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Abstract. This paper presents the Efficient Multi-Objective Particle
Swarm Optimizer (EMOPSO), which is an improved version of a multi-
objective evolutionary algorithm (MOEA) previously proposed by the
authors. Throughout the paper, we provide several details of the de-
sign process that led us to EMOPSO. The main issues discussed are:
the mechanism to maintain a set of well-distributed nondominated so-
lutions, the turbulence operator that avoids premature convergence, the
constraint-handling scheme, and the study of parameters that led us to
propose a self-adaptation mechanism. The final algorithm is able to pro-
duce reasonably good approximations of the Pareto front of problems
with up to 30 decision variables, while performing only 2,000 fitness
function evaluations. As far as we know, this is the lowest number of
evaluations reported so far for any multi-objective particle swarm opti-
mizer. Our results are compared with respect to the NSGA-II in 12 test
functions taken from the specialized literature.

1 Introduction

Particle swarm optimization (PSO) has been found to be a very effective engine
for multi-objective optimization, and several multi-objective particle swarm op-
timizers (MOPSOs) have been proposed in the last few years [1]. Nevertheless,
very few researchers have studied the basic mechanisms of a MOPSO, aiming to
design a more efficient search engine, which achieves competitive performance at
a low number of objective function evaluations (see for example [2, 3]). This pa-
per reports a detailed study of a MOPSO previously proposed by the authors in
[4]. Such study led us to propose new mechanisms that produced a new MOPSO
that only performs 2,000 fitness function evaluations, while solving test problems
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noloǵıas de la Información, Carretera a Monterrey Km. 6, Cd. Victoria, Tamps 87261,
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of up to 30 decision variables. To the best of the authors’ knowledge, this is the
lowest number of fitness function evaluations ever reported for any MOPSO in
the specialized literature. Our results are compared with respect to the NSGA-II
[5], which is a multi-objective evolutionary algorithm (MOEA) representative of
the state-of-the-art in the area.

2 Towards an Efficient MOPSO

In [4], we proposed the use of clustering techniques to improve the performance
of a MOPSO. In order to improve the performance of our original algorithm, we
performed several modifications to it. As a first step, we incorporated a mecha-
nism to distribute the nondominated solutions obtained by the algorithm. Next,
we used a turbulence operator, in order to avoid premature convergence. After
that, and in order to maximize the subswarms performance, we performed an ex-
periment to fix the number of subswarms to be adopted.Then, we incorporated
a mechanism to handle constraints. Finally, we performed an empirical study
of the influence of the C1, C2 and W parameters, and we proposed a simple
methodology to self-adapt these parameters. Each of these componentes will be
briefly described in the following subsections.

2.1 Handling well-distributed solutions

The MOPSO proposed in [4] does not impose a bound on the total number of
nondominated solutions that it can store. This makes it difficult for the decision
maker to choose one of them and also complicates the definition of a baseline
to perform fair comparisons with respect to other MOEAs. Researchers have
proposed several mechanisms to reduce the nondominated solutions generated
by a MOEA (most of them applicable to external archives): clusters [6], adaptive
grids [7], crowding [5] and relaxed forms of Pareto dominance [8]. In our case,
we implemented two mechanisms: (1) an adaptive grid and (2) a relaxed form
of Pareto dominance (ε-dominance). These two mechanisms are described next:

– Adaptive Grid: Proposed by Knowles & Corne [7], the adaptive grid is
really a space formed by hypercubes. Such hypercubes have as many compo-
nents as objective functions has the problem to be solved. Each hypercube
can be interpreted as a geographical region that contains an n number of
individuals. The adaptive grid allows us to store nondominated solutions and
to redistribute them when its maximum capacity is reached.

