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Abstract— In this paper, two novel evolutionary approaches
for many-objective optimization are proposed. These algorithms
integrate a fine-grained ranking of solutions to favor conver-
gence, with explicit methodologies for diversity promotion in
order to guide the search towards a representative approxi-
mation of the Pareto-optimal surface. In order to validate the
proposed algorithms, we performed a comparative study where
four state-of-the-art representative approaches were considered.
In such a study, four well-known scalable test problems were
adopted as well as six different problem sizes, ranging from
5 to 50 objectives. Our results indicate that our two proposed
algorithms consistently provide good convergence as the num-
ber of objectives increases, outperforming the other approaches
with respect to which they were compared.

I. INTRODUCTION

Evolutionary algorithms (EAs) draw inspiration from the
process of natural evolution in order to evolve a population
of potential solutions for a given optimization problem
through a series of probabilistic processes. EAs are suitable
approaches to solve multiobjective optimization problems
(MOPs), since they are able to explore simultaneously differ-
ent regions of the search space and produce several elements
of the Pareto optimal set within a single execution.

However, despite the considerable volume of research
in this regard, several studies have shown that even the
most popular multiobjective EAs (MOEAs) scale poorly with
respect to the number of objectives [1], [2], [3]. The main
reason is that Pareto dominance (PD) [4] (which has been
the most commonly adopted relation to discriminate among
solutions in the multiobjective context) loses its effectiveness
when the number of objectives increases. As a consequence,
it is not possible to impose preferences among individuals
for selection purposes and the search process weakens since
it is performed practically at random. MOPs having more
than three objectives are referred to as many-objective opti-
mization problems in the specialized literature [5].

PD’s drawbacks have motivated researchers to explore the
use of alternative ranking methods1 in order to improve
selection when dealing with many-objective problems [6],
[7], [8], [9], [10], [11], [12], [13], [14]. In our previous
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1In this study, we will use indistinctly the terms fitness and rank to refer
to the value which expresses the quality of solutions and which allows to
compare them with respect to each other. Thus, it is equivalent to talk about
ranking or fitness assignment approaches.

work [6], [7], [8], we performed a series of comparative
experiments in order to investigate the behavior provided by
several of such approaches, regarding their scalability with
respect to the number of objectives. In such a study, we
analyzed the degree of discrimination induced by the studied
approaches as well as their ability to guide the search process
when they were incorporated into a generic MOEA.

One of our main findings was that, by using an effective
ranking scheme, it is possible for a MOEA to converge
in many-objective scenarios. Our experiments empirically
showed that, in order to be effective, the ranking method must
provide a fine-grained discrimination by considering how
significantly better is a solution from the others with respect
to each objective. Discarding this information can lead to
wrong discrimination decisions and, can thus, negatively
affect the search capabilities of a MOEA.

Nevertheless, it was also observed that a high selection
pressure tends to sacrifice diversity and usually leads to
converge towards a small region of the trade-off surface.
The population tends to become homogenized from the early
stages of the search process. Thus, the exploratory capabili-
ties of a MOEA clearly deteriorate; practically, under these
conditions the generation of new individuals relies solely on
mutations. Also, the selection process, which is responsible
for guiding the search, is biased because of the selective
advantages of duplicate individuals [15]. Moreover, conver-
gence towards a diversified set of Pareto-optimal solutions
is an important requirement for MOEAs in order to provide
the decision maker with a representative approximation of the
Pareto front. However, the satisfaction of these requirements
for a MOEA is, by itself, a multiobjective problem; the best
diversity is commonly associated with a poor proximity [16].

Generally, diversity is promoted as a secondary criterion
to discriminate among solutions which share the same rank.
However, when using a fine-grained ranking procedure, each
solution usually has a different rank and, therefore, such
type of approach clearly has no effect; so, it is necessary to
develop a more appropriate methodology in order to address
this kind of scenarios.

