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Abstract 

One aspect that is often disregarded in evolutionary multiobjective research is the fact that the solution of a problem involves not 
only search but decision making. Most of approaches concentrate on adapting an evolutionary algorithm to generate the Pareto 
frontier. In this work we present a new idea to incorporate preferences in MOEA. We introduce a binary fuzzy preference relation 
that expresses the degree of truth of the predicate “x is at least as good as y”. On this basis, a strict preference relation with a 

reasonable high degree of credibility can be established on any population. An alternative x is not strictly outranked if and only if 
there does not exist an alternative y which is strictly preferred to x. It is easy to prove that the best solution is not strictly outranked. 
We used the Nondominated Sorting Genetic Algorithm II (NSGA-II), but replacing dominance by the above non-outranked concept. 
So, we search for the no- strictly outranked frontier that is a proper subset of the Pareto frontier. In several instances of a nine-
objective knapsack problem our proposal clearly outperforms the standard NSGA-II, achieving non-outranked solutions which are in 
an obvious privileged zone of the Pareto frontier. 
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1. Introduction 

In real-world optimization problems the decision-maker (DM) is usually concerned with several criteria which determine the quality 
of solutions. Often, constraints in mathematical programming problems are not actually mandatory; rather such restrictions are 
expressing an important desire, a significative DM aspiration level about certain system properties. Therefore, most optimization 
problems can be represented from a multiple objective perspective. 
As a consequence of the conflicting nature of criteria, it is not possible to obtain a common optima, so the ideal solution of a 
multiobjective problem (MOP) cannot be reached. Hence, to solve a MOP means to find the best compromise solution according to 
the DM‟s particular system of preferences (value system). It is easy to prove that the best compromise is a non-dominated solution, a 
member of the Pareto set. Most operational research methods for MOPs can be classified into the following categories [1]: 

1. Techniques which perform a prior articulation of DM‟s preferences; 
2. Interactive methods, which perform a progressive articulation of DM‟ preferences; 
3. Generating techniques, which perform a posteriori articulation of preferences (search before making decisions). 

Since the Schaffer‟s seminal work (cf.[2]), the Multiple Objective Evolutionary Algorithms (MOEAs) have become into a very 
popular paradigm for solving multiobjective programming problems. MOEAs are very attractive to solve MOPs because those deal 
simultaneously with a set of possible solutions (the MOEA population) which allows to obtain an approximation of the Pareto 
frontier in a single algorithm run. Thus, by using MOEAs the DM and/or the decision analyst have not to perform a set of separate 
single criterion optimization runs as in the case of established operational research methods. Besides, MOEAs are more robust 
respect to the shape or continuity of the Pareto front, whereas these two issues are a real concern for classical optimization methods 
(cf.[3]). However, one aspect that is often disregarded in evolutionary multiobjective research is the fact that the solution of a 
problem involves not only search but decision making. Most of approaches concentrate on adapting an evolutionary algorithm to 
generate the Pareto frontier. Nevertheless, to find this set does not solve the problem. The DM still has to choose the best 
compromise solution out of that set. It is not a hard task in problems with 2-3 objectives. But when the number of criteria increases, 
two important difficulties arise: 

a) The algorithm‟s capacity to converge to this Pareto frontier is degraded; 
b) It becomes harder, or even impossible for the DM to establish valid judgments in order to compare options with several 

conflicting criteria. 
Here, we propose a combined approach, with a prior articulation of preferences followed by a generating process of a privileged zone 
of the Pareto frontier. Using a fuzzy outranking relation, a strict preference relation in the sense of [4] can be established in any 
population. Our proposal is based on finding a subset of Pareto frontier composed of solutions for which do not exist other solutions 
preferred to the first ones. This non-outranked concept will be used instead of dominance when the evolutionary search is performed. 
 
2. An Outranking Model of Preferences 

Let G be a set of independent criteria and O the objective space. An element x  O is a vector (g1, … gn ), where gi is the i-th 

objective value. Let us suppose that for each criterion j there is a relational system of preferences (Pj,Ij) (preference, indifference) 
which is complete on the domain of j-th criterion (Gj). That is, (gj (x), gj (y) )  Gj x Gj one and only one of the following 
statements is true: 

- gj (x)Pj gj (y) 
- gj (y)Pj gj (x)                                                                                                     (1)  
- gj (x)Ij gj (y) 

Formulation (1) allows indifference thresholds in order to model some kind of imprecise one-dimensional preferences. It should be 
noticed that the relational system of preferences given by (1) is more general than usual formulations which consider only true 
criterion (that is, gj (x) gj (y) implies non-indifference). 



