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Abstract. Ensemble learning is one of the most employed methods in
machine learning. Its main ground is the construction of stronger mech-
anisms based on the combination of elementary ones. In this paper,
we employ AdaBoost, which is one of the most well-known ensemble
methods, to generate an ensemble indicator-based density estimator for
multi-objective optimization. It combines the search properties of five
density estimators, based on the hypervolume, R2, IGD+, ε+, and ∆p

quality indicators. Through the multi-objective evolutionary search pro-
cess, the proposed ensemble mechanism adapts itself using a learning
process that takes the preferences of the underlying quality indicators
into account. The proposed method gives rise to the ensemble indicator-
based multi-objective evolutionary algorithm (EIB-MOEA) that shows
a robust performance on different multi-objective optimization problems
when compared with respect to several existing indicator-based multi-
objective evolutionary algorithms.

Keywords: Multi-objective optimization · quality indicators · ensemble
learning · AdaBoost.

1 Introduction

In many scientific and industrial fields arise the so-called multi-objective opti-
mization problems (MOPs), that involve the simultaneous optimization of two
or more conflicting objective functions. Mathematically, an MOP is defined as
follows:

min
x∈Ω
{F (x) = (f1(x), . . . , fm(x))} , (1)

where x is the vector of decision variables, Ω ⊆ Rn is the decision space and
F (x) is the vector of m ≥ 2 objective functions such that fi : Rn → R
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for i ∈ {1, 2, . . . ,m}. Unlike single-objective optimization problems which have
a single global optimal solution, the solution of an MOP is a set of solutions
that represents the best possible trade-offs among the objective functions. Given
x,y ∈ Ω and F : Rn → Rm, we say that x dominates y, denoted as F (x) ≺
F (y), if and only if ∀i ∈ {1, . . . ,m}, fi(x) ≤ fi(y) and there exists at least an
index j ∈ {1, . . . ,m} such that fj(x) < fj(y). The particular set that yields the
optimum values, according to the Pareto dominance relation, is the Pareto set;
its image is known as the Pareto front.

Multi-objective evolutionary algorithms (MOEAs) constitute a popular choice
to tackle complex MOPs [1]. MOEAs are stochastic black-box optimizers based
on the principles of Darwin’s natural selection. MOEAs are population-based
metaheuristics that can generate a Pareto front approximation (or approxima-
tion set) in a single execution. Ideally, an MOEA should produce solutions as
close as possible to the Pareto front, covering it all and with good diversity.
There exist four main design methodologies for MOEAs [1]: (1) MOEAs using
the Pareto dominance relation or any of its relaxed forms, (2) decomposition-
based MOEAs, (3) reference set-based MOEAs, and (4) indicator-based MOEAs
(IB-MOEAs). In the last fifteen years, IB-MOEAs have attracted considerable
attention due to their ability to solve MOPs having more than three objective
functions (i.e., the so-called many-objective optimization problems) [2]. The un-
derlying idea of IB-MOEAs is the use of a quality indicator (QI) [3], which is a
set function that evaluates the quality of an approximation set based on specific
preferences, in order to guide the evolutionary search process by focusing on the
selection mechanisms. Currently, there exist several QIs, such as the hypervol-
ume indicator (HV) [4], R2 [5], the inverted generational distance plus (IGD+)
[6], the additive epsilon indicator (ε+) [7], and the averaged Hausdorff distance
(∆p) [8], being these ones the most popular within the currently available IB-
MOEAs [2].

