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Abstract. Particle swarm optimization (PSO) and differential evolution
(DE) are meta-heuristics which have been found to be very successful in a
wide variety of optimization tasks. The high convergence rate of PSO and
the exploratory capabilities of DE make them highly viable candidates
to be used for solving multi-objective optimization problems (MOPs). In
previous studies that we have undertaken [2], we have observed that PSO
has the ability to launch particles in the direction of a leader (i.e., a non-
dominated solution) with a high selection pressure. However, this high
selection pressure tends to move the swarm rapidly towards local optima.
DE, on the other hand, seems to move solutions at smaller steps, yield-
ing solutions close to their parents while exploring the search space at the
same time. In this paper, we present a multi-objective particle swarm opti-
mizer enhanced with a differential evolution scheme which aims to main-
tain diversity in the swarm while moving at a relatively fast rate. The goal
is to avoid premature convergence without sacrificing much the conver-
gence rate of the algorithm. In order to design our hybrid approach, we
performed a series of experiments using the ZDT test suite. In the final
part of the paper, our proposed approach is compared (using 2000, 3500,
and 5000 objective function evaluations) with respect to four state-of-the-
art multi-objective evolutionary algorithms, obtaining very competitive
results.

1 Introduction

Particle swarm optimization (PSO) [4] is a meta-heuristic that mimics the be-
havior of bird flocks by “searching” based on social and personal knowledge ac-
quired by a set of particles. Due to its effectiveness in single-objective optimiza-
tion, PSO has been extended to multi-objective optimization problems (MOPs).
In addition, differential evolution (DE) [6] is another meta-heuristic which has
been particularly successful as a single-objective optimizer. DE works by mu-
tating solutions based on the population’s variance and this strategy has been



found to be a very powerful optimizer in continuous search spaces. Similar to
PSO, several DE algorithms have been migrated to multi-objective optimiza-
tion. Even though both meta-heuristics (PSO and DE) are simple to conceptu-
alize and have shown competitive results on a variety of MOPs, relatively few
research has been performed in regards to comparing and contrasting these two
meta-heuristics in a multi-objective context. We believe that obtaining more de-
tailed knowledge about the search capabilities of multi-objective evolutionary
algorithms (MOEAs) such as these, is of utmost importance to design more
powerful algorithms. For example, the few studies currently available indicate
that several multi-objective particle swarm optimizers (MOPSOs) have diffi-
culties to deal with multifrontal problems [3], while multi-objective differential
evolution (MODE) approaches have shown better results on this type of prob-
lems [8,2]. The different behavior of MOPSO and MODE on this type of prob-
lems may serve as indicative that a better understanding of these two meta-
heuristics will be fruitful.

In this article, we propose a hybrid MOEA that attempts to combine the
advantages of MOPSO and MODE. Some of the features adopted for our hy-
brid approach were obtained from a series of experiments (some of these ex-
periments are included in this document while others were obtained from our
previous research [2]) performed on the Zitzler-Deb-Thiele (ZDT) test suite.
As a result, aiming to adopt the mechanisms that promote desirable effects (in
MODE and MOPSO), we have devised a MOEA which shows competitive re-
sults (using the IGD [9] performance measure) when compared to four state-of-
the-art MOEAs.

The remainder of this paper is organized as follows. Section 2 introduces
some basic concepts related to multi-objective optimization as well as the PSO
and DE algorithms. In Section 3, we show a series of experiments that allowed
us to better understand the way in which a MODE and a MOPSO algorithms
perform the search. Then, in Section 4, we introduce the designed algorithm
whose performance is assessed in Section 5. Finally, our conclusions and some
possible paths for future research are provided in Section 6.

2 Basic Concepts

In this study, we assume that all the objectives are to be minimized and are
equally important. We are interested in solving the general multi-objective opti-
mization problem with the following form:

Minimize f(Xi) = (f1(Xi), f2(Xi), . . . , fM (Xi))
T

subject to Xi ∈ F (1)

where Xi is a decision vector (containing our decision variables), f(Xi) is the M -
dimensional objective vector, fm(Xi) is the m-th objective function, and F is the
feasible region delimited by the problem’s constraints.



2.1 Particle Swarm Optimization

The flight of particles in PSO is typically directed by the following three com-
ponents: i) velocity - this component is conformed by a velocity vector which
aids in moving the particle to its next position. Moreover, an inertia weight w
is used to control the amount of previous velocity to be applied. ii), cognitive
- this component represents the “memory” of a particle. This is done with a
personal best vector (we will refer to this vector as pbest) which remembers the
best position found so far by a particle. iii) social - this component represents
the position of a particle known as the leader. The leader is the particle with
the best performance on the neighborhood of the current particle. These three
components of PSO can be seen on its flying formula. When a particle is about
to update its position, a new velocity vector is computed using:

vi(t+ 1) = wvi(t) + c1r1(t)(yi(t)− xi(t)) + c2r2(t)(ŷi(t)− xi(t)) (2)

Thereafter, the position of the particle is calculated using the new velocity vec-
tor:

xi(t+ 1) = xi(t) + vi(t+ 1) (3)

In Equations (2) and (3), xi(t) denotes the position of particle i at time t,
vi(t) denotes the velocity of particle i at time t, w is the inertia weight, c1 and
c2 are the cognitive and social factors, respectively, and r1, r2 ∼ U(0,1). Addi-
tionally, yi is the best position found so far by particle i (pbest), and, ŷi is the
neighborhood best position for particle i (leader).

