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Abstract. The use of multi-objective evolutionary algorithms (MOEAs)
that employ a set of convex weight vectors as search directions, as a ref-
erence set or as part of a quality indicator has been widely extended.
However, a recent study indicates that these MOEAs do not perform
very well when tackling multi-objective optimization problem (MOPs),
having different Pareto front geometries. Hence, it is necessary to propose
MOEAs whose good performance is not strongly depending on certain
Pareto front shapes. In this paper, we propose a Pareto-front shape in-
variant MOEA that combines the individual effect of two indicator-based
density estimators. We selected the weakly Pareto-compliant IGD+ in-
dicator to promote convergence and the Riesz s-energy indicator that
leads to uniformly distributed point sets for the large class of rectifiable
d-dimensional manifolds. Our proposed approach, called CRI-EMOA,
is compared with respect to MOEAs that adopt convex weight vectors
(NSGA-III, MOEA/D and MOMBI2) as well as to MOEAs not using
this set of vectors (∆p-MOEA and GDE-MOEA) on MOPs belonging to
the test suites DTLZ, DTLZ−1, WFG and WFG−1. Our experimental
results show that CRI-EMOA outperforms the considered MOEAs, re-
garding the hypervolume indicator and the Solow-Polasky indicator, on
most of the test problems and that its performance does not depend on
the Pareto front shape of the problems.
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1 Introduction

In the last 30 years, Multi-Objective Evolutionary Algorithms (MOEAs), which
are population-based and gradient-free metaheuristics, have arisen as a popular
approach to solve problems that involve the simultaneous optimization of several,
often conflicting, objective functions [1]. These are the so-called multi-objective
optimization problems (MOPs). MOEAs employ the principles of natural evo-
lution to drive a set of objective vectors towards the Pareto optimal front that
represents the solution to a MOP. In this regard, solving a MOP involves finding
the best possible trade-offs among its objectives. The particular set that yields
the best possible trade-offs among the objectives is known as the Pareto Optimal
Set (P∗) and its image is known as the Pareto Optimal Front (PF∗).

Currently, there are different strategies for designing MOEAs, such as the
decomposition of a MOP into several single-objective optimization problems [2],
the use of reference sets to guide the population towards the Pareto front [3],
and the generation of selection mechanisms based on (unary) quality indicators1

[4]. A wide variety of state-of-the-art MOEAs based on the previously indicated
strategies employ a set of convex weight vectors as search directions for the
decomposition, in a method to construct reference sets, or as part of the definition
of a quality indicator. A vector w ∈ Rm is a convex weight vector if

∑m
i=1 wi =

1 and wi ≥ 0 for all i = 1, . . . ,m. These weight vectors lie on an (m − 1)-
simplex. However, Ishibuchi et al. [5] empirically showed that the use of convex
weight vectors overspecializes MOEAs on MOPs whose Pareto fronts are strongly
correlated to the simplex formed by such weight vectors. In other words, such
MOEAs are unable to produce good results when tackling MOPs whose Pareto
fronts are not highly coupled with the (m − 1)-simplex. In consequence, more
general MOEAs need to be designed to avoid this overspecialization on specific
benchmark problems such as the DTLZ and the WFG test suites.

There are MOEAs that do not use in any of their mechanisms a set of convex
weight vectors. An example is the Nondominated Sorting Genetic Algorithm II
(NSGA-II) [6] which uses Pareto dominance2 in its main selection mechanism
and crowding distance as its second selection mechanism. However, the selection
pressure of NSGA-II dilutes when tackling MOPs having four or more objective
functions. Additionally, the crowding distance density estimator cannot produce
evenly distributed Pareto fronts in high dimensionality. Another example is the
S Metric Selection Evolutionary Multi-Objective Algorithm (SMS-EMOA) [7]
which is a steady-state MOEA that replaces the crowding distance of NSGA-
II by the contribution of points to the hypervolume (HV) indicator. The HV
is a performance indicator that measures convergence and maximum spread
simultaneously. HV is the only unary indicator which is known to be Pareto-

1 A unary indicator I is a function that assigns a real value to set of points A =
{a1, . . . ,aN}, where ai ∈ Rm.

2 Given u,v ∈ Rm, u Pareto dominates v (denoted as u ≺ v) if and only if ∀i =
1, . . . ,m, ui ≤ vi and there exists at least an index j ∈ {1, . . . ,m} : uj < vj .
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compliant3, but its use in MOEAs with many objectives is limited due to its
high computational cost. In 2015, Menchaca-Méndez and Coello proposed an
environmental selection mechanism based on the Generational Distance (GD)
indicator [8] coupled with a diversity mechanism that adopts ε dominance to
divide the objective space into hypercubes where the solutions are distributed.
A clear disadvantage of GDE-MOEA is the determination of the ε value which is
required to divide high-dimensional objective spaces and which has an impact on
the generation of evenly distributed solutions. Finally, ∆p-MOEA, proposed by
Menchaca et al. [9], is an improvement of GDE-MOEA in which instead of using
GD in its selection mechanism, adopts the ∆p indicator. ∆p-MOEA improves
the diversity of the solutions produced, but it still depends on the calculation of
the ε value to construct a reference set.

In order to overcome the difficulties of MOEAs that do not use weight vectors,
we propose here an MOEA that takes advantage of the combination/synergy of
the individual effect of two density estimators: one based on the IGD+ indicator
[10] and another one based on the Riesz s-energy indicator [11]. The main idea of
our Evolutionary Multi-Objective Algorithm based on the Combination of the
Riesz s-energy and IGD+ (CRI-EMOA) is to analyze the convergence behav-
ior during the search process in a statistical manner. If convergence stagnates,
the generation of evenly distributed solutions is promoted using Riesz s-energy;
otherwise, the IGD+-based density estimator will drive the population to PF∗.