An IB-MOEA produces a Pareto front approximation exhibiting the prefer-
ences of its underlying QI [9]. As such, different IB-MOEAs yield different results
in terms of the distribution of solutions in the approximation set, due to the un-
derlying properties of the QI they employ. Moreover, there are MOPs where a
specific IB-MOEA performs well, but there are others on which it does not. As a
consequence, it is not clear which QI to consider beforehand, and an open ques-
tion is whether a set of existing indicator-based selection mechanisms can create
a single operator that reaches a consensus that outperforms the existing ones. In
2011, Phan and Suzuki were the first to investigate this question by boosting a set
of indicator-based mating selection operators [10]. The boosted indicator-based
mating selection operator uses 15 quality indicators from which it ensembles
the best suited ones using the AdaBoost algorithm [11] with an offline training.
The proposed mechanism was embedded into the non-dominated sorting genetic
algorithm II (NSGA-II) [12], giving rise to the boosted indicator-based evolu-
tionary algorithm (BIBEA). According to the reported results, BIBEA was able
to outperform NSGA-II, exhibiting robustness in MOPs with different charac-
teristics. Later on, Phan et al. [13] proposed BIBEA-P which allows BIBEA to
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use an additional ensemble indicator-based mechanism for environmental selec-
tion. Moreover, BIBEA-P uses Pdi-Boosting instead of AdaBoost. Similarly to
BIBEA, the ensemble operators of BIBEA-P needs to be trained using a given
MOP in an offline fashion. The experimental results showed that BIBEA-P is
better than BIBEA, NSGA-II, and SMS-EMOA (which is a HV-based MOEA)
[14] when using MOPs with different Pareto front shapes.

In this paper, we propose an ensemble indicator-based density estimator us-
ing the HV, R2, IGD+, ε+, and ∆p indicators. Unlike BIBEA and BIBEA-P,
our mechanism adapts the combination of the indicator-based density estimators
(IB-DEs) in an online fashion. The underlying reason to use an online ensemble
mechanism is to allow our approach to produce high-quality results for problems
with different characteristics, and to reach a robust performance with respect
to the multiple indicators being considered. This approach allows our proposed
ensemble indicator-based MOEA (EIB-MOEA) to tackle problems with differ-
ent Pareto front geometries from the test suites DTLZ, DTLZ−1, WFG, and
WFG−1. Furthermore, the proposed approach consistently obtains competitive
results with respect to other IB-MOEAs.

The remainder of this paper is organized as follows. Section 2 provides the
mathematical definitions of the QIs that we consider in our analysis. Section 3
describes the algorithmic design of EIB-MOEA. Section 4 shows our experimen-
tal results and Section 5 provides our final conclusions and some possible paths
for future work.

2 Background

In this section, we describe a selection of five QIs, corresponding to those which
are most frequently used in the specialized literature. They will be considered
as constituent QIs in our proposed ensemble indicator-based density estimator.
In the following, A denotes an approximation set.

Definition 1 (Hypervolume indicator [4]) Given an anti-optimal reference
point r ∈ Rm, the hypervolume is defined as follows:

HV (A, r) = L

( ⋃
a∈A
{b | a ≺ b ≺ r}

)
, (2)

where L(·) denotes the Lebesgue measure in Rm.

Definition 2 (Unary R2 indicator [5]) The unary R2 indicator is defined as
follows:

R2(A,W ) = − 1

|W |
∑
w∈W

max
a∈A
{uw(a)}, (3)

where W is a set of weight vectors and uw : Rm → R is a scalarizing function
defined by w ∈W that assigns a real value to each m-dimensional vector.
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Definition 3 (IGD+ indicator [6]) The IGD+, for minimization, is defined
as follows:

IGD+(A, Z) =
1

|Z|
∑
z∈Z

min
a∈A

d+(a, z), (4)

where d+(a, z) =
√∑m

k=1 (max{ak − zk, 0})2
.

Definition 4 (Unary ε+ indicator [7]) The unary ε+-indicator gives the min-
imum distance by which a Pareto front approximation needs to or can be trans-
lated in each dimension in the objective space such that a reference set is weakly
dominated. Mathematically, it is defined as follows:

ε+(A,Z) = max
z∈Z

min
a∈A

max
1≤i≤m

{ai − zi}. (5)

Definition 5 (∆p indicator [8]) For a given p > 0, the ∆p is defined as fol-
lows:

∆p(A, Z) = max {GDp(A, Z), IGDp(A, Z)}. (6)

∆p is defined on the basis of two indicators: GDp and IGDp which are slight
modifications of the indicators Generational Distance (GD) and Inverted Gen-
erational Distance (IGD) [3], respectively. These are defined in the following.

