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Abstract

In this article we introduce Inverted and Shrinkable
Pareto Archived Evolutionary Strategies, IS-PAES, an evo-
lutionary algorithm for multiple objective optimization with
constraint handling. IS-PAES inherits from PAES the use of
an adaptable grid to control diversity, but here this grid can
grow and shrink dynamically until the constraints are met.
We also propose a novel approach to remove unfeasible in-
dividuals from the population while keeping high popula-
tion diversity. Several examples of the literature are used to
show the potential of ISPAES.

1 Introduction

Evolutionary Algorithms (EAs) in general (i.e., genetic
algorithms, evolution strategies and evolutionary program-
ming) lack a mechanism able to bias efficiently the search
towards the feasible region in constrained search spaces.
Such a mechanism is highly desirable since most real-
world problems have constraints which could be of any type
(equality, inequality, linear and nonlinear). The success
of EAs in global optimization has triggered a considerable
amount of research regarding the development of mecha-
nisms able to incorporate information about the constraints
of a problem. When using penalty functions, the amount
of constraint violation is used to punish infeasible solu-
tion so that feasible solutions survive for reproduction. De-
spite the popularity of penalty functions, they have several
drawbacks, one of them being the careful fine tuning of the
penalty factors or degree of penalization of either constraint.
Another approach to constraint handling is to treat the con-
straints as objective functions, and then solve the problem
for all of them. IS-PAES follows the latter procedure, and

also as PAES [1], selection is based on Pareto dominance.
Nonetheless, we introduce a novel strategy that makes a dif-
ference: when individuals are located in the feasible region
the constraints are not used for dominance testing. (thus
only the real objective functions are used). This idea has
proved powerful since so far IS-PAES has reported some of
the best results for single-objective optimization problems
with constraints [26]. The remainder of this paper is orga-
nized as follows. Section 2 provides the problem definition.
Section 3 introduces concepts used in the article. Section 4
describes some work related to our own. In Section 5, we
describe the main algorithm of IS-PAES. Section 6 provides
a comparison of results and Section 7 draws our conclusions
and provides some paths of future research.

2 Problem Statement

We are interested in the general non-linear programming
problem in which we want to:

Find~x which optimizes~F (~x) (1)

subject to:

gi(~x) ≤ 0, i = 1, . . . , n (2)

hj(~x) = 0, j = 1, . . . , p (3)

where ~F is the vector of objective functions~F =
[f1(~x), . . . , fk(~x)], ~x is the vector of solutions~x =
[x1, x2, . . . , xr]T , n is the number of inequality constraints
andp is the number of equality constraints (in both cases,
constraints could be linear or non-linear).

If we denote withF to the feasible region and withS to
the whole search space, then it should be clear thatF ⊆ S.



For an inequality constraint that satisfiesgi(~x) = 0, then
we will say that is active at~x. All equality constraintshj

(regardless of the value of~x used) are considered active at
all points ofF .

3 Basic Concepts

Pareto dominance means one individual dominates a sec-
ond individual if the first is better in at least one of the ob-
jectives while the other objectives remain with no change.
Based on this main idea, several approaches have been pro-
posed in the last few years. Some of them use population-
based techniques (e.g., [3]), others use Pareto dominance in
the selection mechanism of the EA (e.g., [2]), and others
use Pareto ranking (e.g., [4]). However, all of these tech-
niques are normally more useful to approach the feasible
region, but are not as effective for reaching the global op-
timum of a problem. We argue in this paper that the main
reason for having this limitation has to do with the focus
of the search in traditional multiobjective optimization al-
gorithms. Rather than focusing the effort on finding good
“tradeoffs” (as in multiobjective optimization), we propose
to focus the search in finding the boundary between the fea-
sible and the infeasible regions and then concentrating the
search effort on reaching the global optimum. Notice that
“tradeoffs” are neglected, therefore, any constraint satisfied
is as good as any other, and in fact, they are not used to
test Pareto dominance once individuals are in the feasible
region. Such is the nature of the algorithm proposed in this
paper.