The remainder of this paper is organized as follows. Section 2 provides some
basic definitions. Our proposed approach is described in Section 3. Our exper-
imental results are discussed in Section 4. Finally, Section 5 outlines our main
conclusions and some possible paths for future work.

2 Background

In this work, we focus, without loss of generality, on unconstrained MOPs that
minimize all the objective functions. A MOP is formally defined as follows:

min
x∈Ω

F (x) = (f1(x), f2(x), . . . , fm(x))T , (1)

where x ∈ Ω ⊆ Rn is the vector of decision variables and Ω is the decision
variable space. fi : Rn → R, i = 1, 2, . . . ,m are the objective functions, where
m ≥ 2. MOPs having four or more objective functions are called many-objective
optimization problems (MaOPs).

In the following, two unary quality indicators are described. For this purpose,
let A represent an approximation to PF∗ and Z ⊂ Rm be a reference set. On
the one hand, Ishibuchi et al. proposed the Inverted Generational Distance plus
(IGD+) indicator in 2015 [10]. This indicator measures the average distance
between Z and A, using a modified Euclidean distance that takes into account

3 Let A and B be two non-empty sets of m-dimensional vectors and let I be a unary
indicator. I is Pareto-compliant if and only if A dominates B implies I(A) > I(B)
(assuming maximization of I).
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Pareto dominance. Due to this modified distance, IGD+ is a weakly Pareto
compliant indicator. It is mathematically defined as follows:

IGD+(A,Z) =
1

|Z|
∑
z∈Z

min
a∈A

d+(a, z), (2)

where d+(a, z) =
√∑m

k=1 max(ai − zi, 0)2 is the proposed modified Euclidean
distance. On the other hand, Hardin and Saff proposed the Riesz s-energy in-
dicator [11] in order to measure the even distribution of a set of points in d-
dimensional manifolds. Its mathematical definition is given by:

Es(A) =
∑
i 6=j

‖ai − aj‖−s (3)

where s > 0 is a fixed parameter that controls the degree of uniformity of the
solutions in A. Riesz s-energy has been found to lead to uniformly distributed
point sets for the large class of rectifiable d-dimensional manifolds. Moreover, s
is not a shape-dependent parameter [12].

3 Our Proposed Approach

Algorithm 1 CRI-EMOA general framework

Require: Tw, β̄, θ̄
Ensure: Pareto front Approximation
1: Randomly initialize population P
2: t← 0
3: while stopping criterion is not fulfilled do
4: q ← V ariation(P )
5: Q← P

⋃
{q}

6: Normalize Q
7: {L1, L2, . . . , Lk} ← nondominated-sorting(Q)

8: zmax
i =

{
f∗i = maxx∈L1 fi(x), f∗i > zmax

i

zmax
i , otherwise

9: SHV[t mod Tw]← HVappr(t)
10: Statistically analyze the last Tw samples in SHV and generate β and θ
11: if k = 1 and β ≤ β̄ and θ ∈ [−θ̄, θ̄] then
12: aworst = arg maxa∈L1 CEs(a, L1)
13: else
14: if |Lk| > 1 then
15: aworst = arg mina∈Lk CIGD+(a, Lk, L1)|
16: else
17: aworst is equal to the sole individual in Lk

18: P ← Q \ {aworst}
19: t← t+ 1
20: return P
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Quality indicators can be integrated into MOEAs in three different ways: 1)
in the environmental selection mechanism, 2) as an update rule for archives, and
3) as density estimators (DEs). From these approaches, indicator-based DEs
(IB-DEs) have been widely used. An IB-DE is the secondary selection mech-
anism of an MOEA. IB-DEs impose a total order among the solutions of an
approximation set by calculating the individual contribution of each solution to
the indicator value. Then, the worst-contributing solution is deleted from the
population. In this work, we employed IGD+ and Riesz s-energy as IB-DEs. Re-
garding IGD+, the individual contribution C of a solution a ∈ A is defined as
follows: CIGD+(a,A,Z) = |IGD+(A,Z)−IGD+(A\{a},Z)|. On the other hand,
for Riesz s-energy, the individual contribution of a ∈ A is given by: CEs(a,A) =
1
2 [Es(A)−Es(A\{a})]. On the basis of the above equations, IGD+-DEs and Es-
DE are respectively defined as follows: (1) aworst = arg mina∈A CIGD+(a,A,Z),
and (2) aworst = arg maxa∈A CEs(a,A), where aworst denotes the solution having
the wost-contributing value.

(a) (b)
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Fig. 1: (a) The Hypervolume approximation adds up all the distances between
the reference point and each nondominated solution, (b) linear model of the
convergence behavior created using the last Tw measures of HVappr.

Algorithm 1 describes our proposed approach, called CRI-EMOA. It is a
steady-state MOEA that adopts Pareto dominance in its environmental selection
mechanism (using the nondominated sorting algorithm [6] in line 7) and an IB-
DE as its secondary selection criterion. The main idea of CRI-EMOA is to exploit
the properties of IGD+ and Riesz s-energy by combining the individual effect
of the corresponding IB-DEs. In other words, we want to drive the population
towards the Pareto front using IGD+-DE and, simultaneously, generating an
evenly distributed approximation to the Pareto front through Es-DE. To this
end, CRI-EMOA switches between the two IB-DEs depending on a statistical
analysis of the convergence behavior of the population, using an approximation
to the hypervolume indicator (denoted as HVappr). HVappr is a simplification of