Definition 6 (GDp indicator [8])

GDp(A,Z) =

(
1

|A|
∑
a∈A

d(a,Z)p

)1/p

, (7)

where d(a,Z) = minz∈Z
√∑m

i=1(ai − zi)2.

Definition 7 (IGDp indicator [8]) It is defined as follows: IGDp(A,Z) =
GDp(Z,A).

Definition 8 (Indicator contribution) Let I be any indicator in the set {HV,
R2, IGD+, ε+, ∆p}. The individual contribution C of a solution a ∈ A to the
indicator value is given as follows:

CI(a,A) = |I(A)− I(A \ {a})|. (8)

Interestingly, the QIs presented above have different properties, and express
different preferences in terms of set approximation quality [7]. Moreover, they
do not always agree with each other [15], so that good-quality approximation
sets for a given QI typically contain different solutions than for other QIs. This
motivates the ensemble indicator-based approach introduced below.

3 The Proposed EIB-MOEA Approach

In this section, we first give the general description of EIB-MOEA, then we detail
the learning model and the adaptive strategy considered to update the relative
importance given to each QI at different iterations.
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Algorithm 1 EIB-MOEA’s general framework
Require: Set of indicators {I1, . . . , Ik}; time window size Tw
Ensure: Pareto front approximation
1: Randomly initialize population A
2: wi = 1/k, i ∈ {1, . . . , k}
3: Initialize performance matrix P ∈ Rk×Tw
4: Initialize learning matrix Ψ ∈ {0, 1}k×Tw
5: g = 0
6: while stopping criterion is not fulfilled do
7: Create an offspring solution q based on A
8: Q = A ∪ {q}
9: {R1, . . . , R`} = NondominatedSorting(Q)
10: if |R`| > 1 then

11: zmin
i = mina∈A fi(a), i ∈ {1, . . . ,m}

12: zmax
i = maxa∈A fi(a), i ∈ {1, . . . ,m}

13: Normalize {R1, . . . , R`} using z min and z max

14: for j = 1 to k do
15: CIj (r, R`) = |Ij(R`)− Ij(R` \ {F (r)})|, ∀r ∈ R`
16: Sort CIj in ascending order

17: ∀z ∈ R`, compute rankIj (F (r)), using the sorted CIj
18: end for

19: aworst = arg minr∈R`

{
H (z = F (r)) =

∑k
j=1 wjrankIj (z)

}
20: Learning(Q,R`, {I1, . . . , Ik}, g,aworst, P, Ψ)
21: g = g + 1
22: else
23: Let aworst be the sole solution in R`
24: end if
25: A = Q \ {aworst}
26: if g = Tw then
27: UpdateWeights(w, P, Ψ, Tw, k)
28: g = 0
29: end if
30: end while
31: return A

3.1 General Description

The proposed EIB-MOEA is a steady-state MOEA based on SMS-EMOA [14].
Its general framework is outlined in Algorithm 1. EIB-MOEA requires a set of
k indicators {I1, . . . Ik} and a time window frame Tw as input parameters. In
Line 2, all the components of the weight vector w are set to 1/k. This weight
vector is employed in the ensemble indicator-based density estimator (EIB-DE),
and contains the relative importance given to each indicator at the current it-
eration. Lines 6 to 30 describe the main loop of EIB-MOEA. At each iteration,
a single offspring solution q is created using variation operators. This newly
created solution is added to the population A to create the temporary popula-
tion Q. The non-dominated sorting algorithm [12] processes Q to create a set
of layers {R1, . . . , R`}. If R` contains more than one solution, EIB-DE is exe-
cuted. First, the population is normalized in Line 13. Then, for each indicator
Ij , j ∈ {1, . . . , k}, the individual indicator contributions of all solutions in R`
are computed and stored in the vector CIj . By sorting this vector in ascending
order, for each r ∈ R` we obtain rankIj (F (r)) ∈ {1, 2, . . . , |Rl|} that returns
the ranking of the solution in the sorted CIj , where rank 1 corresponds to the
worst-contributing solution to Ij . In Line 19, the worst-contributing solution,
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Algorithm 2 Learning
Require: Population A; worst set R; set of indicators {I1, . . . , Ik}; index t; selected solution aworst;

