
Assessing the Positional Values of Chess Pieces by Tuning
Neural Networks’ Weights with an Evolutionary Algorithm

Eduardo Vázquez-Fernández, Carlos A. Coello Coello and Feliú D. Sagols Troncoso

Abstract—Finding a method that can automatically set the
weights of the evaluation function of a chess engine is an
important research topic, since the use of manual settings
requires a significant amount of time and expertise, which are
not always available. The specialized literature reports several
works in which the weights of the positional values of the chess
pieces are evolved based on values stored in tables. Here, however,
we propose to use a neural network architecture to obtain the
positional values of the chess pieces based on specific features of
each position. The neural networks that we adopt for this sake
are relatively small and we argue that they constitute a robust
way of obtaining the positional values of the chess pieces. The
adjustment of weights of such neural networks was done through
the use of an evolutionary algorithm, producing an increaseof
433 points of the ranking of our chess engine (from1745 to 2178

points, reaching a value close to that of a chessmaster).

I. I NTRODUCTION

In 1947, Alan Turing [22] designed the first program to
play chess, and two years later, Claude Shannon [19] proposed
two different strategies to implement a chess program. The
first was the “Type A” strategy, which considered all possible
moves to a fixed depth of the search tree, and the second
was the “Type B” strategy, which used chess knowledge
to explore the most promising lines to a greater depth. In
the 1950s, chess programs could only play at a very basic
level, and by the end of the1960s, chess programs could
occasionally defeat amateur chess players. The development
of chess programs during the1970s was characterized by the
use of heuristics to choose the best moves in the search tree on
the fly, and more specialized hardware. In the mid-1980s, chess
programs based on microprocessors started to win tournaments
involving both human players and other chess programs based
on supercomputers. In the1990s, chess programs based on
personal computers began challenging grandmasters. In1997,
the IBM computerDeep Bluedefeated world chess champion
Garry Kasparov with a final score of3.5 to 2.5. Deep blue
was capable of evaluating200 million positions per second.

In general, the strength of a chess engine is determined
by the efficiency of the move generator, the depth reached
along the search tree and the function to evaluate positions.

Eduardo Vázquez-Fernández is with CINVESTAV-IPN (Evolutionary
Computation Group), Departamento de Computación, Av. IPNNo. 2508,
Col. San Pedro Zacatenco, México, D.F., 07360, MEXICO (email: ed-
uardovf@hotmail.com).

Carlos A. Coello Coello is with CINVESTAV-IPN (Evolutionary Compu-
tation Group), Departamento de Computación, Av. IPN 2508,Col. San Pedro
Zacatenco, México, D.F., 07360, MEXICO (email: ccoello@cs.cinvestav.mx).

Feliú D. Sagols Troncoso is with CINVESTAV-IPN, Departamento de
Matemáticas, Av. IPN No. 2508, Col. San Pedro Zacatenco, M´exico, D.F.,
07360, MEXICO (email: fsagols@math.cinvestav.edu.mx).

Probably the last component is the most important one. In this
work, we compute the positional values of the pieces through
unsupervised neural networks whose weights are adjusted
using an evolutionary algorithm.

The remainder of this paper is organized as follows. In
Section II, we review the relevant previous related work about
adjusting the evaluation function of a chess engine. Our chess
engine and the evaluation function adopted for the purposes
of this paper are described in Section III. In Section IV, we
show the methodology that we adopted to obtain the positional
values of the pieces. Our experimental results are reportedin
Section VI. Finally, in Section VII, we provide our conclusions
and some possible paths for future work.

II. PREVIOUS RELATED WORK

The manual adjustment of the weights used by the eval-
uation function of a chess engine is a task that usually
requires a significant amount of time. This has motivated the
development of automated methods for this task, from which
the main ones are briefly described next.