6 Falcón-Cardona, Coello Coello and Emmerich

the proposal of Ishibuchi et al. [13] and it adds up all the distances between an
anti-optimal reference point zmax and the set of current nondominated solutions
in L1 (see Fig. 1a). In line 8, each zmax

i , i = 1, . . . ,m is updated if and only
a worse objective value in L1 is found and, then, HVappr(t) is computed such
that the obtained value is stored in a circular array SHV of size Tw. After the
first Tw generations, SHV will be full, and we can statistically analyze at each
iteration the last Tw samples of HVappr as shown in Fig. 1b. In line 10, the
mean µ and the standard deviation σ of the samples are computed such that
the coefficient4 of variation β = σ/µ is calculated. Additionally, the angle θ of a
linear regression model of the samples is computed. Based on β and θ, we can
exploit the properties of a certain IB-DE. If the number k of ranks produced
by the nondominated sorting algorithm is equal to one and it holds that β ≤ β̄
and θ ∈ [−θ̄, θ̄] (where β̄ and θ̄ are user-supplied parameters), it means that
the convergence behavior is stagnated since there is not too much variation of
HVappr and the linear model cannot be considered as ascending or descending. In
consequence, we have to promote diversity using Es-DE in line 12. Otherwise,
if |Lk| > 1, IGD+-DE is selected in line 15 in furtherance of improving the
convergence of the population. In case |Lk| = 1, the sole individual in Lk is
selected for elimination. Finally, the selected solution aworst is deleted from the
population, and a new generation is created.

4 Experimental Results

In this section, we analyze the performance of CRI-EMOA5 when compared to
several state-of-the-art MOEAs: NSGA-III [3], MOEA/D [2], MOMBI2 [4], ∆p-
MOEA [9] and GDE-MOEA [8]. The adopted MOEAs are classified into two
main groups: MOEAs based on convex weight vectors and MOEAs not using
convex weight vectors. NSGA-III6, MOEA/D7 and MOMBI28 belong to the first
group while the remaining MOEAs9 belong to the second group. We adopted
MOPs from the DTLZ and WFG test suites, as well as from the minus versions
of them, denoted as DTLZ−1 and WFG−1 that were proposed by Ishibuchi et
al. [5]. The use of the minus versions of the benchmarks is to determine the
performance of the considered MOEAs on MOPs whose Pareto fronts are not

4 β is a standardized measure of dispersion that shows the extent of variability to the
mean of the population.

5 The source code of CRI-EMOA is available at http://computacion.cs.cinvestav.
mx/~jfalcon/CRI-EMOA.html.

6 We used the implementation available at: http://web.ntnu.edu.tw/~tcchiang/

publications/nsga3cpp/nsga3cpp.htm.
7 We used the implementation available at: http://dces.essex.ac.uk/staff/zhang/
webofmoead.htm.

8 We used the implementation available at http://computacion.cs.cinvestav.mx/

~rhernandez/.
9 The source code of ∆p-MOEA and GDE-MOEA was provided by its author, Adriana

Menchaca Méndez.

http://computacion.cs.cinvestav.mx/~jfalcon/CRI-EMOA.html
http://computacion.cs.cinvestav.mx/~jfalcon/CRI-EMOA.html
http://web.ntnu.edu.tw/~tcchiang/publications/nsga3cpp/nsga3cpp.htm
http://web.ntnu.edu.tw/~tcchiang/publications/nsga3cpp/nsga3cpp.htm
http://dces.essex.ac.uk/staff/zhang/webofmoead.htm
http://dces.essex.ac.uk/staff/zhang/webofmoead.htm
http://computacion.cs.cinvestav.mx/~rhernandez/
http://computacion.cs.cinvestav.mx/~rhernandez/
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correlated to the simplex formed by a set of convex weight vectors. Additionally,
the Pareto fronts of these MOPs cover a wide range of geometries such as linear,
concave, degenerated, disconnected and mixed. In each case, we employed 3, 5
and 10 objective functions. In order to assess the performance of our proposed
CRI-EMOA and the other MOEAs adopted in our comparative study, we applied
HV and the Solow-Polasky indicator [14] for assessing convergence and diversity,
respectively. For each MOEA in each test instance, we performed 30 independent
executions.

4.1 Parameters settings

For a fair comparison, we set the population size N of all MOEAs, equals to
the number of convex weight vectors that some of them employed, i.e., N =
CH+m−1
m−1 , where m is the number of objective functions and H is a user-supplied

parameter. Hence, in each case, the tuple (m,H,N) was set as follows: (3, 14,
120), (5, 5, 126), and (10, 3, 220). For the considered number of objective func-
tions, we set 50×103, 70×103, and 120×103 function evaluations as our stopping
criterion, respectively. Since our approach and all the considered MOEAs are ge-
netic algorithms that use Simulated Binary Crossover and Polynomial-based Mu-
tation as variation operators, we set the crossover probability (Pc), the crossover
distribution index (Nc), the mutation probability (Pm), and the mutation dis-
tribution index (Nm) as follows. For MOPs having three objective functions
Pc = 0.9 and Nc = 20, while for MaOPs Pc = 1.0 and Nc = 30. In all cases,
Pm = 1/n, where n is the number of decision variables, and Nm = 20. Regarding
both the WFG and the WFG−1 test problems with 3, 5 and 10 objectives, we
set the number of variables as n = 26, 30 and 40, in each case using the following
position-related parameters: 2, 4, and 9. Considering the DTLZ and DTLZ−1

instances, the number of variables is equal to n = m+K − 1, where K = 5 for
DTLZ1 and DTLZ1−1, K = 10 for DTLZ2, DTLZ5 and their minus versions,
and K = 20 for DTLZ7 and DTLZ7−1. For MOEA/D, the neighborhood size
was set to 20 in all cases. Regarding CRI-EMOA, we employed Tw = N , β̄ = 0.1
and θ̄ = 0.25 degrees for all instances.

4.2 Discussion of results

Tables 1 and 2 show the mean and standard deviation (in parentheses) obtained
by all the compared algorithms for the hypervolume and the Solow-Polasky10

indicators, respectively. The two best values among the MOEAs are highlighted
using gray scale, where the darker tone corresponds to the best value. Aiming
to obtain the statistical confidence of our results, we performed a one-tailed
Wilcoxon test using a significance level of 0.05. Based on the Wilcoxon test, the
symbol # is placed when CRI-EMOA performs better than another MOEA in
a statistically significant way.