The main idea in adopting multiobjective optimization
concepts to handle constraints is to redefine the global op-
timization problem of~f(~x) as a multiobjective optimiza-
tion problem in which we will havek + m objectives,
where m is the total number of constraints andk the
number of objective functions. Then, we can apply any
multiobjective optimization technique to the new vector
v̄ = (f(~x), f1(~x), . . . , fk+m(~x)), wheref1(~x), . . . , fk(~x)
are the original objectives of the problem. An ideal solution
~x would thus havefi(~x)=0 for1 ≤ i ≤ m andf(~x) ≤ f(~y)
for all feasible~y (assuming minimization).

4 Related work

We will now provide a brief discussion of the different
approaches that have been proposed in the literature adopt-
ing the three main ideas previously indicated.

4.1 COMOGA

Surry & Radcliffe [4] used a combination of the Vector
Evaluated Genetic Algorithm (VEGA) [6] and Pareto Rank-
ing to handle constraints in an approach called COMOGA

(Constrained Optimization by Multi-Objective Genetic Al-
gorithms). In this technique, individuals are ranked depend-
ing of their sum of constraint violation (number of individ-
uals dominated by a solution). However, the selection pro-
cess is based not only on ranks, but also on the fitness of
each solution.

4.2 VEGA

Parmee & Purchase [15] proposed to use VEGA [6] to
guide the search of an evolutionary algorithm to the feasi-
ble region of an optimal gas turbine design problem with
a heavily constrained search space. After having a feasible
point, they generated an optimal hypercube around it in or-
der to avoid leaving the feasible region after applying the
genetic operators. Note that this approach does not really
use Pareto dominance or any other multiobjective optimiza-
tion concepts to exploit the search space. Instead, it uses
VEGA just to reach the feasible region.

4.3 MOGA

In this approach, feasible individuals are always ranked
higher than infeasible ones. Based on this rank, a fitness
value is assigned to each individual. This technique also
includes a self-adaptation mechanism that avoids the usual
empirical fine-tuning of the main genetic operators [16] .

4.4 NPGA

Coello and Mezura [17] implemented a version of the
Niched-Pareto Genetic Algorithm (NPGA) [19] to handle
constraints in single-objective optimization problems. The
NPGA is a multiobjective optimization approach in which
individuals are selected through a tournament based on
Pareto dominance. However, unlike the NPGA, Coello and
Mezura’s approach does not require niches (or fitnes shar-
ing [18]) to maintain diversity in the population.

4.5 Pareto Set and Line Search

Camponogara & Talukdar [20] proposed an approach in
which a global optimization problem was transformed into
a bi-objective problem where the first objective is to op-
timize the original objective function and the second is to
minimize:

Φ(x) =
n∑

i=1

max(0, gi(x)) (4)

Equation (4) tries to minimize the total amount of con-
straint violation of a solution (i.e., it tries to make it feasi-
ble). At each generation of the process, several Pareto sets
are generated.



4.6 Pareto Ranking and Domain Knowledge

Ray et al. [21] proposed the use of a Pareto ranking
approach that operates on three spaces: objective space,
constraint space and the combination of the two previous
spaces. This approach also uses mating restrictions to en-
sure better constraint satisfaction in the offspring generated
and a selection process that eliminates weaknesses in any
of these spaces. To maintain diversity, a niche mechanism
based on Euclidean distances is used. This approach can
solve both constrained or unconstrained optimization prob-
lems with one or several objective functions.

4.7 Pareto Dominance and Preselection

Jiménez et al. [25] proposed an algorithm that uses
Pareto dominance inside a preselection scheme to solve sev-
eral types of optimization problems (multiobjective, con-
straint satisfaction, global optimization, and goal program-
ming problems). The approach redefines the problem as
an unconstrained multiobjective optimization problem in
which objectives are given priorities. Feasible solutions
with a good objective function value are given the highest
priority.

4.8 Pareto Ranking and Robust Optimization

Ray [22] explored an extension of his previous work
on constraint-handling [21] in which the emphasis was ro-
bustness. A robust optimized solution is not sensitive to
parametric variations due to incomplete information of the
problem or to changes on it. This approach is capable of
handling constraints and finds feasible solutions that are ro-
bust to parametric variations produced over time. This is
achieved using the individual’s self-feasibility and its neigh-
borhood feasibility.