Thrun developed in1995 the programNeuroChess[21]
which learns to play chess from the final outcomes of games
and uses artificial neural networks to adjust the weights of its
evaluation function. Fogel et al. [7] used a coevolutionarystrat-
egy in which a set of virtual players confronted one another
several times allowing the survival of only the most successful
virtual players. This program adjusted the weights of the piece-
square tables (values stored in tables) and the weights of
three neural networks to improve its performance above the
master level (around400 rating points). This program was
evolved along7462 generations by Fogel et al. [8], reaching a
rating of2650. Kendall and Whitwell [14] proposed a method
for tuning the weights of the evaluation function of a chess
engine using an evolutionary algorithm. They showed how
the outcome of the game (win, loss or draw) can be used
to develop such an evaluation function. Nasreddine et al. [17]
proposed an evolutionary algorithm to adjust the weights of
the evaluation function of a chess engine. The characteristic
of this method is that the weight interval boundaries are
dynamic. Bošković et al. [4], proposed a method based on
differential evolution to adjust the material values of thechess
pieces, being able to reproduce their “theoretical” values[19].
Hauptman and Sipper [11] solved mate-in-N problems without
using the alpha-beta algorithm. David-Tabibi et al. [6] built
a grandmaster-level chess program based on supervised and
unsupervised learning. In this case, chess was learnt only from
a database of games played by humans.



The main difference between our approach and other meth-
ods lies on the way in which the positional values of the chess
pieces are obtained. In other works (see for example [7], [8],
[3]) the positional values of the pieces are represented by val-
ues stored in tables. Positional values of the pieces definedin
tables have the disadvantage of being static and do not depend
directly on the characteristics of the position. For example,
let’s imagine that a bishop ond5 always has the same value;
this is generally incorrect because its positional value depends,
among other things, from the pawn’s structure [18], [10]. In
our method, however, the positional values are dynamic and
depend on the characteristics of the position such as location,
mobility, center control and so on.

III. O UR CHESS ENGINE

To carry out our experiments, we developed a chess engine
with the following features: alpha-beta search algorithm [15],
[16] with iterative deepening, stabilization of positionsthrough
the quiescence algorithm [2] (which considers the exchange
of material and checks to the king), hash tables [23], [1] and
move generator through the0 × 88 hexadecimal method.1

The evaluation function used to determine (in a heuristic
way) the relative value of a position with respect to one side
(white or black pieces) is given by the following expression:

f =

r∑

i=1

mi +

q∑

i=1

ci × pi (1)

where:
r is the number of pieces in the side under evaluation without
considering the king.
q is the number of pieces in the side under evaluation.
mi is the material value of the piecei.
ci is the adjustment of the weightpi (ci = 0.5 × mi).
pi is the positional value of the piecei. pi ∈ [0, 1] (0
represents the worst adjustment of weights and1 represents
a best adjustment of weights).

The material value of a piece is static, and it is100, 300,
300, 500 and900 for the pawn, knight, bishop, rook and queen,
respectively; these values agree with the “theoretical” values
considered for the chess pieces [19]. Thepositional value of
a piece is dynamic, and it depends on many factors such as
location, mobility, center control and so on.

IV. OUR PROPOSED METHODOLOGY

A. Neural network architecture

Our architecture is composed of six neural networks that
we use to calculate the positional values of the chess pieces
of our chess engine, as defined in equation (1). Each neural
network was fully connected and consisted of four nodes in
the input layer,2 nine nodes in the hidden layer and one node

1http://www.cis.uab.edu/hyatt/boardrep.html
2The fact that all neural networks have four nodes in the inputlayer is

mere coincidence, and this number can vary depending on the characteristics
chosen to obtain the positional value of a chess piece.

8r Z 0 Z 0 j 0 s
7o p Z 0 Z p o p
60 a p o b l 0 Z
5Z 0 Z 0 Z 0 Z 0
40 Z 0 o P A 0 Z
3Z 0 Z P Z 0 L 0
2P O P M 0 Z P O
1S 0 Z 0 Z R J 0

a b c d e f g h

Fig. 1. Example diagram to illustrate feature extraction.

in the output layer. The decision to use three layers was based
on the demonstration of Hecht-Nielsen [12], which established
that any function can be approximated by a three-layer neural
network. The decision to use nine nodes in the hidden layer
was based on Kolgomorov’s theorem [20] which established
that the number of nodes in the hidden layer should be at
least (2i + 1), where i denotes the number of nodes in the
input layer. As part of our future work, we intend to evolve
the number of hidden units. The hidden nodes used a sigmoid
defined by the logistic functionf(yj) = 1/(1 + exp(−yj)),
whereyj was the product of the incoming features from the
chessboard and the associated weights between the input and
hidden nodes, offset by each hidden node’s bias term, i.e.yj =∑

4

i=1
fi × Wij + θj , wherefi is the incoming featurei, Wij

is the weight between the nodei and nodej, and θj is the
bias term of the nodej. The output node also used the logistic
function and its value is in[0, 1], where0 and1 denotes the
worst and the best adjustment of weights, respectively.