performance matrix P ; learning matrix Ψ
Ensure: Updated Ψ
1: for j = 1 to k do

2: ajworst = arg minr∈R |Ij(R)− Ij(R \ {F (r)})|
3: Aj = A \ {ajworst}
4: Pjt = Ij(Aj)
5: if Pjt > Pj,t−1 mod Tw ∧ ajworst = aworst then
6: Ψjt = 0
7: else
8: Ψjt = 1
9: end if
10: end for
11: return Ψ

using EIB-DE, is obtained. The learning process (see Algorithm 2), which is a
fundamental part to update the weight vector w, is performed in Line 20, and
then, the counter g is incremented by one. In Line 25, aworst is eliminated from
Q to shape the population for the next generation. In case g is equal to Tw, w
is updated following Algorithm 3 and g is set to zero. Finally, once the stopping
condition is satisfied, A is returned as the Pareto front approximation.

3.2 Learning Process

The learning process, described in Algorithm 2, is based on analyzing the behav-
ior of the population using all indicators. For each indicator Ij , j ∈ {1, . . . , k},
we obtain its worst-contributing solution ajworst, where R represents the last
layer of solutions with respect to non-dominated sorting. In Line 3, we simulate
the elimination of ajworst from the population A to generate the set Aj that is
assessed by Ij . This indicator value is stored in the performance matrix at posi-
tion (j, t), i.e., Pjt = Ij(Aj). It is worth noting that each row of P , represented
as Pj , works as a circular array of size Tw. If Pjt is greater than the previous

sample in Pj (which implies an increase in quality) and ajworst is the same as
the worst-contributing solution to EIB-DE, the selection is marked as successful
and a zero value is stored in the learning matrix Ψ in the same position (j, t).
Otherwise, we set Ψjt = 1.

3.3 Updating the Relative Importance of QIs

After executing EIB-DE and the learning algorithm a total of Tw times, the
weight vector has to be updated. Algorithm 3 sketches the update process which
is based on the AdaBoost algorithm [11], whose aim is to minimize the exponen-
tial loss. For each indicator Ij , j ∈ {1, . . . , k}, the selection error ej is calculated
using the jth row of the learning matrix Ψ , taking into account that ej should
be in the open interval (0, 1) to avoid numerical problems in the calculation of
the factor αj . Using the indicator values in Pj , a linear model is constructed
to obtain its angle θ. In Line 7, we set the weight wj = wj e

−αj if θ is strictly
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Algorithm 3 UpdateWeights
Require: Weight vector w; performance matrix P ; learning matrix Ψ ; time window size Tw; number

of indicators k
Ensure: Updated w
1: for j = 1 to k do

2: ej =
wj
Tw

∑Tw
i=1 Ψji

3: Validate that ej ∈ (0, 1)

4: αj = 1
2 ln

(
1−ej
ej

)
5: Build linear performance model based on Pj
6: Get the angle θj of the linear model

7: wj =

{
wje
−αj , θ > 0

wje
αj , otherwise

8: Validate that wj > 0
9: end for
10: wj =

wj∑k
i=1

wi
, j ∈ {1, . . . , k}

11: return w

positive, which implies an increasing quality of the population due to the use
of the density estimator based on Ij . Otherwise, we set wj = wj e

αj . To avoid
having EIB-DE composed of a single indicator, we do not allow the existence
of zero weights. At last, all weights are normalized in Line 10 and the updated
weight vector is returned.