In this paper, we propose two novel MOEAs whose
peculiarity is the integration of a strict ranking procedure to
favor convergence with an explicit mechanism for diversity
promotion. The basic premise of our approaches is that con-
vergence is to be maintained as the priority. In fact, we would
prefer a poorly spread set of Pareto-optimal solutions rather
than a well-spread set of solutions which are far from the
Pareto-optimal surface [13]. Therefore, diversity preservation
should be done in a way that does not affect convergence. In
order to validate the two proposed MOEAs, we performed a
comparative study where four approaches representative of



the state-of-the-art in the area were considered.
The remainder of this paper is structured as follows:

Section II describes the baseline algorithm on which the
proposed approaches were implemented. In Sections III and
IV we present the details of the proposed MOEAs. Our ex-
perimental setup and the corresponding results are discussed
in Section V. Finally, Section VI provides our conclusions
as well as some possible directions for future research.

II. BASELINE ALGORITHM

The two proposed approaches were implemented over a
basic MOEA whose workflow is shown in Figure 1.
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Fig. 1. Workflow of the baseline algorithm.

Initially, a parent population of N individuals is randomly
generated. Then, this population is ranked and selection is
performed in order to choose individuals for reproduction
(selection-for-variation). A children population of N new
individuals is generated by applying variation operators over
the selected individuals. Finally, parent and children popula-
tions are combined and N individuals are selected to survive
in order to form the new parent population (selection-for-
survival). This process is repeated until a given number of
generations is reached.

The implemented operators are: binary tournament se-
lection based on the rank of solutions. Simulated binary
crossover (ηc = 15) with probability of 1. Polynomial
mutation (ηm = 20) with probability of 1/n, where n is
the number of decision variables.

III. OUR FIRST PROPOSAL: THE CLUSTERING-BASED
ELITIST GENETIC ALGORITHM

Our first proposed approach is called the Clustering-
based Elitist Genetic Algorithm (CEGA) and it consists
of a MOEA which incorporates clustering for diversity
preservation and adopts a fine-grained ranking scheme to
promote convergence. CEGA was implemented based on
the algorithm described in Section II. Figure 2 shows the
workflow of the resulting approach.

In Figure 2 the key elements of CEGA are highlighted
with dotted boxes. On the one hand, it has a procedure which
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Fig. 2. CEGA’s workflow.

assigns to each individual a rank to compete at the selection-
for-variation stage. On the other hand, it has a clustering-
based strategy which guides the selection-for-survival pro-
cess. These elements are to be separately described below.

A. Ranking scheme

CEGA incorporates the Global Detriment (GD) method,
previously proposed in [8], as its discrimination strategy.
According to GD, the fitness of a solution is obtained by
accumulating the difference by which it is inferior to every
other solution, with respect to each objective. Formally, the
fitness of a solution Xi is calculated as follows:2

gd(Xi) =
∑

Xj 6=Xi

M∑
m=1

max(fm(Xi)− fm(Xj), 0) (1)

where M is the number of objectives and fm is the m-th
objective function. A solution Xi is said to be better than
another solution Xj if it holds that gd(Xi) < gd(Xj).

B. Clustering procedure

We implemented a hierarchical agglomerative clustering
procedure.3 Initially, each individual represents a different
cluster and, iteratively, the two most similar clusters are
combined until completing a fixed number of groups (see
Figure 3).

The clustering algorithm will be applied in decision
variable space. We adopted the average linkage criterion
to determine the closeness between a pair of clusters: the
distance between two clusters c1 and c2 is the average of
the Euclidean distances between each pair of solutions Xi

and Xj such that Xi ∈ c1 and Xj ∈ c2. Clustering will be
applied to the 2N individuals in the combined population
(see Figure 2). The purpose of clustering the solutions is to
guide the selection to a well-distributed set of individuals in
order to promote diversity and to enhance the exploratory

2In this study, we assume that all objectives are equally important and,
without loss of generality, we will refer only to minimization problems.

3There exist some other computationally less expensive clustering algo-
rithms which might be explored with different results.
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Fig. 3. Hierarchical agglomerative clustering.

capabilities of the algorithm. Since N individuals are to be
selected, the number of required clusters lies in the range
[2, N ]. All our experiments involve a population size of
N = 100 and, for reasons discussed in Section III-D, we
will use a total of C = N/2 = 50 clusters.