B. King’s positional value

Our architecture used a neural network to obtain the posi-
tional value of the king. Its four input signals correspond to
the features that we considered important to get the positional
value of the king.

• Attacking material. It refers to the material value of the
pieces that are attacking the opposite king. By this, we
mean those pieces whose movements act on its opposite
king’s square or on its opposite king’s adjacent squares
(in this case, the movements of the pieces can jump to
other pieces,3 regardless of the pawns). For example,
in Figure 1, the queen onf6 attacks the king ong1;
therefore, the attacking material corresponding to the
white king is900.

3Jumping other pieces allows to detect indirect attacks. Forexample, in
Figure 1 the bishop onb6 will attack the white king when the pawn ond4

moves to another square.



• Defending material. It refers to the material value of the
pieces that are defending its king. By this, we mean those
pieces whose movements act on its king’s square or on its
king’s adjacent squares (also, the movements of the pieces
can jump to other pieces, regardless of the pawns). For
example, in Figure 1, the queen ong3, the rook ona1,
the rook onf1, the bishop onf4 and the knight ond2 all
defend the white king; therefore, the defending material
corresponding to the white king is2500 (900 + 500 +
500 + 300 + 300).

• Castling. It is a binary value. It is one if and only if the
king is castled. In Figure 1 this value is one for the white
king.

• Pawns. It is the number of pawns located on its king’s
adjacent squares. In Figure 1 this value is two for the
white king.

C. Queen’s positional value

Our architecture used a neural network to obtain the posi-
tional value of the queen. Its four input signals correspond
to the features that we considered important to obtain the
positional value of the queen.

• Queen mobility. It is the number of movements of the
queen. In Figure 1 this value is ten for the white queen.

• Column type. It is 0 if on the queen’s column there are no
pawns, it is1 if on the queen’s column there are adversary
pawns and the queen is on front of its pawns (if any),
and it is 2 if on the queen’s column there are pawns at
both sides and the queen is behind any of its pawns. In
Figure 1 this value is1 for the white queen.

• Row. It refers to the row occupied by the queen. In
Figure 1 this value is three for the white queen.

• Column. It refers to the column occupied by the queen.
In Figure 1 this value is seven for the white queen.

D. Rook’s positional value

Our architecture used a neural network to obtain the posi-
tional value of the rook. Its four input signals correspond to the
features that we considered important to obtain the positional
value of the rook.

• Rook mobility. It is the number of movements of the rook.
In Figure 1 this value is four for the rook ona1.

• Column type. See the definition of the column type for
the queen. In Figure 1 this value is2 and1 for the rooks
on a1 andf1, respectively.

• Seventh row. It is a binary value. It is1 if and only if
the rook is on the seventh row. In Figure 1 this value is
0 for the rook ona1.

• Seventh row folded. It is a binary value. It is1 if and
only if there are at least two rooks on the seventh row.
In Figure 1 this value is0 for the rook ona1.

E. Bishop’s positional value

Our architecture used a neural network to obtain the posi-
tional value of the bishop. Its four input signals correspond

TABLE I
WEIGHTS OF BLACK PAWNS THAN OBSTRUCT THE BLACK BISHOP’ S MOVEMENT.

8 0 0 0 0 0 0 0 0

7 2 4 4 8 8 4 4 2

6 2 4 8 16 16 8 4 2

5 2 4 12 24 24 12 4 2

4 2 4 4 4 4 4 4 2

3 2 2 2 2 2 2 2 0

2 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0

a b c d e f g h

TABLE II
WEIGHTS OF THE WHITE PAWNS THAN OBSTRUCT THE BLACK BISHOP’ S MOVEMENT.

8 0 0 0 0 0 0 0 0

7 0 0 0 0 0 0 0 0

6 0 1 1 1 1 1 1 0

5 0 1 2 2 2 2 1 0

4 0 1 2 2 2 2 1 0

3 0 1 1 1 1 1 1 0

2 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0

a b c d e f g h

to the features that we considered important to obtain the
positional value of the bishop.