4 Experimental Analysis

In this section, we analyze the performance of the proposed approach3. First,
we compare EIB-MOEA with its average ranking version, i.e, an EIB-MOEA
where the weights for the ensemble are the same for all indicators (denoted as
avgEIB-MOEA) to show that the adaptive mechanism produces better quality
results. Then, we perform an exhaustive analysis where we compare EIB-MOEA
with SMS-EMOA, R2-EMOA, IGD+-MaOEA, ε+-MaOEA, and ∆p-MaOEA,
which are all steady-state MOEAs using density estimators based on the HV,
R2, IGD+, ε+, and ∆p indicators, respectively. In all test instances, each MOEA
is independently executed 30 times.

4.1 Parameters Settings

We employ the benchmark functions DTLZ1, DTLZ2, DTLZ5, DTLZ7, WFG1,
WFG2, WFG3, and WFG4, together with their corresponding minus versions
proposed in [16] for two and three objective functions. We adopted these prob-
lems because they all have different search difficulties and Pareto front shapes.
The number n of decision variables was set as follows. For DTLZ instances and
their minus versions, n = m+K − 1, where m is the number of objective func-
tions and K = 5 for DTLZ1, K = 10 for both DTLZ2 and DTLZ5, and K = 20

3 The source code of EIB-MOEA is available at http://computacion.cs.cinvestav.
mx/~jfalcon/Ensemble/EIB-MOEA.html.

http://computacion.cs.cinvestav.mx/~jfalcon/Ensemble/EIB-MOEA.html
http://computacion.cs.cinvestav.mx/~jfalcon/Ensemble/EIB-MOEA.html
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for DTLZ7. Regarding the WFG and WFG−1 test problems, n was set to 24
and 26, for two- and three-objective instances and in both cases the number of
position-related parameters was set to 2. For a fair comparison, all the MOEAs
employ the same population size µ = 120, and the same variation operators:
simulated binary crossover (SBX) and polynomial-based mutation (PBM) [12]
for all test instances. The crossover probability is set to 0.9, the mutation proba-
bility is 1/n (where n is the number of decision variables), and both the crossover
and mutation distribution indexes are set to 20. We considered 50,000 function
evaluations as the stopping criterion for all MOPs. We employ the achievement
scalarizing function for the R2-based density estimator. In every generation, we
employ the currently population’s non-dominated solutions as the reference set
required by IGD+, ε+, and ∆p. Regarding EIB-MOEA and avgEIB-MOEA, we
set Tw = µ.

4.2 Experimental Results

For the performance assessment of EIB-MOEA, avgEIB-MOEA and the other
IB-MOEAs, we used eight quality indicators: HV, HV relative deviation (HVRD),
R2, IGD+, ε+, ∆p, and, for diversity, we employed Riesz s-energy [17] and the
Solow-Polasky Diversity indicator [18]. The indicator values for two- and three-
objective instances of the DTLZ and DTLZ−1 test problems are shown with box-
plots in Figures 1 and 2, respectively. The boxplots for the WFG and WFG−1

instances with two and three objective functions correspond to Figures 3 and 4,
respectively. Figure 5 shows the statistical ranks obtained by each algorithm
over all benchmark functions with respect to each considered indicator. For a
given benchmark function, the rank corresponds to the number of algorithms
that significantly outperform the algorithm under consideration with respect to
a Mann-Whitney non-parametric statistical test with a p-value of 0.05 and a
Bonferroni correction (a lower value is better). The complete numerical results
related to Figure 5 are available at http://computacion.cs.cinvestav.mx/

~jfalcon/Ensemble/EIB-MOEA.html due to space limitations.
Regarding the comparison of EIB-MOEA with avgEIB-MOEA, Figure 5

shows that the former gets better statistical ranks for all the considered indica-
tors except for ∆p. From these QIs, the increase in quality is more evident for the
hypervolume indicator. This means that the online ensemble allows EIB-MOEA
to produce approximation sets closer to the Pareto front. This is supported by
the other convergence indicators. However, producing better convergent approx-
imation sets is not strictly related to producing higher diversity, as shown by
the Riesz s-energy and SPD values, where EIB-MOEA is hardly better than
avgEIB-MOEA. Overall, these results support that EIB-MOEA performs bet-
ter than avgEIB-MOEA. On the other hand, for the comparison of EIB-MOEA
against the steady-state IB-MOEAs, Figure 5 shows that our proposed approach
maintains a robust performance over all the considered QIs. Figures 1 to 4 illus-
trate that EIB-MOEA and SMS-EMOA obtained the best HV values. Overall,
SMS-EMOA performs better on the original benchmark problems, but the qual-
ity of its approximate Pareto fronts is just slightly better than those produced by