– ǫ-dominance: This is a relaxed form of dominance proposed by Laumanns
et al. [8]. The so-called ε-Pareto set is an archiving strategy that maintains
a subset of generated solutions. It guarantees convergence and diversity ac-
cording to well-defined criteria, namely the value of the ε parameter, which
defines the resolution of the grid to be adopted for the secondary population.
The general idea of this mechanism is to divide objective function space into
boxes of size ε. Each box can be interpreted as a geographical region that



contains a single solution. The approach accepts a new solution into the ε-
Pareto set if 1) it is the only solution in the box which it belongs to, 2) it
dominates other(s) solution(s) or 3) it competes against other nondominated
solution inside the box, but it is closer to the origin vertex of the box. This al-
gorithm is very attractive both from a theoretical and from a practical point
of view. However, in order to achieve the best performance, it is necessary to
provide the size of the box (the ε parameter) which is problem-dependent,
and it’s normally not known before executing a MOEA.

Additionally, we also propose a mechanism to distribute nondominated solu-
tions, which is called Hyper-plane distribution. The core idea of this proposal
is to perform a good distribution of the hyper-plane space defined by the minima
(assuming minimization) from the objectives, and use such distribution to se-
lect a representative subset from the whole set of nondominated solutions. The
algorithm works as follows: First, it requires as input, a set of nondominated
solutions and the quantity n of desirable final solutions. Then, the algorithm
selects those solutions which have the minima value on each objective. A hyper-
plane among all minima solutions is thus computed. Next, the algorithm divides
such space into n− 1 regions. Therefore, on the vertex of each region, a perpen-
dicular line to the hyper-plane is computed. Finally, the algorithm only accepts
those solutions which are closest to each line. This algorithm has a complexity
O(N2), because each individual is compared against everybody else with respect
to distance.

In Figure 1, we can see an example that aims to clarify the algorithm’s de-
scription. In this example, two objective functions are used. Five nondominated
solutions need to be selected. So, the hyper-plane (a line in this case) formed by
the minima of objective 1 and objective 2 is divided into 4 line segments. Then,
each vertex is projected towards the Pareto front. Finally, the solutions closest
to those projected points are selected.

A First Comparative Study The three approaches previously described to se-
lect the best distributed nondominated individuals were implemented and called
at each generation. Therefore, on each generation we will have the set of non-
dominated solutions with a bounded and well-distributed subset. The three al-
gorithms were requested to select 50 nondominated solutions each. The scheme
based on the ε-Pareto set needs an extra parameter (ε). This parameter was
computed in each test function as follows: the algorithm was executed using a
total number of iterations of 200. Then, the ε values were manually fine-tuned
to find an average of 40 nondominated solutions in each of the 30 executions.
Since the aim of this experiment was to observe if there was an approach which
performed best, we adopted the Inverted Generational Distance (IGD) metric
[9], as a way to estimate how far is the true Pareto front from the solutions
obtained. This measure is defined as:

GD =

√

∑

n

i=1 d2
i

n
(1)
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Fig. 1. Graphical representation of the hyper-plane distribution.

where n is the number of nondominated vectors found by the algorithm being
analyzed and di is the Euclidean distance (measured in objective space) between
each of these and the nearest member of the true Pareto front. It should be clear
that a value of GD = 0 indicates that all the elements generated are in the true
Pareto front of the problem. Therefore, any other value will indicate how “far”
we are from the global Pareto front of our problem. This metric, also, penalizes
when the solutions obtained do not cover completely the true Pareto front.

For this first study, we adopted 8 test functions taken from the specialized
literature: ZDT1, ZDT2, ZDT3, ZDT4, ZDT6 proposed by Zitzler et al. in
[10], Kursawe’s problem proposed in [11], and Deb and Deb2, proposed in
[12]. In Table 1, we can see that the adaptive grid was the worst choice, and that
the Hyper-plane Distribution outperformed the ε-Dominance approach mainly
because of its property of selecting a fixed number of solutions (while we can only
estimate the total number of solutions when using ε-dominance). Therefore, we
will use the Hyper-plane distribution in our MOPSO. Table 2 shows the average
of nondominated solutions found in the last generation by each approach. We can
see in this table, that ε-dominance was the algorithm that had more problems
to reach the target (40 nondominated solutions).