C. Selection strategy

In order to reduce the combined parents and children
population to N individuals, the survivor selection strategy
to be followed is described below:

1) Compute the rank of individuals using the GD method
described in Section III-A.

2) Generate C clusters as described in Section III-B.
3) Select a representative solution from each cluster using

our Distance To The Best Known Solution method [6],
[8]. This method uses a reference point which is to
be referred to as GBEST and is composed by the best
known value for each objective. The best solution will
be the one with the minimum Euclidean distance from
the GBEST point. However, as shown in Figure 4, this
method will be applied locally to discriminate among
solutions within the same cluster.
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Fig. 4. Selection of the representative individual from each cluster.

4) In step 3, C individuals are selected. If C < N , then
we select the remaining N − C individuals according
to their global rank obtained with GD in step 1.

CEGA preserves genetic variation in the population at
the expense of the conservation of (probably) low-quality
individuals through the search process. Specially in many-
objective optimization, it is common the case in which
these bad solutions are Pareto-nondominated with respect to
other high-quality individuals in the population (the so-called
dominance resistant solutions [17]). Thus, we implemented

a filter which removes these outliers from the output of the
algorithm (final population). We consider that a solution Xi

is an outlier if the Euclidean distance of its objective values
from the origin is 1.5× IQR (inter-quartile range) beyond
the third quartile.

D. CEGA’s parameters setting

In order to develop the CEGA algorithm, we imple-
mented 14 different algorithmic designs. Also, we tested
three different measures of the similarity between clusters:
average, single and complete linkage. The number of clusters
that CEGA requires lies in the range [2, N ]. Considering
a population size of N = 100, the values we tested for
this parameter were C = {25, 50, 75}. Finally, we consid-
ered three different ranking approaches which, according to
our previous work [6], [7], [8], provide good convergence.
The combination of these parameters settings leads to a
total of 378 CEGA configurations which were empirically
evaluated: we performed a comparative study where six
scalable test problems (from DTLZ1 to DTLZ6 [18]) and
instances with M = {5, 10, 15, 20, 30, 50} objectives were
considered. Due to obvious space limitations, the details of
such experiments are not provided here. However, the above
description for CEGA corresponds to the (statistically) best-
performing configuration according to the obtained results.

The number of clusters, C, determines the trade-off be-
tween the convergence and diversity provided by CEGA.
That is, the higher the value for C, the better the diversity
at the expense of convergence. Even though we empirically
determined that a value of C = 50 provides an acceptable
performance in our experiments, the proper value for this
parameter should be carefully investigated for the problem
at hand.

IV. OUR SECOND PROPOSAL: MULTI-DIRECTIONAL
FITNESS ASSIGNMENT

Our second proposal is called Multi-Directional Fitness
Assignment (MDFA). As its name indicates, it is a fitness
assignment method whose aim is to guide the search process,
simultaneously, in multiple directions. MDFA uses a set of
weighted vectors in order to set different search directions.
A weighted vector is a set of coefficients which denote the
relative importance of each objective. Thus, we assume that
different weighted vectors will direct the search towards
different regions of the objective space. Figure 5 shows
the workflow of MDFA, which is based on the generic
algorithm described in Section II.

The ranking process is specifically our proposal in this
case. This element has been highlighted with a dotted box
in Figure 5 and it will be described below.