http://computacion.cs.cinvestav.mx/~jfalcon/Ensemble/EIB-MOEA.html
http://computacion.cs.cinvestav.mx/~jfalcon/Ensemble/EIB-MOEA.html
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Fig. 1: Indicator values for two-objective DTLZ benchmark functions.

EIB-MOEA. In contrast, for the DTLZ−1 and WFG−1 test suites, EIB-MOEA
significantly outperforms SMS-EMOA. This is because EIB-MOEA is able to
produce Pareto front approximations with better distribution and coverage, due
to the influence of all the indicators, for these modified problems, which increases
the HV value. Moreover, for the original problems, EIB-MOEA still produces
good approximations but with other type of distribution that does not maxi-
mize the hypervolume value as SMS-EMOA does. In consequence, EIB-EMOA
performs more robustly than SMS-EMOA. Additionally, for IGD+ and ε+ which
are QIs whose preferences are highly correlated to those of HV, Figure 5 shows
a similar behavior as in the case of HV. This is also supported by the detailed
boxplots reported for the different test problems. Regarding the R2 indicator,
R2-EMOA presents the best results for MOPs whose Pareto front maps to the
simplex shape; e.g., DTLZ1, DTLZ2, and WFG4. This behavior is expected since
R2-EMOA uses a set of convex weight vectors [16]. However, for the DTLZ−1 and
WFG−1 test suites, R2-EMOA does not perform well and EIB-MOEA presents