• Bishop mobility. It is the number of movements of the
bishop. In Figure 1 this value is five for the bishop on
f4.

• Pawn’s mobility. It is the number of movements of its
pawns which obstruct the movement of the bishop. In
Figure 1 this value is five for the bishop onb6.

• Ahead. It is the number of pawns which are in front of
its bishop and obstructing its movement. In Figure 1 this
value is one for bishop onb6, because the pawn ond4
obstructs its movement.

• Weight. Any chess expert will notice in Figure 1 that the
pawn ond4 obstructs more the movement of the bishop
on b6 than the pawn ona7. Each square on the board
is assigned a numeric value that reflects the degree of
obstruction of a pawn on the bishop’s movement. Table I
shows the weights of black pawns than obstruct the black
bishop’s movement (these values were taken from [10]),
and Table II shows the weights of the white pawns that
obstruct the black bishop’s movement (these values have
been assigned by an expert in chess). The weights of
the white pawns and the black pawns that obstruct the
white bishop’s movement are the mirror of Tables I and II,
respectively. In Figure 1, the weight for the bishop onb6
is 26 (2 + 4 + 16 + 4).

F. Knight’s positional value

Our architecture used a neural network to obtain the posi-
tional value of the knight. Its four input signals correspond
to the features that we considered important to obtain the



positional value of the knight.
• Knight mobility. It is the number of movements of the

knight. In Figure 1 this value is four for the knight on
d2.

• Periphery. It is a binary value. It is1 if and only if the
knight is on the periphery of the board (first row, eighth
row, first column or eight column). In Figure 1 this value
is 0 for the knight ond2.

• Supported. It is a binary value. It is1 if and only if the
knight is supported by one of its pawns. In Figure 1 this
value is0 for the knight ond2.

• Operations base. It is a binary value. It is1 if and only
if the knight is on anoperations base. A knight is on an
operations baseif it cannot be evicted from its position
by an opponent pawn. In Figure 1 this value is0 for the
knight ond2.

G. Pawn’s positional value

Our architecture used a neural network to obtain the posi-
tional value of the pawn. Its four input signals correspond
to the features that we considered important to obtain the
positional value of the pawn.

• Doubled. It is a binary value. It is1 if and only if there
are at least two pawns located in the same column. In
Figure 1 this value is1 for the pawn ond6.

• Isolated. It is a binary value. It is1 if and only if a pawn
cannot be defended by another pawn. In Figure 1 this
value is0 for the pawn ond6.

• Central. It is a binary value. It is1 if and only if the
pawn is on any of the following squares:c4, c5, d4, d5,
e4, e5, f4 or f5. In Figure 1 this value is1 for the pawn
on e4.

• Past. It is a binary value. It is1 if and only if the pawn
cannot be stopped by an opponent pawn. In Figure 1 this
value is0 for the pawn one4.

It is worth noticing that the values obtained with our neural
network architecture are conceived to correspond to the chess
pieces’ positional values of a mid-game.

H. Use of an evolutionary algorithm

Figure 2 outlines the evolutionary algorithm adopted to
adjust the neural networks’ weights in order to compute the
pieces’ positional values. The first module, called “initialize
population”, assigns initial random weights to the neural net-
works and the weights of the pawns that obstruct the bishop’s
mobility. The features of the position (inputs of the neural
network) are obtained in the module “Features extraction”.

The module “Play tournament” coordinates a tournament
betweenn virtual players (in our casen = 20). Each virtual
player is allowed to playn/2 games with randomly chosen
opponents. The side (either black or white) is also chosen at
random. Games are executed until one of the virtual players
receives checkmate or a draw condition arises. Depending on
the outcome of the game, a virtual player obtains one point,
half a point or zero points for a win, tie or loss, respectively.
Draw conditions are given by the rule of50 moves (after a

Neural network

for the piecei

n
/
2

m
ut

at
ed

vi
rt

ua
l

pl
ay

er
s

+
To

p
n
/
2

vi
rt

ua
l

pl
ay

er
s

Begin

Top n/2 virtual players

n virtual players

Features

n virtual players

n virtual players

Top n/2 virtual players

End

Positional value of the piecei

Initialize population

Features extraction

Play tournament

Selection

Mutation

Fig. 2. Flowchart of the evolutionary algorithm adopted in this work.

pawn’s move there are50 moves to pose a checkmate to the
opponent), by the third repetition of the same position and by
the lack of victory conditions (e.g., in the fight of a king and
a bishop against a king). This module uses the chess engine
described in Section III.