A. Fitness assignment

The fitness assignment process is done to guide both the
selection-for-variation and the selection-for-survival stages.
Considering a population P of size N , this method requires
a set V with N different weighted vectors (|V | = N ). Algo-
rithm 1 describes the proposed fitness assignment procedure.
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Algorithm 1 MDFA’s fitness assignment process.
DEFINE MDFA(P, V )

1: fitness[Xi]←∞ ∀Xi ∈ P
2: -[STAGE 1]-
3: for all v ∈ V do
4: Find Xi ∈ P : wsum(Xi, v) < wsum(Xj , v)

∀Xj ∈ P : Xj 6= Xi

5: if wsum(Xi, v) < fitness[Xi] then
6: fitness[Xi]← wsum(Xi, v)
7: -[STAGE 2]-
8: worst stage1← max(fitness[Xi])
∀Xi ∈ P : fitness[Xi] 6=∞

9: for all Xi ∈ P : fitness[Xi] =∞ do
10: fitness[Xi]← max

v∈V
(wsum(Xi, v)) + worst stage1

END

Initially, all individuals in the population are evaluated for
each v ∈ V by using an aggregating approach. We adopted a
simple but effective weighted sum technique. The weighted
sum for a solution Xi with respect to a vector v is given by:

wsum(Xi, v) =
M∑

m=1

vmfm(Xi) (2)

where vm is the weighting coefficient which denotes the rel-
ative importance of the m-th objective. Then, the individual
with the best performance for each v ∈ V is identified and
the obtained fitness value (with respect to v) is assigned to
it. Since the same individual may be the best for several
weighted vectors, its final fitness will be the best of all the
fitness values obtained for those vectors. Individuals which
were not ranked (since they are not the best for any weighted
vector) use their worst performance for all vectors as their
fitness value. This will allow to prefer solutions showing
a better average performance for the given set of vectors.
Additionally, the fitness of these individuals is penalized by
adding the worst fitness assigned in the first stage. This will
ensure these individuals to be less preferred than the first set
of individuals.

B. MDFA’s parameters setting

We implemented five different algorithmic designs during
the development of MDFA. Also, we experimented with 3
sets of weighted vectors which were generated in different
ways: 1) vectors generated with a tool developed by Hughes
for his MSOPS algorithm [19] (available for academic use
at http://code.evanhughes.org/), 2) vectors of
randomly generated weights in the range [0.5, 1] and 3)
vectors of randomly generated weights in the range [0.25, 1].
The combination of such elements leads to a total of 15
algorithmic configurations. As in the case of CEGA, the 15
configurations for MDFA were statistically evaluated with
respect to six test cases (from DTLZ1 to DTLZ6 [18]) and we
used M = {5, 10, 15, 20, 30, 50} objectives in each problem.
Due to space limitations, the details are not provided here.
However, the above description of MDFA corresponds to
the strategy which performed the best.

The features of the adopted weighted vectors directly
affect the performance of MDFA. According to our ob-
servations, the weighted vectors must satisfy vm > 0 for
all vm ∈ v, for each v ∈ V ; that is, all objectives are to
be considered in each weighted vector. In our experiments,
the set of weighted vectors randomly generated in the range
[0.25, 1] provided the best performance.

V. EXPERIMENTAL RESULTS

We performed an experimental study in order to investi-
gate the behavior of the proposed approaches in terms of
convergence and diversity, as well as their scalability with
respect to the number of objective functions.

A. Experimental setup

Due to space limitations, only four test problems were
adopted for this study: DTLZ{1,3,4,6} [18]. These problems
can be scaled to any number of objectives and decision
variables. The total number of variables in these problems
is n = M + k − 1, where M denotes the number of
objectives and k is a difficulty parameter which was set
to k = 5 for DTLZ1 and k = 10 for the remaining
problems. In this study, we considered problems instances
with M = {5, 10, 15, 20, 30, 50} objectives.

As a convergence measure, we computed the average
distance from the Pareto-nondominated solutions in the ap-
proximation set obtained by the MOEA to the true Pareto
front [20]. Since equations defining the true Pareto front are
known for all the test problems adopted, this measure was
analytically determined.

Additionally, we implemented the Inverted Generational
Distance (IGD) performance measure which allows to eval-
uate both convergence and diversity. IGD is a variation of
the Generational Distance indicator [21] and is defined by

IGD =
(√∑|P∗|

i=1 d
2
i

)
/|P ∗|, where P ∗ is a reference set of

points in the true Pareto front and di is the Euclidean distance
between the i-th solution in P ∗ and the nearest point in the
approximation set obtained by the MOEA.



