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Abstract— In this paper, we present an ant system algorithm
variant designed to solve the job shop scheduling problem. The
proposed approach is based on a recent biological study which
showed that natural ants can count their steps when they build
the path between the nest and their food source. Experiments
using a set of well-known job shop scheduling problems and
a comparison against state-of-the-art techniques show that
the proposed approach can reduce the number of evaluations
performed without a degradation of performance. Additionally,
our proposed approach reduces the number of parameters
that need to be tuned by the user (specifically the parameters
that balance the importance between the pheromone trail
and heuristic values), with respect to the original ant system
algorithm.

I. INTRODUCTION

Ant Colony Optimization (ACO) is a metaheuristic in-
spired by the foraging behavior of ants, which has been used
to solve combinatorial optimization problems and the Ant
System (AS) was the first algorithm within this class, which
was developed by Dorigo [1]. In this paper, a variant of the
AS algorithm is presented to solve the Job Shop Scheduling
Problem (JSSP).

In the classical JSSP, a finite number of jobs are to be
processed by a finite number of machines. Each job consists
of a predetermined sequence of operations, which will be
processed without interruptions by a period of time in each
machine. The operations that correspond to the same job will
be processed according to their technological sequence and
none of them will be able to begin its processing before
the precedent operation has finished. A feasible schedule is
an assignment of operations in time on a machine without
violation of the job shop constraints. A makespan is defined
as the maximum completion time of all jobs. The objective
of JSSP is to find a schedule that minimizes the makespan.
In Complexity Theory, the JSSP is classified as an NP-hard
combinatorial optimization problem [2].

ACO is modelled after the communication principles and
cooperative work of real ants, which was inspired by the
study of Argentinean ants done by Goss et al. [3]. Basically,
an ACO algorithm has three procedures [4]:

1) ConstructAntsSolutions: It manages the colony of ants,
building paths in a construction graph (graph that
represents the problem) and moving ants from one
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node to another by applying local stochastic decisions
considering the pheromone trail and heuristic informa-
tion available.

2) UpdatePheromones: It is the process by which the
pheromone trails are modified.

3) DeamonActions: This procedure is used to implement
centralized actions which cannot be performed by
single ants; for example, the activation of a local search
optimization procedure.

The ACO metaheuristic has been applied to diverse hard
combinatorial optimization problems. In the scheduling field,
ACO has been applied to flow shop problems [5], to the
travelling salesperson problem [6] and to the vehicle routing
problem [7]. However, very few papers report work on ACO
implementations for the JSSP. To the authors’ best knowl-
edge, Colorni et al. [8] were the first to apply an AS to the
JSSP. Although the results reported in this early paper were
not satisfactory, some other works in the same field were
developed later on. Sjoerd van der Zwaan et al. [9] developed
an ACO for JSSP in which a genetic algorithm was adopted
for fine-tuning the parameters of an ACO approach. More
recently, Blum et al. [10] have investigated the application
of ACO to shop scheduling problems including the JSSP.

This paper shows a variant of the AS algorithm to solve
the JSSP. Our method is based on a new study of natural ants
that showed that ants can count their steps when walking on
the path from the nest to the food source. Knowing that the
measure of time in the JSSP is discrete, we can map it to
the number of steps of an ant when walking. In this way, the
starting time at which an ant has to begin walking can be
computed sooner, introducing a form of heuristic knowledge
to our approach.

The remainder of this paper is organized as follows.
Section II introduces a formal description of the JSSP and
Section III provides a description of the basic Ant System
algorithm. Our AS variant is described in detail in Section IV.
In Section V, we present our experimental results using
benchmark problems and we compare them with respect to
other state-of-the-art algorithms. Finally, in Section VI our
conclusions and future work are established.

II. JOB SHOP SCHEDULING PROBLEM (JSSP)

In our study, we adopted the classic JSSP, which is
composed of n-jobs and m-machines and it is denoted by
n/m/T /Cmax, where the parameter n represents the number
of jobs, m is the number of machines, T is the technological
sequence of the jobs in each machine, and Cmax indicates
the performance measure which should be minimized (i.e.,



maximum time taken to complete all jobs). An instance of
the JSSP can be represented by a matrix as it is shown in
Table I.