2.2 Avoiding Premature Convergence

Frans van den Bergh [13] discovered a potentially dangerous property in PSO: if
the position of the particles coincides with gbest, then it will move away from the



Approach
Function Adaptive-Grid ǫ-Dominance Hyper-plane Distribution

ZDT1 0.002855236 0.00149249 0.002029507
ZDT2 0.031790172 0.033058091 0.023006512

ZDT3 0.007237485 0.005816599 0.005786199

ZDT4 2.763645000 2.903810666 2.715304000

ZDT6 0.000224374 0.000186435 0.000197410

Kursawe 0.009648260 0.008716252 0.007975956

Deb 0.001454523 0.001606147 0.000475256

Deb2 0.00942435 0.009346694 0.009427080
Table 1. Comparison of results of three approaches to maintain a good distribution
of nondominated solutions (adaptive grid, ε-dominance and hyper-plane distribution)
with respect to the Inverted Generational Distance metric.

Approach
Function Adaptive-Grid ε-Dominance Hyper-plane Distribution

ZDT1 39 37 40
ZDT2 24 19 27
ZDT3 38 29 37
ZDT4 2 2 2
ZDT6 40 42 39
Kursawe 40 33 39
Deb 40 36 40
Deb2 39 34 37

Table 2. Comparison of the number of reported solutions at the end of the executions
by each of the three approaches.



gbest if the inertia or the current velocity is non-zero. This may lead to premature
convergence (i.e. all the particles will converge to the gbest particle, which is
usually a local minimum). To determine how often this behavior occurred in
our algorithm, we counted how many times a particle’s position was the same
than the gbest position in all the executions for all the test functions adopted.
In Table 3, we can see the results of this experiment. Frans van den Bergh
proposed a new parameter to address this issue, but his proposal is hard to
adopt in a multiobjective approach based on Pareto ranking, since we would
have to deal with several “best” solutions. Therefore, in [14], we proposed the
use of a turbulence operator. This turbulence operator consists of an alteration
to the flight velocity of a particle.1 This modification is performed in all the
dimensions (i.e., in all the decision variables), such that the particle can move to
a completely isolated region. The turbulence operator acts based on a probability
factor that considers the current generation and the total number of iterations to
be performed. The idea is to have a much higher probability to perturb the flight
of the particles at the beginning of the search, and decrease it as we progress in
the search. The turbulence can be seen as a mutation operator and it is based
on the following expression:

temp = current generation/total generations

probturbulence = temp1.7 − 2.0 × temp + 1.0 (2)

(3)

where temp is used as a temporary variable, current generation is the cur-
rent generation number, total generations is the total number of generations
and probturbulence refers to the probability of affecting the flight of a particle us-
ing the turbulence operator. The values used for this expression were empirically
derived after a set of experiments. The details of the experiments that led us to
this setup may be found in [2].

2.3 Maximizing the Spread

The appropriate selection of leaders is essential for the good performance of
a MOPSO. If the particle chooses an inappropriate leader (i.e., a leader who
is too far away in the search space) then most of the flight will be fruitless
because the particle will not be visiting promissory regions of the search space.
In [4], we proposed to use not one but several swarms to avoid this type of
problem (in order to make a difference between the use of the word swarm

from traditional PSO’s approaches, and the use of several swarms, from our
approach, we introduce the word subswarm, which means a set of particles that
has its own PSO’s behavior. The subswarms share information among them
by interchanging their leaders with certain probability). However, we did not
provide any statistical analysis related to the number of subswarms needed.

1 This mechanism is inspired on the one proposed in [15].



Thus, we proceeded to perform such an analysis. Table 4 summarizes the results
obtained, showing the mean of 30 independently executions of the algorithm
using 2,000 fitness function evaluations. Each execution was tuned to perform
2, 000 fitness function evaluations. We found that by using 8 subswarms, the
algorithm exhibited its best performance in 5 out of 8 test functions. We think,
that the use of this value can be beneficial most of the time. Therefore, we
adopted it as the default value for the number of subswarms. It is important to
note that this experiment was performed using 40 particles, which means that
each subswarm will have 5 particles. Because of the results, we suggest to use 8
subswarms as a fixed parameter in our algorithm.

