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Abstract

During the last few years, several methods have been developed for the optimal design of structures. However,
most of them, because of their calculus-based nature, treat the search space of the problem as continuous, when it
is really discrete. This leads to unrealistic solutions and complex processes, and therefore, they are not used in
industry, which still prefers to rely on the more traditional iterative methods. This paper proposes the use of
genetic algorithms for this task. The results obtained show how good this technique behaves, even when compared
to more specialized and sophisticated optimization methods.
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Introduction

Structural design is a traditionally sub-optimal process, because it normally relies on the experience of an
engineer who uses a computer to iterate through several possible choices of shapes and sizes for each one of the
elements of a certain structure. This is just a fast variation of the same computations performed by engineers of
the last century, but not a real improvement to the design process.

During the last few years, a lot of work has been done to full y automate the design of structures.
Nevertheless, most of the new methods developed have a common problem: they are based on linear
programming techniques, and therefore tend to treat structural optimization as a problem in which the search
space is continuous, when it's reall y discrete, because there is only a small number of structural shapes available
in the market. In the other hand, some recent structural optimization techniques can deal with discrete search
spaces, but they have an inherent lack of generalit y and therefore can't be readily extended to other kind of
structures.

This paper focuses on the use of a search technique called Genetic Algorithm (GA) to optimize the design
of plane and space trusses. This technique considers a discrete seach space, yielding more reali stic results than
linear programming methods, and it's problem independent. This means that the code developed for designing
trusses can be reused to solve the remaining framed structures (plane and space frames, plane grids and frames)
with littl e change.

Related Work

Goldberg and Samtani [1] appear to have first suggested the use of GAs for structural optimization. In
their paper, they use a GA to optimize a 10-bar plane truss. Deb [2] applied the technique to the design of welded
beams, Jenkins to plane frames [3], a trussed-beam roof structure and a thin-walled cross-section [4]; and Rajeev
and Krishnamoorthy [5] to generali zed trusses.

Pham and Yang [6] have done interesting work on the optimization of multi -modal discrete functions
using GAs. Powell [7] described a domain independent design optimization tool for engineers involved with
iterative design called EnGENEous. This program uses expert systems and GAs to move from a domain
independent system with no knowledge to a domain dependent system with knowledge. It has been used in the
design of aircraft engine turbines, cooling fans and molecular electronic structure, and their authors claim that this
system has increased engineers productivity tenfold.

Schoenauer and Xanthaquis [8] presented a general method of handling constraints in genetic
optimization, based on the Behavioural Memory paradigm. They applied this scheme to test problems of truss
structure optimization: a 10-bar (2D) and a 25-bar (3D) truss.

Louis and Rawlins [9] discussed the application of GAs to design structures, but focusing on
combinatorial circuit design problems: given a set of logical gates, we want to design a circuit that performs a
specified function.



Optimization of a Plane Truss

First, let' s define a plane truss [10]:

"A plane truss is idealized as a system of members lying in a plane and interconnected at hinged joints. All
applied forces are assumed to act in the plane of the structure, and all external couples have their moment
vectors normal to the plane. The loads may consist of concentrated forces applied to the joints, as well as
loads that act on the members themselves. For purposes of analysis, the latter loads may be replaced by
statically equivalent loads acting at the joints. Then the analysis of a truss subjected only to joint loads
will result in axial forces of tension and compression in the members. In addition to these axial forces,
there will be bending moments and shear forces in those members having loads that act directly upon
them. The determination of all such stress resultants constitutes the complete analysis of the forces in the
members of a truss."

Fig. 1 : 10-bar plane truss used for the first example. Taken from [5].

Now, let' s consider a 10-bar truss optimization problem taken from Rajeev and Krishnamoorthy [5],
shown in Fig. 1.  The objective function of the problem is to minimize the weight of the structure, f(x),

f(x) = A Li i
i=1
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where x is the candidate solution, A
i
 is the cross-sectional area of the ith member, L

i
 is the length of the ith

member, and ρis the weight density of the material. The assumed data are: modulus of elasticity, E = 1x104 ksi
(6.89 x 104 MPa), ρ = 0.10 lb/in3 (2,770 kg/m3), and vertically downward loads of 100 kips (445.374 kN) at nodes
2 and 4. Additionally, the truss is subject to the following set of constraints
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The fitness function used was

F(x) =
1

f(x) 1000 v +1
                                                        (2)

where v is a counter that keeps track of the number of constraints violated by a given solution. We can easily see
how when there is no violation to the constraints, the fitness function returns simply the inverse of the weight (this
is necessary because the GA only maximizes). As constraints are violated, the fitness is lowered correspondingly.
The constant 1000 was determined experimentally.