TABLE I

AN INSTANCE 3 × 3 OF THE JSSP.

job machine (time)

1 1(3) 2(3) 3(3)

2 1(2) 3(3) 2(4)

3 2(3) 1(2) 3(1)

In the example of Table I, we have 3 jobs, 3 machines
and a technological sequence represented in each row of the
jobs. In the case of job 1 in Table I, we can see that it
should be processed in machine 1 first with a processing
time of 3 (in the matrix, this time is represented between
parentheses). After that, this job 1 is processed in machine 2
with processing time of 3 and finishes in machine 3 with a
processing time of 3. This description is called technological
sequence of job 1. When a job i is processed in a machine
j, it is called as “operation (i,j)”.

To apply the AS algorithm for JSSP we will use the graph
representation G = (V, C

⋃
D) described in [11] where:

• V is a set of nodes representing operations of the jobs
together with two special nodes: a start (0) node and an
end (*) node, representing the beginning and the end of
the schedule, respectively.

• C is a set of conjunctive arcs representing technological
sequences of the operations.

• D is a set of disjunctive arcs representing pairs of oper-
ations which must be processed on the same machine.

Figure 1 shows the corresponding graph for the instance
of the JSSP described in Table I, whose nodes represent
each operation (i, j) where i is the current job and j its
corresponding machine (except for the nodes marked with
(0) and (*) because they indicate the start and end of the
graph). The processing time of each operation is denoted by
tij on each node. The conjunctive arcs give the technological
sequence connecting all operations of the same job and
disjunctive arcs indicate pairs of operations in the same
machine.

III. ANT SYSTEM (AS)

In this section, we describe the operation of the classical
AS for the JSSP proposed in [8], in which a population of m
artificial ants builds solutions by iteratively applying n times
a probabilistic decision policy until obtaining a solution for
the problem. In order to communicate the individual search
experience to the colony, the ants mark the corresponding
paths with some amount of pheromone according to the type
of solutions found. This amount is inversely proportional to
the cost of the path generated (i.e., if the path found is long,
the amount of pheromone deposited is low; otherwise, the
amount of pheromone deposited is high). Therefore, in the
following iterations more ants will be attracted to the most
promising paths. Besides the pheromone, the ants are guided

Fig. 1. A graph of a 3 × 3 JSSP.

by a heuristic value in order to help them in the construction
process. All the decisions taken by the ant (the path found
or solution), are stored in a tabu list (TL).

As it was indicated above, to apply the AS algorithm,
the instance of the problem must be first constructed in
a graphical representation G. The AS starts with a small
amount of pheromone c along each edge on G. Each ant is
then assigned a starting position, which is added to its tabu
list. The initial ant position is usually chosen at random.
Once the initialization phase is completed, each ant will
independently construct a solution by using equation (1)
at each decision point until a complete solution has been
found. After every ant’s tabu list is full, the cost Cmax of
the obtained solution is calculated. The pheromone amount
along each edge (i,j) is calculated according to equation (2).
Finally, all tabu lists are emptied. If the stopping criterion
has not been reached, the algorithm will continue with a
new iteration.

The decision of each ant is based, not only the amount
of pheromone τij , located along edge (i,j), but also on the
heuristic value ηij along this edge. The transition probability
to move from node i to node j for the kth ant at iteration t
is defined as:

P k
ij =

{
[τij(t)]

α×[ηij ]
β

P
j /∈T Lk

[τij(t)]α×[ηij ]β
, if j /∈ TLk

0 if j ∈ TLk

(1)

where α and β are parameters which allow the user to
balance the importance given to the heuristic (parameter β)
with respect to the pheromone trails (parameter α). Setting
β = 0 will result in only considering the pheromone
information in the ant’s decision, whereas if α = 0, only
the heuristic information will be used for the ant.

The pheromone trail levels to be used in the next iteration
of the algorithm are given by the formula:

τij(t + 1) = ρ × τij(t) + ∆τij (2)

where ρ is a coefficient, such that (1− ρ) can be interpreted
as a trail evaporation coefficient; that is, (1 − ρ) × τij(t)



represents the amount of trail which evaporates on each edge
(i,j) in the period between iteration t and t + 1.

The total amount of pheromone laid by the m ants ∆τij ,
is calculated by:

∆τij =
m∑

k=1

∆τk
ij (3)

where ∆τk
ij is calculated as:

∆τk
ij =

{
Q

Ck
max

if the k ant travels along edge (i, j)
0

(4)
where Q is a positive real valued constant and Cmax is the
cost of the solution of the kth ant, while Q/Ck

max gives the
quantity of pheromone per unit of time.