Statistics Particle = GBest

Mean 104.81192
Best 2
Worst 729
St.dev. 110.59983
Median 74

Table 3. Statistical results obtained from the counting of the cases in which the particle
was equal to its gbest.

Subswarms (clusters)
Function 1 2 4 8 20

ZDT1 0.004820567 0.005645242 0.004388993 0.002853130 0.003191553
ZDT2 0.034759800 0.013606517 0.017762557 0.012582413 0.013187440
ZDT3 0.016337620 0.017927403 0.017630486 0.008787392 0.011176582
ZDT4 4.536191000 3.445736000 3.27696600 3.7399510000 3.762421666
ZDT6 0.003337423 0.000509384 0.000472352 0.000334933 0.000431701
Kursawe 0.069521400 0.04149130 0.043504603 0.0498330600 0.042813556
Deb 0.034178800 0.009745156 0.007927125 0.007114026 0.008663098
Deb2 0.009801385 0.009445994 0.00889158 0.008950303 0.009510023

Table 4. Results of the impact of the number of clusters on each test function, with
respect to Inverted Generational Distance metric.

2.4 A Constraint-Handling Mechanism

Since the approach proposed in [4] does not use any special mechanism to deal
with constrained search spaces, we incorporated the mechanism proposed in [14].
This approach does not require any user-defined parameters and it performs less
objective function evaluations than any of the other approaches with respect
to which it was compared, while obtaining similar results (see [14] for further
details).



2.5 Analyzing the Impact of the PSO’s Parameters

The PSO algorithm has three parameters that play a key role in the algorithm’s
behavior:

1. W: velocity inertia
2. C1: cognitive component
3. C2: social component

The fact that a MOEA converges to a set of solutions rather than to a single
value, makes it difficult to perform an statistical analysis such as the analysis of
variance, which can determine how sensitive is an algorithm to its parameters.
Nevertheless, we performed a very thorough analysis of parameters (similar to
an analysis of variance), with the aim of finding the best possible parameter con-
figuration for our approach (considering the set of test functions adopted). It is
worth indicating that the parameters settings that have been previously proposed
(see for example [16]) for the original (unconstrained single-objective) PSO, do
not provide a good performance in the context of multiobjective optimization
and therefore the motivation to perform the thorough analysis reported in [2].
In order to analyze the impact of the parameters on our proposed approach,
we considered several configurations, and performed an exhaustive analysis. The
configurations adopted are:

W = {0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0}
C1 = {1.0, 1.2, 1.4, 1.6, 1.8, 2.0, 2.2, 2.4, 2.6, 2.8, 3.0}
C2 = {1.0, 1.2, 1.4, 1.6, 1.8, 2.0, 2.2, 2.4, 2.6, 2.8, 3.0}

(4)

For all our experiments, we adopted 40 particles. However, we analyzed three
different performance scenarios:

1. Experiment 1: Use of a randomly generated initial population and a low
number of fitness function evaluations (we used Gmax = 25, which gives us
a total of 1000 fitness function evaluations).

2. Experiment 2: Use of a good approximation of the Pareto front in the
initial population. In all the experiments performed in this case, the same
approximation was fed to the algorithm in its initial generation. In this case,
we only performed 600 fitness function evaluation (Gmax = 15), since we
were interested in analyzing the capability (or possible difficulties) of our
algorithm to reach the true Pareto front of a problem once a good (and
sufficiently close) approximation had been produced.

3. Experiment 3: Use of a large number of fitness function evaluations (Gmax =
250, which gives a total of 10, 000 fitness function evaluations) in order to
assess the performance of our approach in the long term.