10 J. G. Falcón-Cardona et al.

��

�

�
� ��

�

�

�

��

�

� �

�

�

�

�

�

�

�
��

��
����

���

����

��

�

� ���

�

��

�

�
�

� � ����

DTLZ1 DTLZ1_MINUS DTLZ2 DTLZ2_MINUS DTLZ5 DTLZ5_MINUS DTLZ7 DTLZ7_MINUS

26.2

26.4

26.6

26.8

27.0

15.9

16.0

16.1

16.2

16.3

16.4

22.25

22.50

22.75

23.00

6.07

6.08

6.09

6.10

21.9

22.2

22.5

22.8

23.1

7.30

7.35

7.40

1.9e+07

2.0e+07

2.1e+07

2.2e+07

0.960

0.965

0.970

0.975

hv

�

�

��

�

�

�

�

�

��

�

�

�

�

�

�

�

�

�

�

�

�

�

��

�

����

�

��

�

� ���� ���� ���

�

�

�

� � ����

DTLZ1 DTLZ1_MINUS DTLZ2 DTLZ2_MINUS DTLZ5 DTLZ5_MINUS DTLZ7 DTLZ7_MINUS

1e−06

1e−05

1e−04

1e−03

1e−02

1e−06

1e−05

1e−04

1e−03

1e−02

0.001

0.003

0.010

0.030

1e−06

1e−05

1e−04

1e−03

1e−02

3e−04

1e−03

3e−03

1e−02

3e−02

1e−06

1e−05

1e−04

1e−03

1e−02

0.003

0.010

0.030

0.100

1e−05

1e−04

1e−03

1e−02

hv
rd

�
�

��

�

�
�

�

�

�

�

�

�

�

�

�

�

�

��
��

�

��

��

�

�

�

�

�

�

�

�

���

�

��

��
�

�

�

�

�

�

�

�

�

�

�
�
�

�

�
�

���� ���

��

����
���� �

�

�
� ��

�

�

�

�

�

��� ���

�

��
�
��
�
�

DTLZ1 DTLZ1_MINUS DTLZ2 DTLZ2_MINUS DTLZ5 DTLZ5_MINUS DTLZ7 DTLZ7_MINUS

27600

27800

28000

2500

2750

3000

3250

3500

100

300

1000

604

606

608

610

10

30

100

300

1

2

3

500

700

1000

0.4

0.5

0.7

r2

�

� �

�

�

�

�

�

��

��

�

�

�

�

�

�

��
�

�

�

�

�

�

�

�

�� ���

�

� ��� ����
�

�

���

�

��
� �� � � � ���

��

�

DTLZ1 DTLZ1_MINUS DTLZ2 DTLZ2_MINUS DTLZ5 DTLZ5_MINUS DTLZ7 DTLZ7_MINUS

0.01

0.03

0.10

0.30

0.03

0.05

0.10

0.07

0.08

0.10

0.002

0.003

0.07

0.08

0.10

0.02

0.03

0.04

14

16

18

20

0.011

0.012

0.013

0.014

0.015
0.016

ig
d+

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�
��

�

�

�

�

�
�

�

�
�

�

�
�

�

��

�
�

�

�

��

�

�

�

�

�� ���� ���

�

�

�

���

�

���� ��� ��

�

�

�

��

�

� �

�

����

DTLZ1 DTLZ1_MINUS DTLZ2 DTLZ2_MINUS DTLZ5 DTLZ5_MINUS DTLZ7 DTLZ7_MINUS

0.03

0.10

0.30

1.00

0.1

0.3

1.0

0.20

0.25

0.30

0.35

0.003

0.005

0.010

0.15

0.20

0.25

0.30

0.35

0.05

0.10

0.20

30

50

70

0.02

0.03

0.05

ep
s+

�

�

�

�

�

�

�
�

��

�

��

�

�

�

�

�

���

�

�

�

�

�

�

�

�

�

�

�� ���� ��� ����
���� ��� ��

�

��

�
��

�
�

�

�

�� �

�

�

�

�
� ����

DTLZ1 DTLZ1_MINUS DTLZ2 DTLZ2_MINUS DTLZ5 DTLZ5_MINUS DTLZ7 DTLZ7_MINUS

0.1

0.3

0.5

0.1

0.3

0.5

0.2

0.3

0.4

0.005

0.010

0.020

0.2

0.3

0.5

0.05

0.06

0.07

22.5

25.0

27.5

30.0

0.1

1.0

10.0

de
lta

p

�

�
�

�

�

��

�

�

�

��
��

�

�

�

�

�

�

�

�

�

�

� ���

�

�

�

�

��

��

�

�

�

�

�

�

�
�

�

�

�

�

��

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�
�

���

��

��
�
�

�
��

�
��

�

�

�

�

�

�

�

�
�

�

�

�

�

DTLZ1 DTLZ1_MINUS DTLZ2 DTLZ2_MINUS DTLZ5 DTLZ5_MINUS DTLZ7 DTLZ7_MINUS

1e+09

1e+12

1e+15

1e+07

1e+09

1e+11

1e+06

1e+09

1e+12

1e+15

1e+10

1e+13

1e+16

1e+19

1e+05

1e+07

1e+09

1e+11

1e+08

1e+11

1e+14

1e+00

1e+03

1e+06

1e+09

1e+09

1e+12

1e+15

s−
en
er
gy

�
��

���

�

�

�
�

�

�

�

�
�
��

�

�������

�

�

��

�

�

�

�

�

��

���

�

�

�

�
�

�

�

��

�

�
�

�

�
�

�

�

�

�

�
�

�

�
�

�
���

��

�

� ���
�

��
�
�

�
��

�
�

� �

�

�

����

DTLZ1 DTLZ1_MINUS DTLZ2 DTLZ2_MINUS DTLZ5 DTLZ5_MINUS DTLZ7 DTLZ7_MINUS