It is important to note that pheromone evaporation causes
the amount of pheromone on each edge of G to decrease
over time. The evaporation process is important because it
prevents AS from prematurely converging to a sub-optimal
solution. In this way, the AS has the capability of forgetting
bad (or even partially good) solutions, which favors a more
in-depth exploration of the search space.

IV. OUR PROPOSED APPROACH

In this section, we present the recent scientific findings
that served as our inspiration to modify the AS algorithm
for solving the JSSP, together with the description of our
proposed approach.

A. Recent findings about real ants

For many years, the “intelligent behavior” of some insects
has attracted the attention of researchers. In the case of ants,
scientists have questioned how can these insects find the
shortest path between the food source and the nest. If we
observe desert ants on foraging expeditions where the ground
is changing all the time, then, one wonders, how can they
remember the right path to follow.

A variety of theories have been proposed to explain this ant
behavior. For example, that ants use celestial cues to remain
oriented in their path to the nest. Other theory states that ants
can remember visual cues such as honeybeeps. Additionaly,
some experiments have shown that ants can navigate in the
dark despite the fact of being almost blind [12]. Other studies
have shown that once ants find a good source of food, they
teach other ants how to find it [12].

A recent study published in Science [13] reveals that
counting their steps is a crucial part of the scheme nest-
food-nest adopted by ants. Scientists trained desert ants
(cataglyphis fortis), to walk along a straight path from their
nest entrance to a feeder 30 feet away. If the nest or feeder
was moved, the ants would break from their straight path
after reaching the anticipated spot and search for their goal
(i.e., they could reach either the nest or the feeder without
problems, even if they were moved).

After that, the scientists glued stilt-like extensions to the
legs of some ants to lengthen stride. On the other hand, the

researchers shortened other ants’ stride length by cutting off
their feet and lower legs. As a result, the ants had reduced
legs. By manipulating the ants’ stride lengths, the researchers
could determine whether the insects were using an odometer-
like mechanism to measure the distance, or counting off
steps with an internal pedometer. The ants on stilts took the
right number of steps but the objective was left behind of
them. Meanwhile, the ants with short legs never reached it.
After getting used to their new legs, the ants were able to
adjust their pedometer and succeeded at reaching their goal.
Thus, the study concluded that ants count their steps using
an internal pedometer.

B. Ant System with steps counter

Based on the observations previously described and know-
ing that time measurement in JSSP is discrete (such as
the number of steps made by an ant), we propose here an
AS algorithm with a step counter (pedometer) where η in
equation (1) will be called feasibility and it represents the
readiness of an ant to continue its journey without losing time
standing by. Additionally, two mechanisms were included to
the method in order to extend the search.

The procedure consists of three phases that we will explain
next:

Phase 1) Assign priority rule: For driving the search, the
ants must select an operation when building a solution. To
do so, they use a heuristic value that in case of JSSP can
be a priority rule. This rule indicates the relative importance
of each operation. Many rules have been proposed in the
specialized literature, but none of them is considered the best
overall winner, and authors tend to adopt several rules in the
AS implementations [8]. In our aproach we incorporated two
rules:

LPT: Select the operation with the longest processing
time.

SPT: Select the operation with the shortest processing
time.

Before starting to build the solution, each ant randomly
chooses a priority rule using a probability of 50% at each
iteration. The priority rule of each ant is used for calculating
the feasibility. This calculation is explained and used in phase
three, since in this phase only the priority rule is assigned.

Phase 2) Assign α and β values: As we explained in
Section III, α and β are parameters used to balance the
importance given to the heuristic and the pheromone trail,
respectively. These parameters need to be adjusted by the
user in the classical AS. In our case, these parameters are
assigned at each iteration using the following expressions:

α = rndreal (0.01, 0.99)

β = 1.0 − α

We adopted values within the range from 0.01 to 0.99 in
order to guarantee that α and β never reach either zero
percent or one hundred percent. This provides a more fair
balance, and avoids losing completely the influence of any
of these two parameters.