After finishing the tournament, the “Selection” module
chooses then/2 virtual players having the highest number
of points, and in the module “Mutation” these virtual players
are mutated to generate the remainingn/2 virtual players.
Finally, the evolutionary algorithm (based on evolutionary
programming [9]), continues running for50 generations.

V. EXPERIMENTAL DESIGN

The experiments were carried out on a PC with a64-bits
architecture, having two cores running at 2.8 GHz each and
3 GBytes in RAM. The programs were compiled usingg++
in the OpenSuse 11.1 operating system. For the experiments
reported next, we used the opening bookOlympiad.abkboth
for the virtual players and for the chess engine Rybka 2.3.2a.

A. Initialization

The initial population of our evolutionary algorithm con-
sisted ofn = 20 (10 parents and10 offspring in subsequent
generations) virtual players whose weights were randomly
initialized within their allowable bounds using a uniform
distribution. The weights and biases of the neural networks
were initialized in the range[−15, 15] and the weights of the
pawns which obstruct the bishop’s mobility were initialized in



the range[0, 20] (we carried out different experiments, and we
found that the ranges of these weights fall into these intervals).

B. Mutation

One offspring was created from each surviving parent by
mutating all weights and biases by adding a Gaussian random
variable with zero mean and a standard deviation of0.05 as
Chellapilla and Fogel did in [5]. If, after mutating a weight, its
value falls outside the range, this value is re-set to the nearest
extreme of its range.

VI. EXPERIMENTAL RESULTS

A. Experiment A

This experiment consisted of performing ten runs, and in
each of them we had20 virtual players that were evolved
during 50 generations. The weights of the virtual players
were randomly initialized within the allowable bounds with
a different seed for each run. At the end of each run, we
carried out 200 games between the best virtual player in
generation50 and the best virtual player in generation0,
Table III shows these results. For example, in run1 the best
player in generation50 won 180, drew 14 and lost6 games
against the best player in generation0 (the percentage of
games won by the best player in generation50 was93.50%).
The best result corresponds to the third run, in which the best
virtual player in generation50 won 185, drew 12 and lost3
games against the best player in generation0 (the percentage
of games won by the best player in generation50 was95.50%).
In this experiment we used a search depth of four plies (1 ply
corresponds to the movement of one side),

TABLE III
NUMBER OF GAMES WON, DRAWN AND LOST FOR THE BEST VIRTUAL PLAYER IN

GENERATION 50 AGAINST THE BEST VIRTUAL PLAYER IN GENERATION 0.

Run Wins Draws Losses Wins%

1 180 14 6 93.50%

2 171 26 3 92.00%

3 185 12 3 95.50%

4 169 28 3 91.50%

5 174 25 1 93.25%

6 176 19 5 92.75%

7 182 16 2 95.00%

8 183 15 2 95.25%

9 178 18 4 93.50%

10 168 28 4 91.00%

B. Experiment B

In this experiment, the best virtual player in generation0,
was calledplayer0 and played60 games against the chess
engine Rybka 2.3.2a using each of the following ratings:2300,
2100, 1900 and 1700. The histogram of results is shown in
Figure 3. For example,player0 won, drew and lost0, 3 and
57 respectively against Rybka 2.3.2a at2300 rating points;
player0 won, drew and lost4, 6 and 50 respectively against
Rybka 2.3.2a at2100 rating points. The same experiment

was carried out with the best virtual player for the ten runs
in Table III. This virtual player was calledplayer50 and
corresponds to the third run in this table. The results against
the chess engine Rybka 2.3.2a are shown in Figure 4. In this
Figure we can see thatplayer50 won, drew and lost14, 10
and36 respectively against Rybka 2.3.2a at2300 rating points;
player50 won, drew and lost26, 22 and12 respectively against
Rybka 2.3.2a at2100 rating points.

Based on these played games, we used the Bayeselo
tool4 to estimate the ratings of players using a minorization-
maximization algorithm [13]. The obtained ratings are shown
in Table IV. In this table we can see that the rating for the
virtual player player0 was 1745, and the rating for virtual
player player50 was 2178, representing an increase of433
rating points between the non-evolved and the evolved virtual
players after50 generations for the third run of Table III (2178
ratings points is a value close to a chessmaster level [7]).