Let us establish the following central premise: For each (x,y)  OO , the DM and the decision analyst (working together) are able to 
create a fuzzy predicate modeling the degree of truth of the statement “x is at least as good as y from the DM point of view”. 
Amongst different ways to create that predicate, we shall describe below an outranking approach based on ELECTRE methods: 
A proposition xSy (“x outranks y”) (“x seems at least as good as y”) holds if and only if the coalition of criteria in agreement with this 
proposition is strong enough and there is no important coalition discordant with it (cf.[5]). It can be expressed by the following 
logical equivalence (cf.[6]): 

                                      xSy   C(x,y)  D(x,y)                                                           (2) 
where: 
 C(x,y) is the predicate about the strength of concordance coalition;  
 D(x,y) is the predicate about the strength of discordance coalition; 
 and  are logical connectives for conjunction and negation, respectively. 
Let c(x,y) and d(x,y) denote the degree of truth of the predicates C(x,y) and D(x,y). From (2), the degree of truth of xSy can be 
calculated as in ELECTRE-III method: 

                                            (x,y) =  c(x,y). N(d(x,y)                                                  (3) 
  
where N(d(x,y)) denotes the degree of truth of the non-discordance predicate . 
As in the earlier versions of ELECTRE methods, we shall take 

                                           c(x,y)=   wj                                                                                                      (4) 
                                                                                              jCx,y 

where Cx,y= j G such that xjPjyj  xjIjyj and w‟s denote “weights” (w1 + w2 + ... + wn = 1).                    
Let Dx,y= j G such that yjPjxj  be the discordance coalition with xSy. The intensity of discordance is measured in comparison with 
a veto threshold vj, which is the maximum difference gj(y) - gj(x) compatible with (x,y)  0. Following Mousseau and Dias ([7]), we 
shall use here a simplification of the original formulation of the discordance indices in ELECTRE-III method which is given by: 

                                             Nd(x,y) = min 1 – dj(x,y)                                            (5) 
j Dx,y 

                                                           
                                                                      1    iff   j  vj   
                                           dj(x,y) =              (j - uj)/ (vj – uj)       iff  uj   j  vj                                            (6)  
                                                                       0      iff  j ≤ uj  
 
 
 
where j = gj(y) - gj(x) and uj is a discordance threshold (see Figure 1). 

 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

Figure 1 Partial discordance relation dj(x,y) 
 
The -cut (x,y) ≥ defines a crisp outranking relation xSy. Credible outranking statements are obtained with = 0.75 (strong 
outranking), even ==0.67 (weak outranking) [8].  (x,y)  0.5 is identified as a doubtful outranking, and  (x,y)  0.5 means a 
definitive no outranking. 
According to Roy (cf.[4]) 
xSy  ySx  (x,y) ≥  (y,x)    a presumed preference favoring x. 
Following Fernandez et al. ([9]), we assume the existence of a threshold 0 such that if (x,y) ≥ and also  (y,x)  (-), then 
there is an asymmetric preference relation favoring x that will be denoted by xP(,)y . It can be agreed that for some values of  and 
, the conditions defining P(,) are good arguments for justifying a strict preference relation in the sense proposed by Roy ([4]).  
may be a function of . In the following we consider that P(,) has been defined on O. 

Amongst different ways of defining a reasonable strict preference relation we suggest which follows: 
xP(,)y if one of the following propositions is held: 
i. x dominates y 

ii. (x,y)≥0.75  (0.67   (y,x)  0.75)  ((x,y) - (y,x))≥   

gj(x)+ vj 

1 

gj(y) 

dj(x,y) 

gj(x)+ uj 



iii. (x,y)≥0.75  (0.5   (y,x)  0.67) 
iv. (x,y)≥0.75   (y,x)  0.5 
v. (0.67   (x,y)  0.75)  (0.5   (y,x)  0.67)  ((x,y) - (y,x))≥ 
vi. (0.67   (x,y)  0.75)   (y,x)  0.5 
vii. (0.5   (x,y)  0.67)  (0.5   (y,x)  0.67)  ((x,y) - (y,x))  
viii. (0.5   (x,y)  0.6)   (y,x)  0.5  ((x,y) - (y,x))≥ 2 
 
Definition 1.  x strictly outranks y iff xP(,)y. 
Definition 2: Let A be a subset of O. If there does not exist y A such that yP(,)x, we say that x is a non-strictly outranked solution 
in A. 
Definition 3: P(,) is said to be free of inconsistencies iff there is no cycles of that relation in O. 

Definition 4: P(,) is said to be minimally free of inconsistencies iff there does exist at least one non-strictly outranked solution in 
O. 