The additional constraints for this problem are the following: the maximum displacement is 2 inches
(50.8 mm) and the stresses are limited to ±25 ksi (172.25 MPa). The li st of possible cross sections, taken from the
American Institute of Steel Construction Manual [11], is S={ 1.62, 1.80, 1.99, 2.13, 2.38, 2.62, 2.63, 2.88, 2.93,
3.09, 3.13, 3.38, 3.47, 3.55, 3.63, 3.84, 3.87, 3.88, 4.18, 4.22, 4.49, 4.59, 4.80, 4.97, 5.12, 5.74, 7.22, 7.97, 11.5,
13.5, 13.9, 14.2, 15.5, 16.0, 16.9, 18.8, 19.9, 22.0, 22.9, 26.5, 30.0, 33.5} (in²).

Since there are 10 design variables, and each can take any of the 42 values of the li st S, the intrinsic size
of the search space is 4210 (≅ 1016). Six bits are required to represent the 42 available sections (26 = 64), assigning
random values from S to the extra codes. Thus, each chromosome is 60 bits long (6 bits/bar x 10 bars) as shown in
Fig. 2.

Fig. 2 : Binary representation scheme used to encode a solution.

Comparison of Results

The results produced with the GA are compared with several other structural optimization methods in
Table 1. For more detailed information about them, see [12] and [5]. Most of these methods are calculus-based,
and therefore their results have to be rounded to the closest available section (this implies by itself a suboptimal
solution). However, it' s important to point out that Rajeev and Krishnamoorthy [5] use also a GA to optimize the
plane truss of this example, with the fitness function

F(x) = [ (x) (x) (x)max minφ φ φ+ −]                                                       (3)

where F(x) is the fitness of a given solution x, φ(x)
max

 and φ(x)
min

 are respectively the maximum and minimum φ(x)
over the population. φ(x) is

φ(x) = f(x)[1+ KC]                                                                  (4)

C = c i
i=1

n
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where n is the number of constraints, the values of ci are the amounts by which each constraint is violated, f(x) is
the weight function as defined in eq. (1) and K is a constant that weights the constraint violations. They found that
a value of 10 was appropriate for this example. The results of Table 1 show that a simpler penalty function li ke
the one proposed in this paper can do the work. In fact, it beats the solution produced by Rajeev and
Krishnamoorthy [5], even without using lower and upper bounds on each member' s values as they propose in
order to reduce the size of the search space.

Method Weight A1 A2 A3 A4 A5 A6 A7 A8 A9 A10

OPTDYN 5472.00 25.70 0.10 25.11 19.39 0.10 0.10 15.40 20.32 20.74 1.14
CONMIN 5563.00 25.20 1.89 24.87 15.83 0.10 1.75 16.76 19.73 20.98 2.51
GENETIC 5586.59
Rajeev 5613.84 33.50 1.62 22.00 15.50 1.62 1.62 14.20 19.90 19.90 2.62
M-3 5719.00 25.84 3.07 26.42 12.77 0.10 3.43 19.34 19.17 18.76 4.42
M-5 5725.00 25.83 2.88 26.45 12.75 0.10 3.77 19.37 19.18 18.77 4.38
GRP-UI 5727.00 24.78 4.17 24.78 14.45 0.10 4.17 17.46 19.26 19.27 5.26
SUMT 5932.00 30.69 2.37 31.62 11.66 0.10 3.71 21.71 20.90 13.97 3.26
LINRM 6249.00 21.57 10.98 22.08 14.95 0.10 10.98 18.91 18.42 18.40 13.51

Table 1 : Comparison of our results (GENETIC) with other techniques reported in the literature for the example of Fig. 1

Optimization of a Space Truss

The second example chosen was a 25-bar truss taken from Rajeev and Krishnamoorthy [5], and shown in
Fig. 3. A space truss is defined in [10] as follows:



"A space truss is similar to a plane truss except that the members may have any directions in space. The
forces acting on a space truss may be in arbitrary directions, but any couple acting on a member must have
its moment vector perpendicular to the axis of the member. The reason for this requirement is that a truss
member is incapable of supporting a twisting moment."

Loading conditions for this space truss are given in Table 2, member groupings are given in Table 3, and
node coordinates are given in Table 4. The assumed data are: modulus of elasticity, E = 1x104 ksi (6.89 x 104

MPa), ρ = 0.10 lb/in3 (2,770 kg/m3); σ
a
 = ±40,000 psi, u

a
 = ±0.35 in. The set of available areas is [5] S = { 0.1, 0.2,

0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.8, 3.0,
3.2, 3.4} (in²).