10 The Solow-Polasky indicator requires a parameter θ that was set to 10.
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Regarding the hypervolume indicator, CRI-EMOA is the best algorithm since
it obtained the first place in 50% of the test problems. The second place cor-
responds to NSGA-III because it was the best MOEA in 8 out of 42 problems.
However, it is worth emphasizing that for the minus benchmarks, NSGA-III only
obtained one first place, specifically for DTLZ7−1 with 3 objective functions. In
this regard, MOEA/D and MOMBI2 have just one first place in these minus
benchmarks, and the remaining of their first places belong to the original DTLZ
and WFG test suites. In consequence, it is clear the overspecialization of MOEAs
using convex weight vectors on these benchmarks. Considering ∆p-MOEA and
GDE-MOEA, their performance is not so high. In fact, GDE-MOEA never ob-
tains the first place and ∆p-MOEA is the best algorithm in four test instances.

The Solow-Polasky indicator supports the good results of CRI-EMOA. This
indicator measures the number of species present in the population. Thus, a
larger value of the indicator is better because it means a good diversity of solu-
tions. Our proposed approach produces well-distributed Pareto fronts in 26 out
of 42 test instances (see Fig. 2). As a matter of fact, in most cases, when CRI-
EMOA obtains the best HV value, it also obtains the best Solow-Polasky value.
Hence, this a first insight that the synergy between IGD+ and Riesz s-energy is
actually responsible of its good performance in both convergence and diversity.
Regarding the other MOEAs, NSGA-III and ∆p-MOEA tie in second place since
they obtained the best indicator value in 5 problems. Once again, NSGA-III can
only produce good results for the original DTLZ and WFG problems. The worst
algorithm regarding this indicator is MOMBI2.

For DTLZ1 and DTLZ1−1, which have a linear Pareto front, CRI-EMOA
does not obtain the best HV value. However, the Solow-Polasky indicator re-
flects that our approach has a better diversity. The top part of Fig. 2 shows
the DTLZ1−1 fronts produced by all the MOEAs, and it is evident that CRI-
EMOA produces an evenly distributed front in comparison with the adopted
MOEAs. MOEA/D and MOMBI2 generate numerous solutions in the boundary
of the front, while ∆p-MOEA, GDE-MOEA and NSGA-III do not produce well-
distributed solutions. For convex problems, i.e., DTLZ2−1 and DTLZ5−1, it is
evident that CRI-EMOA has a good performance. This is because it entirely cov-
ers the Pareto front, unlike the other MOEAs which are unable to do the same.
This effect is illustrated in the second row of Fig. 2. For more complicated prob-
lems such as DTLZ7 and WFG2−1 that assess the ability of a MOEA to manage
subpopulations, it is evident that CRI-MOEA produces better results. In the
light of these results, we can claim that CRI-EMOA is a more general optimizer
because its performance is not strongly linked to certain types of benchmark
problems.

5 Conclusions and Future Work

In this paper, we propose an Evolutionary Multi-Objective Algorithm based
on the combination of the Riesz s-energy and IGD+ indicators. Our proposed
approach, called CRI-EMOA, overcomes the overspecialization on certain bench-
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Table 1: Mean and standard deviation (in parentheses) of the Hypervolume in-
dicator. A symbol # is placed when CRI-EMOA performed significantly better
than the other approaches based on a one-tailed Wilcoxon test using a signifi-
cance level of α = 0.05. The two best values are shown in gray scale, where the
darker tone corresponds to the best value.

MOP Dim. CRI-EMOA NSGA-III MOEA/D MOMBI2 ∆p-MOEA GDE-MOEA

DTLZ1
3

9.739039e-01
(3.858675e-04)

9.741141e-01
(3.120293e-04)

9.740945e-01
(2.619649e-04)

9.663444e-01#
(1.080932e-03)

9.413310e-01#
(1.964370e-02)

9.676446e-01#
(2.362618e-03)

5
9.877798e-01

(3.117917e-03)
9.986867e-01

(3.379577e-05)
9.986355e-01

(3.735697e-05)
9.904662e-01

(1.120127e-03)
3.320501e-02#
(8.565974e-02)

4.840903e-01#
(4.857106e-01)

10
9.963635e-01

(1.065991e-03)
9.999939e-01

(2.139857e-06)
9.996746e-01

(1.025281e-04)
9.961538e-01

(9.574496e-04)
3.040882e-02#
(5.310077e-02)

0.000000e+00#
(0.000000e+00)

DTLZ2
3

7.419537e+00
(3.056980e-03)

7.421572e+00
(6.064709e-04)

7.421715e+00
(1.372809e-04)

7.380040e+00#
(7.076656e-03)

7.371981e+00#
(3.875638e-02)

7.350569e+00#
(2.220661e-02)

5
3.157090e+01
(2.415933e-02)

3.166721e+01
(6.548007e-04)

3.166781e+01
(5.129480e-04)

3.149886e+01#
(2.619865e-02)

3.145814e+01#
(6.277721e-02)

3.139858e+01#
(7.085084e-02)

10
1.021699e+03
(4.906893e-01)

1.023905e+03
(1.423610e-03)

1.023902e+03
(4.192719e-03)

1.022163e+03
(4.299615e-01)

1.022172e+03
(3.206973e-01)

8.223136e+02#
(4.847301e+01)

DTLZ5
3

6.103498e+00
(2.913259e-04)

6.086240e+00#
(3.462620e-03)

6.046024e+00#
(2.227008e-04)

6.018466e+00#
(3.166178e-03)

6.083103e+00#
(4.024434e-02)

6.070736e+00#
(4.307412e-02)

5
2.306362e+01
(2.295313e-01)

2.162912e+01#
(9.476133e-01)

2.328373e+01
(1.640165e-02)

2.175597e+01#
(2.378197e-01)

2.152316e+01#
(1.422545e+00)