The two adopted performance measures are to be mini-
mized. For all the approaches compared, we used a popula-
tion size of N = 100 individuals, a maximum number of 300
generations and we performed 31 independent executions of
each experiment.

B. State-of-the-art approaches

We considered four state-of-the-art MOEAs for comparing
our results:
• Nondominated Sorting Genetic Algorithm II (NSGA-

II) [22]. This is perhaps the most representative MOEA
in the literature. NSGA-II implements the Nondom-
inated Sorting, which is a ranking method based on
Pareto dominance, and an explicit mechanism for diver-
sity preservation, the Crowding Distance, which is used
as a secondary criterion to discriminate among equally
ranked solutions.

• Diversity Management Operator (DMO) [23]. DMO
is a methodology to manage the use of diversity preser-
vation operators when dealing with many-objective
problems. According to the authors, diversity promotion
can be harmful in many-objective scenarios, since it
tends to prefer solutions with a poor convergence and,
therefore, to guide the search away from the Pareto
front. DMO is an adaptive strategy: diversity promo-
tion is performed only when it is required.

• Hypervolume Estimation Algorithm (HypE) [24].
HypE is a many-objective optimizer which uses the
hypervolume metric to guide the search. Since the calcu-
lation of this metric becomes computationally expensive
with the increase in the number of objectives, HypE
approximates it by using a Monte Carlo simulation.

• Multiple Single Objective Pareto Sampling (MSOPS)
[19]. MSOPS was proposed as an alternative to deal
with many-objective problems. As our MDFA algo-
rithm, MSOPS uses a set of weighted vectors to guide
the search in multiple directions simultaneously.

For a more detailed description of these approaches, the
reader is referred to their original publications.

C. Convergence results

Figures 6 to 9 present the results obtained by the studied
algorithms for problems DTLZ{1,3,4,6}, respectively, with
respect to the convergence metric described in Section V-A.

From these figures it is clear that our algorithms CEGA
and MDFA performed the best for this experiment. For all
the instances of the adopted test problems, the two proposed
MOEAs reached the lowest values for the convergence
metric, significantly outperforming the 4 approaches taken
from the literature. By specifically comparing our approaches
with respect to each other, we can see that for problems
DTLZ1 and DTLZ4 (Figures 6 and 8, respectively) CEGA
achieved better results than those obtained by MDFA,
and the superiority of CEGA becomes more evident as
the number of objectives increases. On the other hand, for
problems DTLZ3 and DTLZ6 (Figures 7 and 9, respectively)

the differences between our two proposed algorithms are not
significant enough as to argue superiority of any of them.

DMO showed a better performance than NSGA-II in
most instances of this experiment. These results confirm that,
as stated by Adra and Fleming [23], diversity promotion
mechanisms can be harmful when many objectives are to
be optimized, supporting the need for a more appropriate
management of these operators when are combined with a
Pareto-based ranking procedure. However, the improvements
of DMO are not so significant as to achieve good values
for the convergence metric, since this method is based on
Pareto dominance which, as discussed in Section I, loses its
effectiveness to guide the search process as the number of
objectives increases. Among the considered state-of-the-art
MOEAs, the MSOPS algorithm performed the best in most
cases, while the ranking among the three other approaches
is not clear.

D. IGD metric results

This section provides the results obtained for the IGD
metric described in Section V-A. Figures 10 to 13 show the
results obtained by the studied MOEAs at solving problems
DTLZ{1,3,4,6}, respectively.

From these figures, we can clearly see that CEGA and
MDFA achieved the best results for the IGD metric in most
configurations of this experiment.

In the case of the problem DTLZ1 (Figure 10), the
results of MSOPS are very close to those attained by
our approaches in all instances. However, the size of its
corresponding boxes and outliers indicate a more inconsistent
behavior. Regarding problems DTLZ3 and DTLZ6 (Figures
11 and 13, respectively), the superiority of our proposed
approaches is more clear.