We adopted eleven test functions for Experiment 1 and Experiment 2.
Due to the high CPU time required by each run, we only adopted six test func-
tions for Experiment 3. Since we needed to assess performance in each case,
we chose the inverted generational distance metric, since it can measure both



closeness to the true Pareto front and spread of solutions. An obvious problem
with so many experiments was how to present the results in a compact form.
For that sake, we adopted a set of squares (called “mosaics”), such that each of
them has a gray scale that corresponds to the mean value of the inverted gen-
erational distance over 30 independent runs, produced from one combination of
{W,C1,C2} (all the possible combinations were adopted, considering the sets of
possible values previously defined for these three parameters). The mean results
were normalized between zero and 255 (where zero is the best possible value and
255 is the worst). The results of each of the three above experiments are briefly
discussed next, but the mosaics themselves could not be included due to space
restrictions; however, they can be found in [2].

Conclusions from the Second Series of Experiments After combining the
results from the three experiments, we concluded the following:

– The best range for C1 and C2 is from 1.2 to 2.0. From within this range, we
can say that C1=C2=1.4 provides the best overall performance.

– The best values for W are those less or equal to 0.5.
– Note, however, that the above values do not produce the best possible perfor-

mance in all cases (as expected, because of the No Free Lunch Theorem [17]).
This is precisely what motivated us to propose a mechanism to self-adapt the
parameters of our approach so that it automatically adjusts the parameters
according to the characteristics of the search space being explored.

2.6 Self-Adaptive Mechanism

The results obtained from the experiments reported in the previous subsection
led us to propose a self-adaptive mechanism which is described in this subsec-
tion. We proposed the use of a traditional proportional selection mechanism to
select the most appropriate combination of parameters values to be adopted.
We adopted roulette-wheel selection for that sake [18]. Rather than computing
fitness for each combination of values, we count the number of nondominated
solutions generated by each combination of values. Let’s assume that the param-
eter W can take 3 possible values: 0, 0.5, 1.0. So, at the beginning of the search,
each value has a 33% probability of occurring (see Figure 2 (a)). At generation
zero, each possible value has a “fitness” of one. Now, let’s assume that after
one generation, W = 0 generates 2 new nondominated solution, W = 0.5 gener-
ate 4 new nondominated solution and W = 1 did not contribute with any new
nondominated solution. Thus, we reward the “fitness” of W=0.5 by increasing
its value in 0.4 (we increase fitness in 0.1 for each new nondominated solution
produced). So, W = 0.5 now has a fitness of 1.4. Analogously, W = 0 has a
fitness of 1.2 and W = 1 remains with a fitness of 1.0. The new share in the
roulette wheel for each value is shown in Figure 2 (b). Since the total fitness is
now 3.6 (1.4 + 1.2 + 1.0), the share of each value is: W = 0.5 (1.4/3.6), W = 0
(1.2/3.6) and W = 1 (1.0/3.6). After generation two, W = 0.5 generated one



new nondominated solution, the same happened with W = 1.0 and W = 0 did
not produce any new nondominated solutions. So, W = 0.5 now has a fitness of
1.5, W = 1.0 has a fitness of 1.1 and W = 0 remains with a fitness of 1.2. Thus,
the total fitness is now 3.8, and we have the following: W = 0.5 has a share of
1.5/3.8, W = 1 has a share of 1.1/3.8 and W = 0 has a share of 1.2/3.8 (see
Figure 2 (c)).

First Generation Second Generation

Third Generation

A) B)

C)

Value: 0.0  Value: 0.5

Value: 1.0

Prob: 1/3 Prob: 1/3

Prob: 1/3

Prob:
1.2/3.6

Prob:
1.4/3.6

Prob:
1.2/3.8

Prob:
1.5/3.8

Prob: 1/3.6

Value: 1.0

Value: 0.0 Value: 0.5

Value: 0.0

Value: 1.0

Prob: 1.1/3.8

Value: 0.5

Fig. 2. Roulette wheel selection example at the a) first, b) second and c) third gener-
ation.

To validate our proposal, we compare it against two other parameter selection
mechanisms: a) deterministic selection and b) random selection.

Deterministic selection : C1, C2 and W are deterministically set to 1.4, 1.4
and 0.2, respectively (these values are the center of the region which per-
formed best from the experiments reported in the previous subsection).