Fig. 3 : 25-bar space truss used for the second example. Taken from [5].

Node Fx (lbs) Fy (lbs) Fz (lbs)

1 1000 -10000 -10000
2 0 -10000 -10000
3 500 0 0
6 600 0 0

Table 2 : Loading conditions for the space truss of Fig. 3. Taken from [5]

Group Number Members

1 1-2
2 1-4, 2-3, 1-5, 2-6
3 2-5, 2-4, 1-3, 1-6
4 3-6, 4-5
5 3-4, 5-6
6 3-10, 6-7, 4-9, 5-8
7 3-8, 4-7, 6-9, 5-10
8 3-7, 4-8, 5-9, 6-10

Table 3 : Goup membership for the space truss of Fig. 3. Taken from [5].

Node X Y Z

1 -37.50 0.00 200.00
2 37.50 0.00 200.00
3 -37.50 37.50 100.00
4 37.50 37.50 100.00
5 37.50 -37.50 100.00



6 -37.50 -37.50 100.00
7 -100.00 100.00 0.00
8 100.00 100.00 0.00
9 100.00 -100.00 0.00
10 -100.00 -100.00 0.00

Table 4 : Coordinates of the nodes of the space truss of Fig. 3.

Comparison of Results

The results produced with the GA are compared with some other structural optimization methods in
Table 5. For more detailed information about them, see [5] and [13]. Rajeev and Krishnamoorthy use a GA as
explained before, but get a poorer solution that the one obtained with our suggested fitness function. In fact, our
GA even beats continuous methods like the ones from Rizz and Schmit. Finally, it should be pointed out that
Zhu' s method deals directly with discrete member sizes, but it can' t be generalized to other framed structures.

Method Weight A1 A2 A3 A4 A5 A6 A7 A8

GENETIC 539.78 1.500 0.700 3.400 0.700 0.400 0.700 1.500 3.200
Rizz 545.16 0.010 1.988 2.991 0.010 0.010 0.684 1.676 2.662

Schmit 545.22 0.010 1.964 3.033 0.010 0.010 0.670 1.680 2.670
Rajeev 546.01 0.100 1.800 2.300 0.200 0.100 0.800 1.800 3.000

Zhu 562.93 0.100 1.900 2.600 0.100 0.100 0.800 2.100 2.600
Table 5 : Comparison of our results (GENETIC) with other methods reported in the literature.

Implementation Details

A customized version of the SGA (Simple Genetic Algorithm) presented in [14] was used for the
examples of this paper. However, instead of using static arrays, a dynamic memory management technique
proposed by Porter [15] was used. Also, binary tournament selection and two-point crossover were preferred over
roulette-wheel selection and one-point crossover. The stopping criteria was always a maximum number of
generations, and the crossover and mutation probabilities always oscillated around 0.80 and 0.01, respectively.
The analysis of each truss was performed using the programs from [16].

The basic operation of the program is the following: the values of the list S are fed into the program (or
read from a file). Then, the constraints on maximum allowable stress and deflection are provided. The module that
does the structural analysis is executed and the stiffness matrix and its results are stored in a file. The GA is then
executed, and the user provides the size of population, number of generations, etc. After that, the program starts
iterating, reading and rewriting the file that contains the results of the analysis, and modifying it with values from
the chromosomes at each generation. As progress is made, a simplified report is sent to the output device (a laser
printer in out case) showing the current generation and the best solution found so far.

Future Work

The final goal of this work is to produce a fully automated structural design system that uses GAs.
However, there is still a long way to go. Right now, a solid implementation in Turbo Pascal 7.0 is available for
PCs, and a C version is being prepared. Due to the generality of the technique, it' s trivial to extend it to the
remaining framed structures (we only have to fit the appropriate structural analysis module into the program). In
fact, the technique can also be easily extended to other design tasks, and even to other engineering areas.

Conclusions

The GA seems to be a very good choice for discrete structural optimization, because of its generality and
its ability to deal directly with discrete search spaces. Furthermore, the GA operates with several partial solutions
simultaneously (this is called implicit parallelism), in contrast with the traditional sequential search of the other
methods. Our results show how well they perform even when compared with methods that use continuous search
spaces, and are not portable and extremely complex. This does mean, however, that a program that uses this
technique will fully replace human engineers in the design process, because a lot of common sense is still required
in such a complex task. Nevertheless, GAs should be expected to play a main role in the structural design software
of the future.
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