Definition 5: For an option x, the strictly outranking set is defined as So = y O such that yP(,)x. 
Definition 6: The weakness of x in a set A is We = card y A such that  (y,x)  (x,y)   (y,x) ≥ 0.5. 
Definition 7: The strength of x in a set A is We = card y A such that  (x,y)  (y,x)   (y,x) ≥ 0.5 
Fernandez et al. ([9]) proved that the best alternatives in a set should be found among those in which card(So ) is minimal. Suppose 
that P(,) is minimally free of inconsistencies Hence, the best compromise solution should be a non-strictly outranked solution in O. 
When all solution is strictly outranked by another one, the best compromise should be found among the set with minimum card(So ). 
 
3. Adapting NSGA-II to Work with Non-strictly Outranked Classes 

We shall extend the Non-dominated Sorting Genetic Algorithm II (cf.[10]) working with non-strictly outranked individuals instead 
of non-dominated ones. The “filtering” process is similar, but extracting non-strictly outranked individuals which form classes with 
the same value of card(So ). The first front may have card(So )  0 when P(,) is fully inconsistent. 
Unlike typical MOEAs, we are not interested in obtaining a uniform distribution of solutions representing the Pareto frontier. 
Therefore, instead of the NSGA-II crowding distance (or other niching operator), we propose to use the above weakness measure. 
That is, when two individual with equal card(So ) are compared (in binary tournaments or deciding who will be included into the new 
generation), the less weaker will be preferred. 
This adapted algorithm will be called by Non-Outranked- Sorting Genetic Algorithm (NOSGA), whose pseudocode is presented 
below: 
 
Generate random population (size K) 
      Evaluate Objective Values 
      Generate fronts of equal values of card(So ) 
      Assign to these fronts Rank Based on card(So ) 
      Keep the best front (Rank) in the population memory 
      Generate Offspring Population 
              Binary Tournament Selection 
              Crossover and Mutation 
For i = 1 to Number of Generations 
     With Parent and Offspring Population 
             Generate fronts of equal values of card(So ) 
             Assign to these fronts Rank Based on card(So ) 
             Loop (inside) by adding solutions to next generation 
             starting from the best front until K individuals found 
       Update the population memory 
       Select points (elitist) on the better front (with better Rank) 
       Form next generation 
              Binary Tournament Selection 
              Crossover and Mutation 
              Increment generation index 
End of Loop   
 
4. Some Computer Experiments 

In order to validate the present proposal we have performed two tests, both nine-objective knapsack problems. The first one is a 
controlled experiment in which both the true Pareto frontier and the true non-strictly outranked set are known. The second one is a 
real size problem in which the best sets are unknown. 
Let us consider a decision making situation in which the DM is choosing among L different social policies (projects) each with direct 
social impact. This is measured by using a nine-component vector (N1, N2,…. N9). Ni = nkj, the number of people belonging to the  
k-th social category which receive the j-th level benefit from that policy or project. In those examples k= 1, 2, 3 correspond to 
(Extreme Poverty, Poverty, Middle Class), and j = 1, 2, 3 to (High Impact, Middle Impact, Low Impact). N1, N2, N3 correspond to 
extreme poverty people; N7, N8, N9 concern middle class. 
Let us denote by Ni

m the value of Ni associated to the m-th project. Let C be a portfolio. The value of Ni for the whole portfolio is Ni 
(C) = x1 Ni

1 + …. + xL Ni
L where xj = 1 if the j-th project is supported and xj = 0 otherwise. 



We use binary coding; a „1‟ in the individual j-th allele means that the j-th project belongs to this particular portfolio. Other 
parameters of the evolutionary search are: crossover probability = 1; mutation probability = 0.02; population size = 100. 
Preference model parameters: 
Weights: (23, 14, 11, 14, 11, 7, 9, 7, 4); these values express the importance of the differerent objectives. 
Indifference thresholds:  They are calculated as a measure of the error evaluating each objective. 
Veto thresholds: They are settled as 0.5*(Max fi - Min fi ); operations Max and Min act on a population. 
 
4.1 The Control Test 
The information about 20 candidate projects is shown in Table 1. Budget constraints are imposed by area and to the whole portfolio. 
The different values are given in thousands. 

 
Table 1: Applicant projects 

 