1.943602e+01#
(1.234198e+00)

10
6.453781e+02

(4.080592e+01)
6.172582e+02#
(4.132326e+01)

7.043390e+02
(1.714256e+00)

6.054385e+02#
(4.091687e+01)

5.909772e+02#
(7.644220e+01)

9.641241e+01#
(1.554238e+01)

DTLZ7
3

1.634605e+01
(5.285233e-02)

1.631926e+01#
(1.253568e-02)

1.620770e+01#
(1.240925e-01)

1.613885e+01#
(3.101462e-02)

1.612577e+01#
(1.553168e-01)

1.615480e+01#
(1.492618e-01)

5
1.281085e+01
(1.974810e-01)

1.284401e+01
(3.182259e-02)

6.515913e+00#
(1.170945e+00)

1.269646e+01#
(4.907749e-02)

1.255217e+01#
(1.341411e-01)

1.234590e+01#
(2.234605e-01)

10
3.479852e+00
(2.403388e-01)

1.806637e+00#
(4.781492e-01)

2.756082e-03#
(7.839814e-03)

3.033892e+00#
(5.070947e-02)

3.027342e+00#
(9.110566e-02)

2.080502e+00#
(4.312007e-01)

WFG1
3

5.056544e+01
(1.657420e+00)

4.917540e+01#
(1.742752e+00)

4.994533e+01
(2.615320e+00)

5.250059e+01
(1.702362e+00)

3.624458e+01#
(9.571499e-01)

3.857628e+01#
(9.613983e-01)

5
4.509188e+03

(1.444159e+02)
4.049661e+03#
(1.445036e+02)

4.522924e+03
(1.145447e+02)

4.682300e+03
(7.687667e+01)

3.198417e+03#
(8.802857e+01)

3.499936e+03#
(7.077142e+01)

10
5.037589e+09

(8.535179e+07)
4.333786e+09#
(4.767509e+07)

4.626119e+09#
(9.082857e+07)

5.028893e+09
(6.062765e+07)

3.422833e+09#
(2.182108e+07)

3.554077e+09#
(4.491835e+07)

WFG2
3

1.000262e+02
(2.196919e-01)

1.000303e+02
(2.020421e-01)

9.425491e+01#
(1.887090e+00)

9.995196e+01#
(2.218338e-01)

2.860787e+01#
(1.562061e-01)

2.878405e+01#
(3.147546e-02)

5
1.008420e+04

(5.737764e+01)
1.022660e+04

(2.444328e+01)
9.147103e+03#
(2.989196e+02)

1.021265e+04
(2.425440e+01)

2.356563e+03#
(1.302041e+01)

2.352252e+03#
(2.298487e+01)

10
1.348499e+10

(4.708062e+07)
1.343510e+10#
(5.838755e+07)

1.153362e+10#
(4.307707e+08)

1.346239e+10
(6.456777e+07)

2.433110e+09#
(1.405830e+07)

2.417620e+09#
(3.423298e+07)

WFG3
3

7.306197e+01
(3.258533e-01)

7.359113e+01
(3.698540e-01)

6.949014e+01
(2.043137e+00)

7.476737e+01
(2.010304e-01)

2.974536e+01
(2.198130e-01)

3.026476e+01
(9.539859e-02)

5
6.735962e+03

(9.568603e+01)
6.705622e+03

(6.623165e+01)
5.831355e+03#
(1.740491e+02)

6.720322e+03
(8.790247e+01)

2.425136e+03#
(2.737458e+01)

2.467475e+03#
(5.330311e+00)

10
8.262095e+09

(2.467236e+08)
7.851751e+09#
(1.420734e+08)

3.407782e+09#
(4.406816e+08)

7.150575e+09#
(8.942471e+08)

2.435088e+09#
(7.572200e+07)

2.460728e+09#
(2.651078e+07)

DTLZ1−1
3

2.237019e+07
(1.096230e+05)

2.044422e+07#
(2.230718e+05)

1.708422e+07#
(2.776295e+05)

1.754720e+07#
(1.024912e+04)

2.249206e+07
(9.308520e+04)

2.178413e+07#
(1.919526e+05)

5
5.990400e+10

(5.969126e+09)
1.653440e+10#
(7.395153e+09)

1.275157e+10#
(5.929635e+09)

1.829497e+10#
(1.178680e+08)

8.421535e+10
(5.019922e+09)

7.834908e+10
(5.592427e+09)

10
2.331601e+15

(1.332180e+15)
1.690928e+16

(1.594681e+16)
2.068669e+10#
(2.776909e+10)

3.254959e+17
(7.964585e+16)

4.163772e+17
(1.784438e+17)

1.959914e+17
(7.692566e+16)

DTLZ2−1
3

1.255756e+02
(1.372903e-01)

1.226427e+02#
(4.332124e-01)

1.241646e+02#
(1.767939e-01)

1.246298e+02#
(1.975120e-02)

1.202429e+02#
(1.235826e+00)

1.232392e+02#
(4.384877e-01)

5
1.823404e+03

(5.652832e+00)
1.529187e+03#
(3.829295e+01)

1.570781e+03#
(5.466206e+00)

1.377041e+03#
(2.801096e+00)

1.615070e+03#
(3.622796e+01)

1.684100e+03#
(2.422012e+01)

10
3.952305e+05

(6.000728e+03)
2.480210e+05#
(3.215706e+04)

1.837497e+05#
(3.540744e+03)

1.941735e+05#
(4.318334e+03)

4.467775e+05
(1.153133e+04)

4.295481e+05
(1.104582e+04)

DTLZ5−1
3

1.240446e+02
(1.543643e-01)

1.212729e+02#
(4.506920e-01)

1.230132e+02#
(1.173182e-01)

1.233805e+02#
(2.897257e-02)

1.191790e+02#
(1.218659e+00)

1.217996e+02#
(3.913095e-01)