Phase 3) Steps Counter (SC): For explaining this phase,
we will use the instance of the problem described in Table I.
As typically done in the classical AS, the first operation is
allocated at random for ant k. We will assume that the ant k
starts moving towards operation (3, 2). In its new position,
the ant k determines the set S of possible operations that
can be processed later. In our case, the operations are S =
{(1, 1), (2, 1), (3, 1)} (see Figure 2). All these operations
from S need to be processed in machine 1.

Fig. 2. Set S of possible operations for ant k.

In order to continue with the solution to the problem, it
is now necessary to know the starting time for each of the
operations in S. The starting time is the number of steps
that the ant k needs to give for initiating the operation; thus,
it is our “steps counter”, which we call SC. This value is
computed based on the following criteria:

• The resource to be used as well as the time at which the
operation can start, are taken into account, according to
the current path generated by the ant.

• The constraint to start imposed by the previous opera-
tion.

• If there exists at least one operation in the set S with
starting time equal to zero, then, a value of 1 must be
added to all the starting times.

We can observe that the starting time for the operations
(1, 1) and (2, 1) is zero, that is SC1,1 = 0 and SC2,1 = 0
(see Figures 3a and 3b). For the operation (3, 1) the closest
starting time is 3, due to the fact that its previous operation
will end until time 3, that is SC3,1 = 3 (see Figure 3c). Now,
using the SC, if ant k selects operations (1, 1) or (2, 1), then,
it will save three steps if it selects operation (3, 1) afterwards.

If there is at least one operation with an steps counter
value equal to 0 (zero), the value of 1 (one) will be added
to the steps counter of all operations; otherwise, the steps
counter remains without change. Table II shows a summary
of the calculation of the SC, where OP is the operation
(i, j), PTij is the processing time of operation (i, j), SCij

is the steps counter of operation (i, j) and SCij + 1 is an
extra value that is computed if there is at least an operation
with steps counter equal to zero.

To conclude phase 3, we need to compute the feasibility
η. For that sake, we need to apply one equation according to
the priority rule selected in phase 1. The equations for the
calculation of η are the following:

a) The earliest time at which operation (1, 1) can start (or ant k can start to walk).

b) The earliest time at which operation (2, 1) can start (or ant k can start to walk).

c) The earliest time at which operation (3, 1) can start (or ant k can start to walk).

Fig. 3. Gantt diagrams of the earliest starting times for the operations: a)
(1, 1), b) (2, 1) and c) (3, 1), corresponding to the instance described in
Table I.

TABLE II

STEPS COUNTER.

OP PTij SCij SCij + 1

(1,1) 3 0 1

(2,1) 2 0 1

(3,1) 2 3 4

if the priority rule is LPT:

ηij =
Q

SCij
× PTij

otherwise:
ηij =

Q

SCij
× 1

PTij

where Q is a positive constant which can take any positive
value.

Continuing with the example, we assume that the rule is
LPT and Q = 1 for ant k. Thus, the calculation can be seen
in Table III.

TABLE III

CALCULATION OF THE FEASIBILITY η.

OP PTij SCij SCij + 1 ηij

(1,1) 3 0 1 3

(2,1) 2 0 1 2

(3,1) 2 3 4 0.5

Using the aforementioned procedure, we can know the
readiness with which ant k can start walking and it is also
possible to know the number of steps the ant k is saving as
a result of choosing a particular operation.



Now, we use η to complete the calculation in equation (1).
For example, assuming α = 0.5, β = 0.5 and τij = 1, we can
observe that those operations with a high value of readiness
will also have a higher probability of being processed (see
Table IV).

TABLE IV

CALCULATION OF pij

OP PTij SCij SCij + 1 ηij τij τα
ijηβ

ij pij

(1,1) 3 0 1 3 1 1.73 0.45

(2,1) 2 0 1 2 1 1.41 0.37

(3,1) 2 3 4 0.5 1 0.70 0.18

The pheromone updating process is similar to the one used
in the classical AS, as previously described in Section III
(this process is executed at each iteration of the algorithm).
This way, phases 1 and 2 help to extend the search generating
more diversity while the phase 3 (using the steps counter)
allows an ant to select the most suitable operation according
to the solutions produced so far. We called this proposed ap-
proach “Ant System with steps counter”, which we abbreviate
as “ASsc”. Figure 4 shows the pseudocode of our proposed
approach.