On the other hand, some important conclusions can be
drawn from the results for problem DTLZ4 (Figure 12).
As we can see, for all the instances of this problem, some
state-of-the-art approaches performed equal or better than
ours. For the smallest instance (M = 5) our algorithms
performed the worst, while MSOPS achieved the best
results. However, these differences were reduced for larger
instances, where HypE, MSOPS as well as our proposed
approaches CEGA and MDFA behaved similarly, com-
peting in performance at the top of the ranking. Contrasting
these results with those for the convergence metric in Section
V-C, it is possible to observe that both CEGA and MDFA
are inferior in their ability to maintain a diversified set of
solutions. Although state-of-the-art approaches did not show
the best convergence, they are superior enough at maintaining
diversity as to achieve competitive results with respect to the
IGD metric. It is important to mention that similar results
were obtained for problems DTLZ2 and DTLZ5, which were
not reported here due to space constraints.

When comparing the performance of our approaches, it
is not possible to distinguish significant improvements to
claim the superiority of one approach with respect to the
other. However, CEGA achieved slightly better results



Fig. 6. Convergence metric. DTLZ1 problem.
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Fig. 7. Convergence metric. DTLZ3 problem.
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Fig. 8. Convergence metric. DTLZ4 problem.
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Fig. 9. Convergence metric. DTLZ6 problem.
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than MDFA in most cases. Regarding state-of-the-art ap-
proaches, MSOPS showed the best performance in this
experiment, particularly as the number of objectives was
increased.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we proposed CEGA and MDFA, two new
MOEAs to deal with many-objective optimization problems.
The peculiarity of the proposed MOEAs is the integration of

a fine-grained ranking procedure with an explicit mechanism
for diversity preservation. Thus, these approaches provide
a strong selection pressure to enhance convergence while
guiding the search towards a well-spread set of solutions.

In order to validate our two proposed MOEAs, we per-
formed a comparative study in which four state-of-the-art
approaches were considered. The results of this study indi-
cated that CEGA and MDFA provide a good performance



Fig. 10. IGD metric. DTLZ1 problem.
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Fig. 11. IGD metric. DTLZ3 problem.
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Fig. 12. IGD metric. DTLZ4 problem.

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

N
S

G
A

−
II

D
M

O

H
yp

E

M
S

O
P

S

C
E

G
A

M
D

F
A

N
S

G
A

−
II

D
M

O

H
yp

E

M
S

O
P

S

C
E

G
A

M
D

F
A

N
S

G
A

−
II

D
M

O

H
yp

E

M
S

O
P

S

C
E

G
A

M
D

F
A

N
S

G
A

−
II

D
M

O

H
yp

E

M
S

O
P

S

C
E

G
A

M
D

F
A

N
S

G
A

−
II

D
M

O

H
yp

E

M
S

O
P

S

C
E

G
A

M
D

F
A

N
S

G
A

−
II

D
M

O

H
yp

E

M
S

O
P

S

C
E

G
A

M
D

F
A

IG
D

10−−1

100 5 Objectives 10 Objectives 15 Objectives 20 Objectives 30 Objectives 50 Objectives

Fig. 13. IGD metric. DTLZ6 problem.
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in terms of convergence, and that such behavior remains
consistent as the number of objectives increases. The success
of our proposed approaches is mainly due to the use of an
appropriate discrimination scheme, since this was identified
in our previous work to be a key aspect to perform an
effective search through high-dimensional objective spaces.

Nevertheless, our results for the IGD metric indicate
that our proposed approaches are less effective in terms

of diversity preservation than the considered state-of-the-
art algorithms. Thus, the development of algorithms being
able to converge in high-dimensional objective spaces, while
maintaining good diversity, remains as a research challenge.

Due to space limitations we have presented results for
only four test cases, but similar results (not reported here)
were obtained for two additional problems. However, it
is necessary to extend these experiments to a larger set



of test functions as well as to adopt real-world many-
objective problems in order to generalize our results. Also,
the consideration of a wider set of performance metrics is
required in order to derive more general conclusions about
the performance of the studied approaches.
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