5
1.830136e+03

(8.376583e+00)
1.526551e+03#
(4.186892e+01)

1.532378e+03#
(6.612506e+00)

1.490703e+03#
(3.599646e+00)

1.550531e+03#
(3.545733e+01)

1.663295e+03#
(2.143198e+01)

10
5.043244e+05

(5.933536e+03)
2.353908e+05#
(2.658733e+04)

1.618586e+05#
(2.870596e+03)

1.786897e+05#
(4.650613e+03)

3.841427e+05#
(1.267929e+04)

3.788162e+05#
(1.409232e+04)

DTLZ7−1
3

2.139263e+02
(1.705184e+00)

2.144482e+02
(1.844494e-02)

2.144785e+02
(3.401603e-03)

2.144350e+02
(1.484695e-02)

2.141398e+02
(6.446048e-01)

2.117720e+02#
(5.620357e+00)

5
1.193104e+03

(7.463449e+00)
1.190442e+03#
(4.159670e+00)

6.388549e+02#
(5.254422e+01)

1.197724e+03
(5.760920e+00)

1.195714e+03
(1.560565e+00)

1.167397e+03#
(3.067229e+01)

10
6.493424e+04

(1.799575e+02)
6.282093e+04#
(1.236603e+02)

7.555843e+03#
(6.397426e+02)

6.278498e+04#
(5.606912e+02)

6.374490e+04#
(1.597907e+02)

6.336153e+04#
(1.579373e+02)

WFG1−1
3

4.721465e+02
(5.118363e+01)

5.214593e+02
(2.613138e+01)

3.653092e+02#
(2.305800e+00)

4.717969e+02#
(4.848793e+01)

4.289752e+02#
(4.089696e+01)

4.226979e+02#
(4.328855e+01)

5
8.957760e+04

(1.295509e+04)
6.766707e+04#
(3.634016e+03)

4.312409e+04#
(1.486578e+03)

8.604789e+04
(1.028243e+04)

6.687040e+04#
(8.125469e+03)

5.398842e+04#
(6.022448e+03)

10
1.920711e+11

(1.254828e+10)
1.167307e+11#
(9.811376e+09)

7.403214e+10#
(3.748511e+09)

5.753336e+10#
(1.586430e+09)

1.037099e+11#
(5.197695e+09)

8.712812e+10#
(9.507560e+09)

WFG2−1
3

7.318853e+02
(4.584376e-01)

7.256549e+02#
(2.471515e+00)

7.318071e+02#
(5.137348e-01)

7.277336e+02#
(7.218694e-01)

3.548073e+02#
(4.631427e-01)

3.549143e+02#
(1.951948e-01)

5
1.638383e+05

(1.165835e+03)
1.470928e+05#
(8.586496e+03)

1.122933e+05#
(1.197256e+04)

1.499384e+05#
(4.291788e+02)

4.315723e+04#
(1.487567e+02)

4.156049e+04#
(6.526206e+02)

10
7.365072e+11

(6.254171e+09)
3.658776e+11#
(1.973606e+10)

2.462168e+11#
(2.934157e+10)

8.919695e+10#
(1.091716e+10)

7.359311e+10#
(2.277690e+08)

7.165991e+10#
(8.580112e+08)

WFG3−1
3

6.701244e+02
(9.728569e-01)

6.581207e+02#
(2.461272e+00)

6.559404e+02#
(1.399701e-01)

6.678986e+02#
(4.368737e-01)

3.901185e+02#
(2.837691e+00)

3.929122e+02#
(1.663457e+00)

5
1.460039e+05

(2.618698e+03)
1.271888e+05#
(5.065268e+03)

9.818104e+04#
(4.519958e+03)

1.345863e+05#
(2.667741e+02)

4.822825e+04#
(1.017141e+03)

4.912237e+04#
(6.555485e+02)

10
6.613123e+11

(2.015972e+10)
3.003925e+11#
(2.070638e+10)

1.932277e+11#
(2.123809e+10)

1.572410e+11#
(3.994016e+09)

8.120430e+10#
(2.177319e+09)

8.405921e+10#
(1.518237e+09)
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Table 2: Mean and standard deviation (in parentheses) of the Solow-Polasky in-
dicator. A symbol # is placed when CRI-EMOA performed significantly better
than the other approaches based on a one-tailed Wilcoxon test using a signifi-
cance level of α = 0.05. The two best values are shown in gray scale, where the
darker tone corresponds to the best value.

MOP Dim. CRI-EMOA NSGA-III MOEA/D MOMBI2 ∆p-MOEA GDE-MOEA

DTLZ1
3

9.944608e+00
(7.332450e-01)

9.394548e+00#
(2.930251e-01)

9.314418e+00#
(3.914884e-02)

9.000566e+00#
(2.446366e-02)

7.811889e+00#
(9.608413e-01)

9.208526e+00#
(7.142910e-01)

5
1.338590e+01
(5.394744e-01)

1.927839e+01
(2.200570e-01)

1.910784e+01
(2.012103e-01)

1.784107e+01
(5.535436e-02)

1.258001e+02
(3.614573e-01)

7.251588e+01
(4.806114e+01)

10
1.785253e+01
(8.881198e-01)

4.215677e+01
(2.267717e+00)

3.557264e+01
(6.064497e-01)

3.493408e+01
(2.073537e+00)

2.196627e+02
(4.229255e-01)

1.937667e+02
(5.463117e+00)

DTLZ2
3

3.395527e+01
(9.380927e-02)

3.394704e+01#
(1.377030e-02)

3.393654e+01#
(1.057577e-03)

3.320388e+01#
(3.200128e-02)

3.071966e+01#
(5.648283e-01)

3.130480e+01#
(3.907121e-01)

5
9.880242e+01

(3.075202e+00)
1.023559e+02
(2.316020e-01)

1.017397e+02
(4.330518e-03)

1.000214e+02
(9.376416e-02)