5 IS-PAES Algorithm

IS-PAES has been implemented as an extension of the
Pareto Archived Evolution Strategy (PAES) proposed by
Knowles and Corne [1] for multiobjective optimization.
PAES main feature is the use of an adaptive grid on which
objective function space is located using a coordinate sys-
tem. Such a grid is the diversity maintenance mechanism of
PAES and its the main feature of this algorithm. The grid
is created by bisectingk times the function space of dimen-
sion d = g + 1. The control of2kd grid cells means the
allocation of a large amount of physical memory for even
small problems. For instance, 10 functions and 5 bisections
of the space produce250 cells. Thus, the first feature in-
troduced in IS-PAES is the “inverted” part of the algorithm
that deals with this space usage problem.

IS-PAES’s fitness function is mainly driven by a feasi-
bility criterion. Global information carried by the individ-
uals surrounding the feasible region is used to concentrate
the search effort on feasible areas as the evolutionary pro-
cess takes place. In consequence, the search space being
explored is “shrinked” over time, by cutting off unfeasible
regions from the search space. Eventually, upon termina-
tion, the size of the search space being inspected will be the
feasible region. It is important to indicate that the pruning of
portions of the infeasible region of a problem has been pro-
posed before by other researchers (e.g., [7], although in this
case the search engine is not an EA). However, the combina-
tion of this shrinking concept with the usage of a secondary
population and a multiobjective evolutionary algorithm is a
novel proposal. The main algorithm of IS-PAES is shown
next (a complete description of the algorithm and more re-
sults is available in [26]).

Main algorithm of IS-PAES
maxsize: max size of file
c: current parent∈ X (decision variable space)
h:child of c∈ X
ah: individual in file¹ h
ad: individual in file dominated byh
current: current number of individuals in file
cnew: number of individuals generated thus far
current = 1; cnew=0;
c = newindividual();
add(c);
While cnew≤MaxNewdo

h = mutate(c); cnew+=1;
if (c¹h) then label A
else if(h¹c) then {remove(c); add(g); c=h;}
else if(∃ah ∈ file |ah ¹ h) then label A
else if( ∃ad ∈ file |h ¹ ad } then{

add( h );∀ad{remove(ad); current-=1}
elsetest(h,c,file)
label A
if (cnew % g==0)then {c = individual in

less densely populated region}
if (cnew % r==0)then shrinkspace(file)

End While
Every g number of generations, a new parent is chosen

from the less populated area of the grid. The overall effect is
to re-start the search as to distribute the population along the
Pareto front. Everyr number of generations, the unfeasible
region is cutted off (if any) by calling shrinkspace(file). The
function test(h,c,file)determines how an individual can be
added to the external memory. If there is space in mem-
ory then the child is simply inserted and the next parent is
chosen from the less populated area. If the file is full, one
element has to be removed in order to insert the new child,
but the condition for the child to enter the file is to remove
one element from a highly dense populated grid location.



Here we introduce the following notation:x12x2 means
x1 is located in a less populated region of the grid thatx2.
The pseudo-code of this function is shown next.

Pseudo-code of test(h,c,file)
if (current< maxsize)then

add(h);
if (h 2 c) then c=h

else if(∃ap ∈ file |h2ap) then
remove(ap); add(h)
if (h 2 c) then c = h;

5.1 Inverted “ownership”

IS-PAES handles the populationas part ofa grid location
relationship, whereas PAES handles a grid locationcontains
population relationship. In other words, PAES keeps a list
of individuals on either grid location, but in IS-PAES ei-
ther individual knows its position on the grid. Therefore,
building a sorted list of the most dense populated areas of
the grid only requires to sort thek elements of the external
memory. In PAES, this procedure needs to inspect every lo-
cation of the grid in order to produce an unsorted list, there
after the list is sorted. The advantage of the inverted rela-
tionship is clear when the optimization problem has many
functions (more than 10), and/or the granularity of the grid
is fine, for in this case only IS-PAES is able to deal with any
number of functions and granularity level.

5.2 Shrinking the objective space

Shrinkspace(file) is the most important function of IS-
PAES since its task is the reduction of the search space. IS-
PAES removes from the file the worst individuals by call-
ing the functionselect(file). The new boundary of each
decision variable is calculated by callinggetMinMax (at
this point ISPAES is only using the elements found by se-
lect(file)).The third and last step of shrinkspace is to call
function trim(). Trim will never cut off area from the feasi-
ble region. The pseudo-code of shrinkspace(file) is shown
next.