PROCEDURE ASsc

WHILE termination criteria
FOR k = 0 TO ANTS

Phase 1:
Select a priority rule for ant k

Phase 2:
Assign values α and β for ant k

Phase 3:
Set first operation in tabu of ant k
REPEAT UP to filling tabu of ant k

Determine set S and SCij

Determine η
Select next operation using equation (1)
Move ant k to the next operation

END FOR
Update pheromone

END WHILE
END PROCEDURE

Fig. 4. AS with steps counter ASsc.

V. EXPERIMENTS AND COMPARISON OF RESULTS

We present in this section the results obtained by our
proposed ASsc, which was tested using a set of well-known
JSSP instances found in the OR-Library [14]. The OR-
Library contains different types of problems with different
sizes and degrees of difficulty. They are grouped in classes.
For our experiments, we adopted the LA class because it
is composed of 40 different instances (with different sizes
and degrees of difficulty). All our tests were executed on a
PC with an Intel Pentium III processor running at 2.00 GHz
with 512 MB of RAM and using Microsoft Windows XP OS
Professional Edition. Our algorithm was implemented in the
C programming language and was compiled using Dev C.

The parameters used in our experiments are the following:
ρ = 0.7 and 1000 iterations. These values were empirically

derived. It is worth remarking that only 2 parameters must
be tuned in our ASsc, compared with the typical AS. We
performed 10 independent runs for each test problem and
the number of ants in each test was defined as follows:

ANTS =
∑J−1

i=0 ji

2
where J is the total number of jobs for each instance.

We compared the results obtained by ASsc with respect to
those provided by other algorithms found in the specialized
literature for which enough information is provided as to
allow a more quantitative comparison (i.e., both the best so-
lution found and the number of evaluations required to reach
it). For our comparison of results we used two measures:
the quality of the best solution found and the number of
evaluations of the objective function. The algorithms selected
for the comparative study are the following:

• Artificial Immune System (AIS): This is an algo-
rithm based on the operation of our immune system,
whose results, reported in [15] were very competitive
with respect to those provided by a Parallel Genetic
Algorithm (PGA) [16], the Hybrid Genetic Algorithm
(HGA) [17] and the Greedy Randomized Adaptative
Search Procedure (GRASP) [18].

• Cultural Algorithm (CULT): This is an algorithm
based on social and archaeological theories which try to
model cultural evolution. In [19], a cultural algorithm
was successfully applied to the JSSP. This approach
was selected for comparing results because it requires
a low number of evaluations of the objective function
with respect to the number used by a Parallel Genetic
Algorithm (PGA) [16] and the Greedy Randomized
Adaptative Search Procedure (GRASP) [18].

• Tabu Search (TS): This is a metaheuristic which
adopts memory in order to avoid recycling and getting
trapped in local optima. TS is mainly used to solve
combinatorial optimization problems. To the best of our
knowledge, TS has obtained the best results reported
so far for the JSSP [20]. However, it is important to
note that TS requires the use of another heuristic (called
INSA) to generate the initial solution to be improved by
TS. The computational cost consumed by INSA is not
reported by its authors in [20].

It is worth noting that, unlike the other approaches with
respect to which we compared results, we did not apply
any repair mechanism to improve the solutions obtained.
Evidently, the use of such repair mechanisms add a com-
putational overhead to the search process (e.g., when using
permissible left shifts [15]).

Also, it is important to indicate that we did not compare
results with respect to other ACO algorithms that have been
proposed for the JSSP, due to the lack of results that can be
directly comparable. For example, in [8], only five instances
are used, and the best known value is not reached in any of
them. In [10], the authors only present results with respect
to a single instance. In [21], a real-world JSSP is adopted,



but no results are reported for a benchmark such as the one
adopted here.

1) Quality of solutions: Table V shows the results ob-
tained by our ASsc. The first column indicates the name of
the instance. The second column indicates the size of each
instance and the third column shows the best known solution
(BKS). The last three columns show the best, medium and
worst solutions obtained by our approach, respectively. We
shown in boldface the best known solution per instance and
also the solutions in which our algorithm reached such value.
As we can observe in Table V, for problems with size 10 ×
5, our ASsc does not have difficulties to find the best known
result, with the exception of problem LA04, where our best
result is very close to the corresponding best known value
(i.e., the difference is of 5 units). Our approach exhibits a
similar behavior for most of the problems, despite the fact
that the problem sizes grow. For example, in problems of
sizes 15 × 5 and 20 × 5, our ASsc reaches the best known
solution in 3 out of 5 problems.