9.047203e+01#
(1.071667e+00)

8.885177e+01#
(1.407456e+00)

10
2.144437e+02
(8.333968e-01)

2.144143e+02#
(4.461039e-02)

2.140218e+02#
(1.052798e-02)

2.134074e+02#
(2.440550e-01)

2.073661e+02#
(1.076644e+00)

2.149790e+02
(1.820800e+00)

DTLZ5
3

8.835302e+00
(8.683488e-03)

8.689954e+00#
(4.814112e-02)

4.565503e+01
(6.372947e-01)

8.446415e+00#
(1.275105e-02)

8.725615e+00#
(1.118233e-01)

9.131640e+00
(8.893988e-01)

5
5.453458e+01

(3.836635e+00)
7.846618e+01

(3.806546e+00)
2.193721e+01#
(7.192604e-01)

1.733111e+01#
(1.215347e+00)

6.458870e+01
(4.414063e+00)

9.229364e+01
(3.153601e+00)

10
1.426916e+02

(1.105651e+01)
1.855864e+02

(4.441145e+00)
7.636613e+00#
(7.127440e-02)

2.097795e+01#
(1.446842e+01)

1.636387e+02
(1.190412e+01)

2.009986e+02
(2.726407e+00)

DTLZ7
3

4.693189e+01
(4.563587e+00)

4.248938e+01#
(8.838503e-01)

3.411613e+01#
(6.885687e+00)

3.750968e+01#
(4.295088e-01)

3.356066e+01#
(8.918332e+00)

3.791999e+01#
(1.074318e+01)

5
7.703740e+01

(2.640331e+01)
9.605921e+01

(4.006295e+00)
2.595428e+01#
(3.104755e-01)

7.335971e+01#
(1.892378e+00)

1.014229e+02
(7.384253e+00)

8.467007e+01
(2.946531e+01)

10
2.083721e+02

(1.401193e+01)
3.401405e+01#
(4.627073e+01)

6.635493e+00#
(8.377910e-01)

1.539631e+02#
(1.794040e+01)

2.161036e+02
(1.887145e+00)

1.635677e+02#
(5.659825e+01)

WFG1
3

6.266729e+01
(4.306665e+00)

5.624993e+01#
(4.311929e+00)

5.053063e+01#
(2.764405e+00)

5.406056e+01#
(2.296813e+00)

3.936107e+01#
(2.712236e+00)

4.901870e+01#
(2.752851e+00)

5
7.766310e+01

(9.797998e+00)
9.244372e+01

(7.266040e+00)
7.480740e+01

(3.832994e+00)
7.292172e+01#
(5.425443e+00)

5.404634e+01#
(4.708150e+00)

9.197836e+01
(4.116442e+00)

10
1.153389e+02

(1.285140e+01)
8.917693e+01#
(8.545945e+00)

1.552376e+01#
(3.169355e+00)

6.819405e+01#
(8.992674e+00)

9.420152e+01#
(6.434297e+00)

1.681839e+02
(7.642626e+00)

WFG2
3

1.031961e+02
(6.913412e-01)

9.475339e+01#
(5.942618e-01)

7.243218e+01#
(1.099197e+00)

8.113447e+01#
(1.694539e+00)

1.566893e+01#
(4.695226e-01)

1.597100e+01#
(5.210876e-01)

5
9.923778e+01

(3.753788e+00)
1.259866e+02
(5.442239e-01)

9.750359e+01#
(2.449040e+00)

1.226234e+02
(1.081329e+00)

2.491924e+01#
(1.910851e+00)

2.346945e+01#
(2.689896e+00)

10
1.981494e+02

(4.297874e+00)
2.034942e+02

(6.167357e+00)
2.746068e+01#
(9.314055e+00)

1.826284e+02#
(2.286544e+01)

5.897645e+01#
(4.305811e+00)

5.040485e+01#
(7.890364e+00)

WFG3
3

7.979549e+01
(8.271398e-01)

5.447458e+01#
(3.954759e+00)

6.745390e+01#
(1.429561e+00)

4.359786e+01#
(9.246690e-01)

2.088260e+01#
(5.548807e-01)

2.237972e+01#
(2.670741e-01)

5
1.207901e+02

(1.514908e+00)
9.114798e+01#
(4.803291e+00)

1.203892e+02#
(1.120195e+00)

3.884532e+01#
(5.191645e+00)

3.640185e+01#
(1.590306e+00)

3.986356e+01#
(1.669298e+00)

10
2.198151e+02
(1.511883e-01)

1.842494e+02#
(6.381996e+00)

1.685512e+02#
(8.180955e-01)

1.223302e+02#
(2.606946e+01)

7.655449e+01#
(7.601122e+00)

9.569073e+01#
(5.324356e+00)

DTLZ1−1
3

1.238722e+02
(6.478345e-01)

1.192301e+02#
(9.769981e-01)

1.110656e+02#
(2.067972e-01)

1.076858e+02#
(1.612270e+00)

1.194494e+02#
(7.076038e-01)

1.026058e+02#
(2.385964e+00)

5
1.261138e+02
(3.746123e-01)

1.276049e+02
(7.483806e-01)

1.160278e+02#
(3.018754e+00)

6.760143e+01#
(4.891955e+00)

1.256546e+02#
(4.961652e-01)

1.091644e+02#
(2.978643e+00)

10
2.200000e+02
(6.478398e-01)

2.194982e+02#
(5.550208e-01)

1.845834e+01#
(3.362045e+01)

2.177230e+02#
(1.598879e+00)

2.199297e+02#
(1.852502e-01)

1.956693e+02#
(3.843626e+00)

DTLZ2−1
3

1.129425e+02
(2.079720e-01)

9.168006e+01#
(2.394444e+00)

9.466441e+01#
(8.426911e-02)

9.433643e+01#
(1.896075e-01)

8.857439e+01#
(2.604729e+00)

8.818635e+01#
(2.087133e+00)

