasters database. In order to extend the search tree depth
we will plan to add extensions to the quiescence algorithm, for
example, pawn promotions or pawns on seventh row. Finally,
and considering that support vector machines are a standard
supervised learning method, as part of our future work, we
plan to use them to carry out the exploration search.
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APPENDIX A

The Elo rating system is a method for calculating the
relative strength of players in games with two opponents like
chess, association football, American college football, and
basketball, among others. This method was created by the
mathematician Arpad Elo, and has been adopted by the USCF
(United States Chess Federation) since1960 and by the FIDE
(Fédération Internationale desÉchecs) since1970. In Table V
we show the classification of the USCF.
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