The comparison of results of our ASsc with respect to
state-of-the-art approaches is presented in Table VI, where
Cmax is the makespan obtained at each instance and #Eval
is the number of evaluations of the objective function per-
formed (except for #Eval in the case of INSA, since this
value is not reported by their authors [20]).

From these results, we noted that, for problems with 5
machines (LA01, LA02, LA03, LA04 and LA05 of size 10
× 5, LA06, LA07, LA08, LA09, LA10 of size 15 × 5 and
LA11, LA12, LA13, LA14 and LA15 of size 20 × 5), the
performance of ASsc is quite similar to those provided by
the other three compared approaches (AIS, CULT and TS).
For problems with 10 machines (LA16, LA17, LA18, LA19
and LA20 of size 10 × 10, LA21, LA22, LA23, LA24,
and LA25 of size 15 × 10, LA26, LA27, LA28, LA29,
and LA30 of size 20 × 10 and LA31, LA32, LA33, LA34,
and LA35 of size 30 × 10) ASsc provided results close to
those obtained by AIS, CULT and TS. However, for problems
LA36, LA37, LA38, LA39 and LA40 of size 15 × 15 our
ASsc could obtain competitive results in 3 of 5 problems, like
TS, outperforming AIS and CULT. Summarizing, TS reaches
the best known values 85% of the time, CULT reaches the
best known values 63% of the time, AIS reaches the best
known values 68% of the time, and our ASsc reaches the best
known values 55% of the time. However, it is worth noting,
that the maximum deviation from the best known value is
of 3% for our ASsc, and it only occurs in one instance. For
all the others, the maximum deviation from the best known
value is of less than 1%. However, as we will discuss next,
our approach requires a much lower number of evaluations
than the others to reach these results.

2) Number of evaluations of the objective function: In
Table VI, we show with boldface in column #Eval the min-
imum number of evaluations of the objective function used
by ASsc, AIS, and CULT. TS only reports the evaluations
made after INSA provided the initial solution. In fact, this
initial solution may be very good, like in problems LA01

TABLE V

RESULTS OBTAINED BY OUR PROPOSED ASsc .

Instance Size BKS Best Median Worst

LA01 10 × 5 666 666 666 666

LA02 10 × 5 655 655 655 655

LA03 10 × 5 597 597 597 597

LA04 10 × 5 590 595 595 597

LA05 10 × 5 593 593 593 593

LA06 15 × 5 926 928 928 943

LA07 15 × 5 890 890 890 890

LA08 15 × 5 863 863 870 872

LA09 15 × 5 951 951 951 978

LA10 15 × 5 958 965 970 970

LA11 20 × 5 1222 1222 1222 1235

LA12 20 × 5 1039 1040 1040 1045

LA13 20 × 5 1150 1150 1150 1150

LA14 20 × 5 1292 1292 1292 1301

LA15 20 × 5 1207 1210 1210 1212

LA16 10 × 10 945 946 970 971

LA17 10 × 10 784 784 784 784

LA18 10 × 10 848 855 855 872

LA19 10 × 10 842 842 842 856

LA20 10 × 10 902 908 908 908

LA21 15 × 10 1046 1055 1060 1060

LA22 15 × 10 927 927 927 930

LA23 15 × 10 1032 1047 1047 1060

LA24 15 × 10 935 941 941 943

LA25 15 × 10 977 977 977 980

LA26 20 × 10 1218 1218 1218 1220

LA27 20 × 10 1235 1240 1240 1260

LA28 20 × 10 1216 1216 1216 1218

LA29 20 × 10 1157 1164 1164 1170

LA30 20 × 10 1355 1355 1355 1360

LA31 30 × 10 1784 1791 1791 1844

LA32 30 × 10 1850 1850 1850 1912

LA33 30 × 10 1719 1754 1754 1772

LA34 30 × 10 1721 1721 1721 1841

LA35 30 × 10 1888 1941 1973 1984

LA36 15 × 15 1268 1270 1270 1355

LA37 15 × 15 1397 1406 1406 1450

LA38 15 × 15 1196 1196 1196 1198

LA39 15 × 15 1233 1233 1233 1236

LA40 15 × 15 1222 1222 1222 1222

or LA09, where TS reports zero evaluations of the objective
function, because the best solution was reached by the only
use of INSA.