In this experiment we used a search depth of six plies for
the chess engine Rybka2.3.2a, as well as forplayer0 and
player50.

It is worth noticing that Thrun [21] employed one neural
network with 175 input nodes,165 hidden nodes and175
output nodes within his programNeuroChess. NeuroChess
successfully won11% of the games versus the program
GnuChess(about2300 rating points), and our chess program
won 31.6% of the games versus Rybka 2.3.2a at2300 rating
points. In another previous related work, Fogel et al. [7]
employed three neural networks, each one having16 input
nodes,10 hidden nodes and1 output node. The strength of
their program was about2550 rating points.

TABLE IV
RATINGS ON THE THIRD RUN AGAINSTRYBKA 2.3.2A .

Rank Name Elo + - Games Score Oppo. Draws

(%) (%)

1 Rybka2300 2309 64 59 120 83% 1961 11%

2 P layer50 2178 38 37 240 69% 1997 18%

3 Rybka2100 2097 51 50 120 63% 1961 23%

4 Rybka1900 1883 51 52 120 41% 1961 16%

5 P layer0 1745 40 41 240 25% 1997 12%

6 Rybka1700 1699 56 60 120 25% 1961 9%

In the previous experiments each virtual player was allowed
to play n/2 games with randomly chosen opponents. Also
noteworthy that these experiments were repeated allowing each
virtual player to play against the remaining virtual players (in
total n − 1 games), and in this case, the best virtual player
with n − 1 games was only three points higher than the best
virtual player withn/2 games.

VII. C ONCLUSIONS AND FUTURE WORK

In this paper we introduced an approach in which we
obtained the positional values of chess pieces through a neural
network architecture based on unsupervised learning. The
weights of this neural network architecture were evolved using

4http://remi.coulom.free.fr/Bayesian-Elo/



Win

Draw

Loss

0−3−57 4−6−50

1700190021002300 Rating

20

30

50

60

10

40

Games

14−10−36 28−9−23

Fig. 3. Histogram of wins, draws and losses for the best virtual player at
generation0 (player0) against Rybka 2.3.2a.

Win

Draw

Loss

1700190021002300 Rating

20

30

50

60

10

40

Games

26−22−1214−10−36 47−9−4 57−2−1

Fig. 4. Histogram of wins, draws and losses for the best virtual player at
generation50 (player50) against Rybka 2.3.2a.

evolutionary programming. In some previous related work,
these values had been evolved with “piece-square tables”. The
disadvantage of these methods is that the positional valuesof
the pieces do not depend directly on the characteristics of the
position. In contrast, our method by taking into account these
characteristics to obtain these positional values.

We also believe that our architecture constitutes an alter-
native that is easy to implement and that is scalable (the
programmer only needs to add the inputs to the corresponding
neural network that is relevant to evaluate the chess piece of
interest). After adjusting the neural network’s weights using
our evolutionary algorithm, we increased the rating of our
chess engine in433 points (from1745 to 2178). It is expected
that by adding the number of inputs to the neural networks, the
positional value of the chess pieces will be assessed in a more
precise manner and, consequently, the strength of the chess
engine will be increased (and certainly this is part of future
work). We are also interested in evolving the parameterci in
our evaluation function and in evolving the number of nodes
in the hidden layers of our neural network architecture in order
to obtain more accurate assessments of the positional values of
the chess pieces. It is worth noticing that the evolution of the
parameterci will define the style of play of our chess engine.

ACKNOWLEDGEMENTS

The first author acknowledges support from CINVESTAV-
IPN, CONACyT and the National Polytechnical Institute (IPN)

to pursue graduate studies at the Computer Science Depart-
ment of CINVESTAV-IPN. The second author acknowledges
support from CONACyT project no. 103570.

REFERENCES

[1] D. Beal and M. C. Smith. Multiple probes of transpositiontables.ICCA
Journal, 19(4):227–233, 1996.

[2] D. F. Beal. A generalised quiescence search algorithm.Artificial
Intelligence, 43(1):85–98, April 1990.