Pseudo-code of Shrinkspace(file)
xpob: vector containing the smallest

value of eitherxi ∈ X
xpob: vector containing the largest

value of eitherxi ∈ X
select(file);
getMinMax( file,xpob, xpob);
trim( xpob, xpob );

The description of each component is given next.

1. select(file). The goal is to pick feasible individual, a
task ISPAES does by removing the unfeasible ones.

The function select(file) is shown next.

Pseudo-code of select(file)

m : number of constraints

mr : number of violated constrains

i : constraint index

maxsize : max size of file

listsize : 50% of maxsize

constraintvalue(x, i) : value of individual

at constraint i

mrfile(file, mr) : calculate mr

worst(file, i) : worst individual in file for

constraint i

validconstraints = {1, 2, 3, ..., m}
i=firstin(validconstraints);

mrfile(file,mr);

if (mr < listsize) listsize=mr;

While (size(file)> listsize and

size(validconstraints)> 0) {
x=worst(file,i)

if (x violates constraint i)

file=delete(file,x)

elsevalid constraints=

remove index(valid constraints,i)

if (size(valid constraints)> 0)

i=nextin(valid constraints)

}
The function select(file) returns a list whose elements
are the best individuals found in file. The size of the list
is50% of maxsize. Since individuals could be feasible,
unfeasible or only partially feasible, the list is gener-
ated by discarding from file the worst elements by con-
straint. Notice that selec(file) does not use a greedy
approach, for instance, searching for the best feasible
individuals at once. IS-PAES loops over a list of con-
straint indexes, removing for each index the worst un-
feasible element (one) at a time. When all individuals
are feasible for some index, the index is removed from
the list. This approach keeps high the diversity of the
population. If all individuals are feasible the algorithm
does not remove any, and returns the same file. In any
other case, the number of elements returned is50%
the initial size. This resulting list contains: 1) only
the best feasible individuals, or 2) a combination of
feasible and partially feasible, or 3) the “best” unfeasi-
ble individuals. Notevalidconstraints is an ordered



list of indexes. Another approach could be to store
the constraint indexes in random order, or to shuffle
the list every given number of generations so the con-
straints are really tested in random order. The three
approaches have been tested and none seems to excel
over the others, thus we show here the approach used
in this paper (testing the constraints in fixed order).

2. getMinMax(file). The function getMinMax(file) takes
the mentioned list and finds the extreme values of the
decision variables represented by those individuals.
Thus, the vectorsxpob and xpob are found.

3. trim( xpob, xpob). Function trim()shrinks the feasible
space around the potential solutions enclosed in the hy-
pervolume defined by the vectorsxpob andxpob. Func-
tion trim is shown next.

Pseudo-code of trim
n: size of decision vector;
xi: actual upper bound of theith decision variable
xi: actual lower bound of theith decision variable
xpob,i: upper bound ofith decision variable

in population
xpob,i: lower bound ofith decision variable

in population∀i : i ∈ { 1, . . . , n}
slacki = 0.05× (xpob,i − xpob,i)
width pobi = xpob,i − xpob,i; widtht

i = xt
i − xt

i

deltaMini = β∗widtht
i−width pobi

2

deltai = max(slacki, deltaMini);
xt+1

i = xpob,i + deltai; xt+1
i = xpob,i − deltai;

if (xt+1
i > xoriginal,i) then
xt+1

i − = xt+1
i − xoriginal,i;

xt+1
i = xoriginal,i;

if (xt+1
i < xoriginal,i) then{

xt+1
i + = xoriginal,i − xt+1

i ;

xt+1
i = xoriginal,i;}

if (xt+1 > xoriginal,i) thenxt+1
i = xoriginal,i;

The value ofβ is the percentage by which the boundary
values of eitherxi ∈ X must be reduced such that the re-
sulting hypervolumeH is a fractionα of its previous value.
In IS-PAES all objective variables are reduced at the same
rate β, therefore,β can be deduced fromα as discussed
next. Since we need the new hypervolume be a fractionα
of the previous one,

Hnew≥ αHold (5)

n∏

i=1

(xt+1
i − xt+1

i ) = α

n∏

i=1

(xt
i − xt

i)

Eitherxi is reduced at the same rateβ, thus

n∏

i=1

β(xt
i − xt

i) = α

n∏

i=1

(xt
i − xt

i)

βn
n∏

i=1

(xt
i − xt

i) = α

n∏

i

(xt
i − xt

i=1)

βn = α

β = α
1
n

In short, the search interval of each decision variablexi

is adjusted as follows:

widthnew ≥ β × widthold

In our experiments,α = 0.90 worked well in all cases.
Clearly,α controls the shrinking speed, hence the algorithm
is sensitive to this parameter and it can prevent it from find-
ing the optimum solution if small values are chosen. In
our experiments, values in the range [85%,95%] were tested
with no visible effect in the performance. Of course,α val-
ues near to100% slow down the convergence speed.