As was mentioned before, AIS, CULT and TS reported re-
sults slightly better than those provided by ASsc in problems
of size 10 × 10, 15 × 10, 20 × 10 and 30 × 10. However,
the corresponding number of evaluations for the first three
approaches is clearly higher. For problems of size 15 × 15,
our proposed ASsc provided very competitive results with
a clearly lower computational cost, compared with AIS and
CULT. TS, in these problems, required more evaluations than
ASsc simply to improve an initial solution provided by INSA
so that it could reach similar results with respect to our ASsc.
If we look at Table VII, the significant savings achieved
by our approach (in terms of the number of evaluations



performed) becomes evident. For example, the AIS approach
performs, on average, 49 times more evaluations than our
ASsc. Analogously, CULT performs, on average, 127 times
more evaluations than our ASsc. Even TS performs, on
average, 3 times more evaluations than our ASsc, and this
cost does not include the number of evaluations performed
by INSA, since, as indicated before, that value is not reported
in [20]. Thus, we argue that our proposed approach is a good
alternative to obtain a good approximation of the optimum
of JSSP, with a low number of evaluations of the objective
function.

TABLE VII

THE AVERAGE NUMBER OF EVALUATIONS PERFORMED BY EACH ONE OF

COMPARED ALGORITHMS.

Algorithm Average of #Eval Difference of #Eval with AScp

AScp 3,564 0

AIS 175,058 171,494

CULT 454,525 450,961

TS 11,108 7,544

VI. CONCLUSIONS AND FUTURE WORK

We have presented a variant of the classical Ant System to
solve the JSSP. The proposed approach adds a mechanism,
which is based on recent scientific studies with real ants. The
key feature that we adopted was the counting of steps that
real ants seem to perform when constructing a path between
their nest and their food source. Our proposed approach uses
three phases to calculate the most convenient operation to be
performed, according to the schedule encoded in each ant,
and this information is used to calculate the readiness of each
operation.

We have shown in the paper that our approach was able
to reach very competitive results (in terms of the quality of
the solutions obtained), but requiring an average number of
evaluations that is much lower than that required by the other
approaches compared. Thus, we argue that our proposed
approach is a viable alternative to obtain reasonably good
approximations of the optimum in JSSP, when it is important
to perform a low number of objective function evaluations.
Additionally, our proposed approach reduces the number
of parameters to be fine-tuned by the user with respect to
those adopted in the classical AS. In our approach, we only
require three parameters (ρ, number of ants and number of
iterations), while the classical AS [8] requires five parameters
(α, β, ρ, number of ants and number of iterations).

Although we are aware of the existence of more advanced
ACO algorithms [4], we decided to adopt the original AS,
mainly because of its simplicity. By using the original AS, we
only had to perform relatively small changes to incorporate
the mechanisms that we wanted to experiment with. Despite
the relative simplicity of the search engine adopted, we
believe that our results in the JSSP are very encouraging.
Evidently, as part of our future work, we are interested
in adopting state-of-the-art ACO algorithms as our search

engine, to see if our results can improve, particularly in
terms of the quality of the solutions obtained. We are also
interested in exploring alternative mechanisms to manipulate
the pheromone values and in studying mechanisms that allow
the online adaptation of ρ and the number of iterations
to be performed. We also plan to test our technique with
other scheduling problems (e.g., flow shop problems) and
we aim to include multiobjective problems as well [22], [23].
Additionally, the validation of our approach in more complex
JSSP instances (including perhaps real-world instances) is
also one of our future goals.
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A. Martinoli, R. Poli, and T. Stützle, Eds. Springer. Lecture Notes
in Computer Science Vol. 4150, September 2006, pp. 484–491.

[22] V. T’kindt and J.-C. Billaut, Multicriteria Scheduling. Theory, Models
and Algorithms. Berlin: Springer, 2002, iSBN 3-540-43617-0.

[23] I. Kacem, S. Hammadi, and P. Borne, “Pareto-optimality approach for
flexible job-shop scheduling problems: hybridization of evolutionary
algorithms and fuzzy logic,” Mathematics and Computers in Simula-
tion, vol. 60, no. 3-5, pp. 245–276, September 2002.