Project N1 N2 N3 N4 N5 N6 N7 N8 N9 Support needed Area Region 

1 0 0 45 0 15 0 0 18 0  50,000  3 1 

2 0 25 0 15 0 0 54 0 0  49,500  1 1 

3 0 35 0 0 15 0 0 48 0  49,000  2 1 

4 25 0 0 7.5 0 0 0 0 54  48,500  2 1 

5 0 25 0 7.5 0 0 0 0 48  48,000  2 2 

6 45 0 0 4.5 0 0 0 18 0  47,500  3 2 

7 0 0 35 0 4.5 0 0 0 48  47,000  2 2 

8 5 0 0 0 4.5 0 54 0 0  46,500  1 2 

9 15 0 0 4.5 0 0 12 0 0  46,000  3 1 

10 0 0 5 0 13.5 0 36 0 0  45,500  3 2 

11 0 0 15 15 0 0 30 0 0  45,000  1 2 

12 0 0 35 1.5 0 0 0 36 0  44,500  3 2 

13 0 0 15 0 3 0 24 0 0  44,000  3 1 

14 40 0 0 0 1.5 0 0 0 24  43,500  3 1 

15 0 0 20 0 0 3 0 0 12  43,000  1 2 

16 0 40 0 0 15 0 0 42 0  42,500  2 2 

17 45 0 0 0 4.5 0 48 0 0  42,000  2 1 

18 0 0 30 0 0 4.5 0 0 24  41,500  3 2 

19 10 0 0 0 0 3 60 0 0  41,000  2 1 

20 0 10 0 15 0 0 30 0 0  40,500  1 2 

 
In this problem the set of feasible portfolios was exhaustively explored. This contains 1,600 non-dominated solutions and only 6  
non-strictly outranked ones. These are shown in Table 2. 
 

Table 2: Non strictly outranked portfolios 
 

Project N1 N2 N3 N4 N5 N6 N7 N8 N9 

1 145 110 60 49.5 55.5 3 276 126 24 

2 140 110 80 49.5 51 6 222 126 36 

3 170 75 60 57 40.5 3 276 78 78 

4 140 75 80 61.5 34.5 6 234 78 66 

5 165 75 80 57 36 6 222 78 90 

6 185 75 15 61.5 25.5 3 288 60 78 

 
A single run of the standard NSGA-II (Population size = 100, mutation probability = 0.02, crossover probability = 1) found 90 non-
dominated solutions. All are strictly outranked. Besides, a single run of NOSGA found in the first front the six solutions pointed-out 
in Table 2. This experiment was replicated several times with similar results. 
 



4.2 An example of real size 
Secondly, we solved a portfolio problem with 100 applicant projects characterized by the same nine-objective set as the previous 
example. In similar way, the feasible region was determined by the total budget and area requirements. The (known) non-outranked 
front of one random instance of this problem is shown in Table 3. The objective values are given in thousands. Weakness, strength 
and net flow score were calculated on the final parent-offspring population.  
 

Table 3: Some results 
 

Portfolio N1 N2 N3 N4 N5 N6 N7 N8 N9 W S NFS 

1 820 560 725 1005 1080 840 1086 690 576 35 168 18.42 

2 820 585 705 1200 930 765 1014 666 804 58 145 22.37 

3 820 770 510 1140 1080 660 954 474 828 136 67 -5.38 

             

Ideal 820 890 1000 1260 1380 1215 1248 816 1044    

Nadir 220 135 255 180 345 270 270 174 222    

 
W.- Weakness ; S.- Strength; NFS.- Net Flow Score 

 
The best solutions seem to be 1 and 2. It is obvious that those solutions are concentrated in a relatively small objective space region. 
By using the standard NSGA-II an approximation to Pareto front was obtained for the same instance. In fact, the ideal and nadir 
points in Table 3 were found by NSGA-II. In the following NOk and NDk will denote the known non-strictly outranked and  
non-dominated sets respectively. Let U be NOk  NDk . A comparison between NOk and NDk was performed with the following 
results: 
1. Each x  NOk is not dominated in U; 
2. Each x  NOk remains as non-strictly outranked in U; 
3. No x  NDk is member of NOk ; 
4. No x  NDk is non-strictly outranked solution when NDk is put together the NOSGA final population. 
5. After calculating (x,y) on U, a ranking of this set considering weakness, strength and net flow was performed. The three solutions 
belonging to NOk are the best in U.6. As shown in Table 4, the mean value of weakness, strength, and net flow scores taken on NOk 
are clearly better that the respective mean values on NDk . 
From above remarks, it can be concluded that (accepting (x,y) as a good model of the outranking statement degree of truth), NOk is 
a preference privileged zone in the objective space. Unlike NOSGA, the best front found by NSGA-II (although may be 
representative of the Pareto frontier) does not contain the best compromise solutions. 

 
Table 4: Mean Values in NO and ND 

 

Set Weakness Strength 
Net Flow 

Score 

NO 3.88 86.44 58.67 

ND 32.63 30.74 -5.28 

 
 
5. Conclusions 

In several instances of different examples our proposal (NOSGA) clearly outperforms the standard NSGA-II, achieving non-
outranked solutions which are in an obvious privileged zone of the Pareto frontier. Those solutions are few, concentrated, and 
satisfactory. A good compromise can be easily detected on the non-outranked front. Additionally, as the overall multiobjective 
performance is aggregated in (x,y), NOSGA shows a weak dependence on the number of objective functions. 
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