2.2 Differential Evolution

Differential evolution was proposed under the idea that a convenient source for
perturbation is the population itself. Therefore, in DE, the step size is obtained
from the current population. In this manner, for each parent vector xi, a differ-
ence vector xi1 − xi2 is used to perturb another vector xi3 . This can be seen in
the following mutation equation,

zi(t) = xi3 + F ∗ (xi1 − xi2) (4)

where xi1 , xi2 , xi3 are pairwise different random vectors, and F is a scaling
factor.

Recombination in DE is achieved by combining elements from a parent vec-
tor xi(t) with elements from zi(t),

µi,j(t) =

{
zi,j(t) if U(0, 1) < Pr or j = r
xi,j(t) otherwise. (5)

where r is a random integer from [1, 2, . . . , Dim], Pr is the recombination prob-
ability and j is used as index for the Dim dimensions of a solution.



3 Analysis of MOPSO and MODE

3.1 Velocity on MOPSO

Most of the current MOPSOs have premature convergence in the presence of
multifrontal problems [3]. Some researchers have analyzed the behavior of the
velocity of MOPSOs in multifrontal problems and have reported that the rea-
son for their premature convergence is that velocity values grow too much [5,3].
An experiment was developed to study the velocity of MOPSO in more de-
tail. For this experiment, we selected two test problems: ZDT1 (which can be
solved relatively easily by a MOPSO), and ZDT4 (which is a multifrontal prob-
lem that is very hard to solve for several MOPSOs). For our study, we will adopt
OMOPSO1 which obtained the best results in [3] but still was unable to solve
ZDT4. In order to observe the behavior of velocity, we have used boxplots to
show the values reached in 30 executions using 50 particles and 100 generations
(see Figures 1(a) and 1(b)). In the figures, the y axis shows the velocity values,
while the x axis shows the iterations. Please note that the actual boxes is where
the majority of observations are located while the dark region (composed of
many + symbols) shows the outliers. Figure 1(a) shows that the velocity values
for ZDT1 are (approximately) in the range [−2,2]. For the case of ZDT4, Fig-
ure 1(b) shows that the velocity values are in the range [−20,20]. As previously
noted by other researchers, the velocity values for ZDT4 are much bigger than
for ZDT1. Nonetheless, it should be pointed out that the velocity values shown
are proportional to the range of the decision variables of each problem 2. More-
over, it is important to note that the velocity values in Figure 1(b) fall close to 0
around iteration 60. Since velocity depends on the difference of the leader and
the pbest with the current particle’s position, we infer that, at some point dur-
ing the run, particles get really close to the leader and the pbest producing very
small velocities. This premise led us to the following experiment.

3.2 Distance of Movement

Our hypothesis is that the observed velocity values are really a consequence,
rather than a cause for the premature convergence of OMOPSO in ZDT4. To
validate our hypothesis, we will now try to see why is that MODE can achieve
much better results on ZDT4. In this experiment we have used the same struc-
ture of OMOPSO to design a MODE algorithm. The variant used is DE/Best/1/Bin
which showed the best results in previous research. In Figures 2(a) and 2(b), we
plotted the Euclidean distance traveled by particles of OMOPSO and solutions
of MODE in ZDT4. For OMOPSO, this is the distance between the previous and
the new position while in MODE this is the distance between the parent and the
candidate position.

1 We have removed the turbulence operator included in this algorithm, since we aim to
observe its raw behavior.

2 ZDT1 has its variables in the range [0,1] while ZDT4 has the first variable in the range
[0,1] while the rest are in the range [−5,5]



(a) ZDT1 (b) ZDT4

Fig. 1. Velocity of OMOPSO for ZDT1 (left) and ZDT4 (right)
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(b) OMOPSO

Fig. 2. Euclidean distance traveled from parent to offspring for MODE (left) and
OMOPSO (right) on ZDT4

Figures 2(a) and 2(b) show different behaviors. OMOPSO reaches bigger
distance values than MODE at the beginning of the execution but as the iter-
ations elapse distances in OMOPSO fall rapidly to zero (meaning all particles
are landing very close to its previous position). Based on our previous research



[2] and from the information seen at the presented plots, we argue that this is
due to the following: OMOPSO uses only leaders and pbests to move particles
while MODE uses information from the entire population. Indeed, in OMOPSO
all particles are heavily attracted towards their leaders. If these leaders are di-
verse enough, then OMOPSO seems to move fast towards improvement. How-
ever, if leaders at some point get stuck in a local front, then all solutions will
rapidly move towards that front making it harder for OMOPSO to escape (as
diversity is very limited). This is not the case for MODE, in which every solu-
tion of the population can be used for perturbation and, therefore, more of the
search space is explored. Moreover, solutions will land close to their parent (as
the recombination operator allows certain variables to pass intact from the par-
ent to the candidate), thus preventing that the whole population moves quickly
towards local Pareto fronts.