The mutation of the control variable sigma follows the
exponential behavior suggested by Bäck [8]. The initial
value of eitherσi is calculated as follows:

σi = xi − xi/
√

n i ∈ (1, . . . , n) (6)

6 Experiments

In all the following examples of this section we used the
following parameters: The size of the file is 100. All the
members of the file could participate in the new generation..
Shrinkspace is called every 2 generations(r = g = 2), and
reduction rate of the hypervolume is 10% (α = 0.9). We
used 500 generation in each problem.

Experiment 1
The truss of the Figure 1 has to carry a load of 100 kN.

The objectives are the minimization of the volume (design-
ing for the minimum cost of fabrication) and the minimiza-
tion of the maximum stresses on each bar. This problem
was originally studied using theε−constraint method[14]
as a two-objective optimization problem withy as the only
variable.

Minimizef1(x) = x1

√
(16 + y2) + x2

√
(1 + y2)

Minimizef2(x) = max(σAC , σBC)

subject to:max(σAC , σBC) ≤ 105; 1 ≤ y ≤ 3

The stresses are calculated with a close form:



Figure 1. Truss of Experiment 1

σAC =
20

√
(16 + y2)
yx1

; σBC =
80

√
(1 + y2)
yx2

In Figure 2 we show the real Pareto-optimal solution
(calculated by enumeration) and the front reported by the
ISPEAS algorithm. The solution is spread over the fol-
lowing range: (.004 m3, 100000 kPa) and (0.051387m3,
8432.740427 kPa). ISPAES found a smooth front and the
totality of the points are very close of the real Pareto front.
We are comparing our results with those published by Deb,
Patratap and Moira [13], where they include results with
NSGA[10], NSGA-II[11] and theε−constraint method[14].

Experiment 2
A compound gear train is designed to achieve a specific

gear ratio between the driver and driven shafts (see the Fig-
ure 3).

The goal is to find the number of teeths in each of the
four gears as to minimize the error between the obtained
gear ratio and a required gear ratio of 1/6.931 and the max-
imum size of any of the four gears. There are four vari-
ables representing the number of teeths. We write the two-
objective optimization problem:

Minimizef1(x) =
[

1
6.931

− x1x2

x3x4

]

Minimizef2(x) = max(x1, x2, x3, x4)

Subject to12 ≤ x1, x2, x3, x4 ≤ 60, xi ∈ Z

In Figure 4 we show the real Pareto-optimal solution
(calculated by enumeration) and the result of the ISPAES
algorithm. In this experiment, the ISPAES algorithm had a
very good performance. We can see the results obtained by
a single objective GAs (GeneAS-I and GeneAS-II)[12], by

Figure 2. Pareto fronts of Experiment 1

Figure 3. Compound gear of Experiment 2



Figure 4. Pareto fronts of Experiment 2

the augmented Lagrangian (AL), and the branch-and-bound
(BB) methods for the error minimization, NSGA[10] and
NSGA-II [11][13]

7 Conclusions

We have proposed a new multiobjective optimization al-
gorithm whose selection method is based on Pareto domi-
nance concept. IS-PAES determines automatically the re-
gion where the optimum is located by bounding the area
every time the unfeasible region is removed from the search
space. Our method is more robust to scalability problems
then the original PAES, as many experiments have demon-
strated it [26]. At the same time, since IS-PAES treats the
individuals on the grid in the described “inverted” mech-
anism, the computation performance and the use of com-
putation resources is better than in PAES. The constraint
handing technique reduces the dimensional complexity of
the Pareto dominance, therefore, dominance is easier to
identify. The experiments show good dispersion along the

Pareto front, and the evolved front is over (or almost over)
the real Pareto front, improving the results of other well
know methods.
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