[3] D. F. Beal and M. C. Smith. Learning piece-square values using temporal
differences.Journal of The International Computer Chess Association,
22(4):223–235, December 1999.

[4] B. Bošković, S. Greiner, J. Brest, and V.Žumer. A differential evolution
for the tuning of a chess evaluation function. In2006 IEEE Congress on
Evolutionary Computation, pages 1851–1856, Vancouver, BC, Canada,
July 16-21 2006. IEEE Press.

[5] K. Chellapilla and D. Fogel. Evolution, neural networks, games, and
intelligence. Proceedings of the IEEE, 87(9):1471 –1496, Sept. 1999.

[6] O. David-Tabibi, H. J. van den Herik, M. Koppel, and N. S. Netanyahu.
Simulating human grandmasters: evolution and coevolutionof evaluation
functions. InGECCO’09, pages 1483–1490, 2009.

[7] D. B. Fogel, T. J. Hays, S. L. Hahn, and J. Quon. A self-learning
evolutionary chess program.Proceedings of the IEEE, 92(12):1947–
1954, 2004.

[8] D. B. Fogel, T. J. Hays, S. L. Hahn, and J. Quon. Further evolution
of a self-learning chess program. InProceedings of the 2005 IEEE
Symposium on Computational Intelligence and Games (CIG05), pages
73–77, Essex, UK, April 4-6 2005. IEEE Press.

[9] L. J. Fogel. Artificial Intelligence through Simulated Evolution. John
Wiley, New York, 1966.

[10] M. Guid, M. Možina, J. Krivec, A. Sadikov, and I. Bratko. Learning
positional features for annotating chess games: A case study. In CG
’08: Proceedings of the 6th international conference on Computers and
Games, pages 192–204. Springer. Lecture Notes in Computer Sciences,
Vol. 5131, Heidelberg, Germany, 2008.

[11] A. Hauptman and M. Sipper. Evolution of an efficient search algorithm
for the mate-in-n problem in chess. InProceedings of the 10th European
conference on Genetic programming, EuroGP’07, pages 78–89, Berlin,
Heidelberg, 2007. Springer-Verlag.

[12] R. Hecht-Nielsen.Neurocomputing / Robert Hecht-Nielsen. Addison-
Wesley Pub. Co., Reading, Mass., 1990.

[13] R. Hunter. Mm algorithms for generalized bradley-terry models. The
Annals of Statistics, 32:2004, 2004.

[14] G. Kendall and G. Whitwell. An evolutionary approach for the tuning of
a chess evaluation function using population dynamics. InProceedings
of the 2001 Congress on Evolutionary Computation CEC2001, volume 2,
pages 995–1002. IEEE Press, May 2001.

[15] D. E. Knuth and R. W. Moore. An analysis of alpha-beta pruning.
Artificial Intelligence, 6(4):293–326, 1975.

[16] T. A. Marsland and M. Campbell. A survey of enhancementsto the
alpha-beta algorithm. InProceedings of the ACM ’81 conference, ACM
’81, pages 109–114, New York, NY, USA, 1981. ACM.

[17] H. Nasreddine, H. Poh, and G. Kendall. Using an Evolutionary
Algorithm for the Tuning of a Chess Evaluation Function Based on a
Dynamic Boundary Strategy. InProceedings of 2006 IEEE international
Conference on Cybernetics and Intelligent Systems (CIS’2006), pages 1–
6. IEEE Press, 2006.

[18] L. Pachman.Estrategia moderna en ajedrez. Colección escaques, 1972.
[19] C. Shannon. Programming a computer for playing chess.Philosophical

Magazine, 7(41):256–275, 1950.
[20] K. Swingler. Applying neural networks: A practical guide. Academic

Press, London, 1996.
[21] S. Thrun. Learning to play the game of chess. In G. Tesauro,

D. Touretzky, and T. Leen, editors,Advances in Neural Information
Processing Systems (NIPS) 7, pages 1069–1076, Cambridge, MA, 1995.
MIT Press.

[22] A. Turing. Digital Computers Applied to Games, of Faster than Thought,
chapter 25, pages 286–310. Pitman, 1953.

[23] A. Zobrist. A new hashing method with application for game playing.
Technical Report 88, The University of Wisconsin, Madison WI, USA,
1970. Reprinted (1990) in ICCA Journal, Vol. 13, No. 2, pp. 69-73.