Random selection : C1, C2 and W pick their values randomly from an interval
from 1.2 to 2 for C1 and C2 and from the range from 0.0 to 0.4 for W (this
is the range of values which performed best in the experiments reported in
the previous subsection).

The detailed results from this experiment can be seen in [2]. Although the
results of this study seem inconclusive, we argue that the use of a self-adaptive
mechanism for adjusting the parameters gives a better performance in a wider
range of functions, and avoids that the user has to setup the parameters of the
algorithm by hand. In this experiment, most of the time, the approach which



performed best for 25 generations, was also the best performer when adopting 50
and 250 generations. So, we argue, that the proposal to self-adapt the parameters
improved the overall performance of the algorithm. After introducing this last
component (i.e., the self-adaptive mechanism), the final version of our proposed
algorithm, which we call Efficient Multi-Objective Particle Swarm Optimizer
(EMOPSO) is shown in flowchart 3. This approach does not require any manual
fine-tuning of its PSO parameters.

3 Test Problems

Deb et al. [19] proposed a set of constrained multiobjective problems in which
the difficulty can be controlled by varying a set of parameters. In this study, we
use g(x) = 1 + x1 for the test problems CTP1 to CTP7, a1 = 0.858, b1 = 0.541,
a2 = 0.728, and b2 = 0.295 for CTP1 and the parameters shown in Table 5 for
CTP2 to CTP7.

Problem θ a b c d e constraints boundaries

CTP2 −0.2π 0.2 10.0 1.0 6.0 1.0 2 0 ≤ x1, x2 ≤ 1
CTP3 −0.2π 0.1 10.0 1.0 0.5 1.0 1 0 ≤ x1, x2 ≤ 1
CTP4 −0.2π 0.75 10.0 1.0 0.5 1.0 1 0 ≤ x1, x2 ≤ 1
CTP5 −0.2π 0.1 10.0 2.0 0.5 1.0 1 0 ≤ x1, x2 ≤ 1
CTP6 −0.1π 40.0 0.5 1.0 2.0 -2.0 1 0 ≤ x1 ≤ 1, 0 ≤ x2 ≤ 10
CTP7 −0.05π 40.0 0.5 1.0 2.0 -2.0 1 0 ≤ x1 ≤ 1, 0 ≤ x2 ≤ 10

Table 5. Parameters chosen for CTP2 to CTP7

4 Comparison of Results

In order to allow a quantitative assessment of results, we adopted the following
performance measures: Inverted Generational Distance [9], Two Set Coverage
[10] and the Spread metric [5]. We compare results with respect to the NSGA-II
using 12 standard test functions: 7 from the Constrained Test Problems (CTP1
to CTP7) proposed by Deb et al. [19], which were previously discussed; and 5
from the ZDTs test problems proposed by Zitzler et al. in [10]. The detailed
description of these 12 test functions was omitted due to space restrictions. The
CTPs problems all have 2 decision variables each, and the ZDTs functions are
unconstrained and have between 10 (ZDT4 and ZDT6) and 30 (ZDT1, ZDT2
and ZDT3) decision variables. ZDT5 is not included in our study because it
is a binary function, and we only adopted test functions in which the decision
variables are real numbers. In the following examples, the NSGA-II was run using
a population size of 40, a crossover rate of 0.9, tournament selection, a mutation
rate of 1/N , where N = number of variables (real numbers representation was



adopted), a distribution index of 15 for SBX, and a distribution index of 20 for
its parameter-based mutation operator. Our EMOPSO used 40 particles and a
total of 8 swarms. The total number of fitness function evaluations was set to
2, 000 for the two algorithms compared (50 generations).