10

15

20

25

20

30

40

80

85

90

95

100

8.6

8.8

9.0

9.2

90

100

30

31

32

33

34

111

114

117

120

8

9

10

11

12

13

sp
d

EIB−MOEA avgEIB−MOEA SMS−EMOA R2−EMOA IGD+−MaOEA EPS+−MaOEA DELTAp−MaOEA

EIB
−MO

EA

avg
EIB

−MO
EA

SM
S−E

MO
A

R2−
EM

OA

IGD
+−M

aOE
A

EPS
+−M

aOE
A

DELTA
p−M

aOE
A

EIB
−MO

EA

avg
EIB

−MO
EA

SM
S−E

MO
A

R2−
EM

OA

IGD
+−M

aOE
A

EPS
+−M

aOE
A

DELTA
p−M

aOE
A

EIB
−MO

EA

avg
EIB

−MO
EA

SM
S−E

MO
A

R2−
EM

OA

IGD
+−M

aOE
A

EPS
+−M

aOE
A

DELTA
p−M

aOE
A

EIB
−MO

EA

avg
EIB

−MO
EA

SM
S−E

MO
A

R2−
EM

OA

IGD
+−M

aOE
A

EPS
+−M

aOE
A

DELTA
p−M

aOE
A

EIB
−MO

EA

avg
EIB

−MO
EA

SM
S−E

MO
A

R2−
EM

OA

IGD
+−M

aOE
A

EPS
+−M

aOE
A

DELTA
p−M

aOE
A

EIB
−MO

EA

avg
EIB

−MO
EA

SM
S−E

MO
A

R2−
EM

OA

IGD
+−M

aOE
A

EPS
+−M

aOE
A

DELTA
p−M

aOE
A

EIB
−MO

EA

avg
EIB

−MO
EA

SM
S−E

MO
A

R2−
EM

OA

IGD
+−M

aOE
A

EPS
+−M

aOE
A

DELTA
p−M

aOE
A

EIB
−MO

EA

avg
EIB

−MO
EA

SM
S−E

MO
A

R2−
EM

OA

IGD
+−M

aOE
A

EPS
+−M

aOE
A

DELTA
p−M

aOE
A

Fig. 2: Indicator values for three-objective DTLZ benchmark functions.

the best overall results. This indicates that the ensemble mechanism of EIB-
MOEA allows to circumvent the weaknesses of the individual indicator-based
density estimators, in this case the one based on R2. Finally, in terms of diver-
sity, Figures 1–4 show that EIB-MOEA generates well-diversified approximation
sets when dealing with MOPs whose Pareto front is irregular; i.e., different from
the simplex shape. This is the case, for example, of WFG1, WFG1−1, DTLZ1−1,
and DTLZ−1. Nevertheless, EIB-MOEA is able to produce competitive results
with respect to Riesz s-energy and SPD, while SMS-EMOA is the best-ranked
algorithm for the former indicator and ∆p-MaOEA is the best for the latter.
As such, although EIB-MOEA is able to obtain very good HV values, there is
still room for improvement in terms of diversity, e.g. by adding diversity-related
indicators into the ensemble controlled by EIB-MOEA.
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Fig. 3: Indicator values for two-objective WFG benchmark functions.

5 Conclusions and Future Work

In this paper, we explored the effectiveness of an ensemble indicator-based den-
sity estimator, using the AdaBoost algorithm. The proposed mechanism adapts
the ensemble in an online fashion depending on the performance of the under-
lying density estimators based on the indicators HV, R2, IGD+, ε+, and ∆p.
The adaptive ensemble mechanism was embedded into a steady-state MOEA,
giving rise to the EIB-MOEA. First, we showed that EIB-MOEA outperforms
an average ranking EIB-MOEA that sets all the weights to the same value for
the ensemble. Then, we compared EIB-MOEA with respect to SMS-EMOA, R2-
EMOA, IGD+-MaOEA, ε+-MaOEA, and ∆p-MaOEA. The experimental results
showed that EIB-MOEA is able to maintain a robust performance with respect
to multiple quality indicators. As part of our future work, we aim at studying
the performance of a generational EIB-MOEA and at improving the learning
mechanism for the ensemble. We would also like to assess the performance of
our proposed EIB-MOEA in many-objective optimization problems.
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Fig. 4: Indicator values for three-objective WFG benchmark functions.
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