5
1.259981e+02
(4.099458e-04)

1.134723e+02#
(2.970256e+00)

1.247875e+02#
(1.631879e-01)

4.888021e+01#
(1.111632e+00)

1.185054e+02#
(1.679308e+00)

1.078721e+02#
(2.347639e+00)

10
2.249876e+02

(1.368722e+00)
2.075064e+02#
(3.824826e+00)

2.079851e+02#
(1.899257e+00)

1.810577e+02#
(3.309000e+00)

2.118042e+02#
(2.291510e+00)

1.931317e+02#
(4.552358e+00)

DTLZ5−1
3

1.069995e+02
(2.945855e-01)

8.469885e+01#
(1.989703e+00)

7.942908e+01#
(2.711812e-01)

8.622124e+01#
(1.733700e-01)

8.484735e+01#
(2.558670e+00)

8.305258e+01#
(1.583665e+00)

5
1.259747e+02
(3.780629e-03)

1.041424e+02#
(3.722763e+00)

1.229014e+02#
(1.837627e-01)

4.957223e+01#
(1.976910e+00)

1.180479e+02#
(1.846989e+00)

1.076183e+02#
(2.710724e+00)

10
2.199997e+02
(6.289321e-05)

1.579241e+02#
(1.854156e+01)

1.997485e+02#
(1.822188e+00)

1.636386e+02#
(7.545337e+00)

2.094613e+02#
(2.217251e+00)

1.946215e+02#
(3.565477e+00)

DTLZ7−1
3

2.345500e+01
(6.661044e+00)

2.375280e+01
(1.117994e+00)

2.588876e+01
(3.461387e+00)

1.994117e+01#
(4.519640e-01)

2.178525e+01#
(8.341601e-01)

1.805087e+01#
(8.596927e+00)

5
5.660901e+01

(1.568211e+01)
7.238636e+01

(1.269825e+01)
1.211841e+01#
(1.172186e+00)

4.067053e+01#
(9.192226e+00)

8.003609e+01
(3.156330e+00)

3.632242e+01#
(3.834467e+01)

10
2.043557e+02

(1.375176e+01)
1.347251e+01#
(4.083423e+00)

4.293619e+00#
(1.198274e-01)

8.812385e+00#
(2.123041e+01)

2.008713e+02#
(2.214667e+00)

2.028099e+02#
(5.987172e+00)

WFG1−1
3

6.415681e+01
(4.459890e+00)

5.511082e+01#
(2.648385e+00)

1.663876e+01#
(1.535080e+00)

4.730483e+01#
(1.092483e+00)

4.842279e+01#
(5.020350e+00)

4.279700e+01#
(1.538301e+01)

5
1.210334e+02

(2.192520e+00)
5.596308e+01#
(5.654765e+00)

7.815456e+00#
(1.225035e+00)

3.289189e+01#
(2.858823e+00)

1.098994e+02#
(4.122587e+00)

5.939438e+01#
(3.673750e+01)

10
2.186105e+02
(3.132639e-01)

6.927501e+01#
(2.258115e+01)

2.480353e+00#
(2.063527e+00)

3.476224e+01#
(4.296041e+00)

1.950445e+02#
(6.121614e+00)

1.138247e+02#
(5.884228e+01)

WFG2−1
3

1.140860e+02
(4.325357e-01)

9.532850e+01#
(1.992380e+00)

8.890140e+01#
(1.794800e-01)

9.018353e+01#
(4.679018e-01)

3.230763e+00#
(4.485117e-02)

2.757698e+00#
(2.020626e-01)

5
1.234346e+02
(7.027142e-01)

9.827363e+01#
(2.826007e+00)

4.956629e+01#
(8.529213e+00)

3.689443e+01#
(1.559225e+00)

5.922537e+00#
(7.879377e-01)

2.841850e+00#
(6.498607e-01)

10
2.196197e+02
(9.739353e-02)

2.001692e+02#
(4.030917e+00)

2.500717e+01#
(2.754994e+00)

1.075588e+02#
(1.284360e+01)

1.138578e+01#
(8.309404e-01)

7.783812e+00#
(1.059255e+00)

WFG3−1
3

1.075596e+02
(2.777510e-01)

7.484580e+01#
(2.494935e+00)

6.164392e+01#
(7.387154e-02)

7.097018e+01#
(1.699291e-01)

2.303097e+01#
(7.406376e-01)

2.381595e+01#
(2.661523e-01)

5
1.259055e+02
(2.786019e-02)

8.633630e+01#
(4.246132e+00)

6.654930e+01#
(3.739241e+00)

3.937358e+01#
(1.177063e+00)

3.626087e+01#
(2.423541e+00)

4.063424e+01#
(2.006301e+00)

10
2.199995e+02
(8.710466e-04)

1.929382e+02#
(8.857025e+00)

5.251797e+01#
(3.065445e+00)

1.414077e+02#
(1.791224e+01)

7.135125e+01#
(7.053632e+00)

9.336338e+01
(4.573319e+00)
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Fig. 2: Pareto fronts generated by CRI-EMOA and the adopted MOEAs. Each
front corresponds to the median of the hypervolume value.

mark problems of state-of-the-art MOEAs that employ a set of convex weight
vectors as search directions, as a reference set or as part of a quality indicator.
CRI-EMOA exploits the convergence property of IGD+ and promotes evenly
distributed solutions using Riesz s-energy. Our proposal was compared with
MOEAs with and without the use of convex weight vectors. Our experimen-
tal results showed that our approach has a competitive performance on the
DTLZ and WFG instances, while it outperforms the adopted MOEAs on the
DTLZ−1 and WFG−1 problems. These empirical results provide some evidence
about CRI-EMOA being a more general multi-objective optimizer. As part of
our future work, we are interested in improving the performance of CRI-EMOA
on the original benchmark problems while preserving its good performance on
the minus versions of the considered test suites.
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