IGD Set Coverage Spread

Function EMOPSO NSGA-II EMOPSO NSGA-II EMOPSO NSGA-II
Mean σ Mean σ Mean σ Mean σ Mean σ Mean σ

CTP1 0.0004 0.0001 0.0013 0.0014 0.0868 0.0393 0.2133 0.0657 0.1957 0.0104 0.2859 0.0386
CTP2 0.0014 0.0003 0.0094 0.0056 0.3208 0.0698 0.3266 0.0811 0.3932 0.0682 0.4210 0.0320
CTP3 0.0084 0.0016 0.0100 0.0035 0.5275 0.1788 0.6242 0.1223 0.5959 0.1253 0.6191 0.080
CTP4 0.0327 0.0163 0.0417 0.0121 0.1465 0.2039 0.7294 0.1814 0.7585 0.2583 0.9909 0.1401
CTP5 0.0060 0.0012 0.0102 0.0064 0.3933 0.1404 0.4808 0.1135 0.5126 0.1054 0.4925 0.0770
CTP6 0.002 0.0006 0.0096 0.0108 0.1113 0.0643 0.2041 0.0612 0.8679 0.0575 0.3067 0.0707
CTP7 0.0002 0.0006 0.0017 0.0027 0.0042 0.0132 0.0741 0.0480 0.7112 0.1874 0.9998 0.0633
ZDT1 0.0022 0.0001 0.0740 0.0177 0 0 1 0 0.0870 0.0164 0.5627 0.0756
ZDT2 0.0007 0.0003 0.1938 0.0632 0 0 1 0 0.0755 0.0980 0.7585 0.0757
ZDT3 0.0020 0.0005 0.061 0.011 0 0 1 0 0.5011 0.0290 0.7033 0.0609
ZDT4 8.1128 5.1184 5.5563 1.8295 0.0531 0.2018 0.4438 0.3703 0.9978 0.0081 0.9856 0.0128
ZDT6 0.0980 0.1191 0.6098 0.1447 0 0 1 0 0.4380 0.2798 0.8799 0.0775

Table 6. Comparison of results between our approach (EMOPSO) and the NSGA-II.

Table 6 shows that the results obtained by our EMOPSO were superior to
those generated by the NSGA-II. Our EMOPSO outperformed the NSGA-II in
all the test problems with respect to the set coverage metric, and in all but one
(ZDT4) with respect to the inverted generational distance metric. Regarding
spread, our approach outperformed the NSGA-II in most problems (except for
CTP5, CTP6 and ZDT4). Obviously, if allowed to perform a higher number
of fitness function evaluations, the NSGA-II would be able to converge to the
true Pareto front of most of these test functions, but our main purpose was to
show that our EMOPSO is a viable choice when dealing with objective functions
whose computational cost is very high (e.g., in aerospace engineering). Due to
space restrictions, the Pareto fronts obtained in each case are not included in
the paper.

5 Conclusions and Future Work

Our main conclusions are the following:

– We found that the use of subswarms promotes local search as an emergent
behavior in our EMOPSO. Consequently, the performance of our approach
was improved by the use of subswarms, particularly in the presence of dis-
connected Pareto fronts.

– We have proposed a mechanism called “hyper-plane distribution”, to dis-
tribute nondominated solutions.

– The use of a perturbation mechanism in our multiobjective particle swarm
optimizer was found to be critical to control its high selection pressure, as
to avoid premature convergence.



– In general, we found that it is quite difficult to find fixed values for the three
most significant parameters of our approach (W, C1 and C2). It is worth
indicating that the comprehensive study of parameters that we performed
is, as far as we know, the first of its type (in the context of multiobjective
particle swarm optimization). Based on the results of this study, we designed
a self-adaptive mechanism for these parameters, and we found this to be a
good alternative to facilitate the use of our approach.

Some possible paths to extend this work are the following:

– Experiment with other PSO’s models and with different interconnection
topologies.

– Study alternative methods for the survivor selection mechanism.
– Study alternative (perhaps more elaborate) constraint-handling mechanisms.
– Study alternative mechanisms to accelerate convergence while keeping the

same quality of results achieved by our EMOPSO.
– Study alternative mechanisms to distribute nondominated solutions.
– To assess the performance of our EMOPSO in a real-world problem in which

the cost of evaluating the objective functions is very high (computationally
speaking).
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Fig. 3. Flowchart of the proposed algorithm.