4 Our Proposal

The two previous experiments led us to conjecture that, if properly integrated, a
MOPSO combined with a MODE could be a very powerful yet efficient MOEA.
Specifically, our aim is to use a MOPSO scheme, but to incorporate a DE mech-
anism that places a few particles very close to the leaders (rather than trying
to strongly dominate the leaders as in MOPSO). We hypothesized that this sort
of hybrid scheme might provide a fast convergence rate, while preserving the
required diversity to avoid premature convergence. The next paragraphs de-
scribe our proposed approach.

4.1 Leader Selection Scheme

We have developed a scheme which attempts to select a leader that is diverse
enough (with respect to the rest of the leaders). Our proposed mechanism works
as follows. First, we obtain the centroid of all the available leaders. Then, we
use roulette wheel selection to pick a leader such that the probability for each
leader to be selected is proportional to the distance of that leader to the centroid
(the bigger the distance of the leader to the centroid, the greater its chance of
being selected). We believe that this scheme should be able to provide enough
diversity in cases in which most of the leaders move towards the same region.

Here, one can argue that a leader selection scheme based on crowding would
give similar results to ours. There is, however, an important difference. Crowd-
ing will favor both boundaries of the search space at all times, whereas our
proposed scheme will favor the boundary opposite to the location of most of
the leaders (see Figure 3).

4.2 The Use of the Velocity

It has been a common practice in PSO to decrease the previous velocity using
a factor w. Moreover, this factor has traditionally been set using one of three
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Fig. 3. Leader selection scheme for our proposal. Leaders are represented by filled red
dots, solutions are black circles and the “X” symbol is the centroid of the leaders

schemes: i) w adopts a constant value, ii) w depends on the current iteration,
and iii) w is randomly selected from a range. Here, we have adopted a different
scheme in which w depends on the previous success of the particle. We believe
that if a particle succeeded at previous iterations, then it should be beneficial
to use a bigger portion of its previous velocity. On the contrary, if the parti-
cle has not been successful, then the previous velocity portion should be de-
creased giving a higher chance to the social and cognitive factors to take action.
In short, Equation 6 works in the following way3. If a particle is the selected
leader (meaning the particle has found a very good position at its previous it-
eration), then we use all of its previous velocity (w = 1). If a particle’s current
position is its pbest (the particle found its best position of the whole execu-
tion in the previous iteration), then we use a high range of its previous velocity
(w = U ∼ (0.5, 1.0)). In none of the two previous cases occur, then we use a
lower percentage of the velocity (w = U ∼ (0.1, 0.5)).

w =

1 if xi(t) = ŷi(t) and flip(0.5) = true
U ∼ (0.5, 1.0) if xi(t) = yi(t) and flip(0.5) = true
U ∼ (0.1, 0.5) otherwise.

(6)

4.3 Moving Towards an Specific Leader

We adopt a DE mechanism to place some particles close to the selected leader
rather than finding a position that strongly dominates the leader but might be
moving “deeper” into some local optima. Thus, using a low probability we
adopt a mechanism which will make several variables (with a high probability)
to be equal to the selected leader. The aim is that the obtained particle will
be close to the selected leader and that region of the search space is not lost.

3 flip(0.5) refers to a function which returns true with 50% probability



Moreover, a few variables will be obtained from a mutation based on three
different random pbests. Equation (7) describes this mechanism.

xi,j(t) =
{

yi3,j
+ F ∗ (yi1,j

− yi2,j
) if U(0, 1) < Pr or j = r

ŷp,j otherwise. (7)

4.4 The Algorithm of Our Proposed Approach

Algorithm 1 describes our proposal, called Multi-Objective Particle Swarm
Optimizer Enhanced with a Differential Evolution Scheme (MOPEDS).

Algorithm 1 Proposed algorithm (MOPEDS)
Initialize Population
Find non-dominated solutions (Leaders)
g = 0
while g < gMax do

for each Particle i do
Select leader (from non-dominated solutions) using mechanism from Section 4.1
if U ∼ (0, 1) > Pm then

Select a w value using mechanism from Section 4.2
Update velocity
Update position

else
Select three random (different) pbest
Move particle using DE scheme from Section 4.3

end if
Evaluate particle i
if Particle i position dominates its pbest then

update pbest to current position
end if

end for
Update non-dominated solutions (Leaders)

end while

5 Experimental Study
Next, we compare our proposal with four state-of-the-art MOEAs: OMOPSO4

[3], SMPSO [5], NSGA-II5 [1], and DEMO 6 [8]. The following parameters were
adopted. For NSGA-II: 0.9 for the crossover rate, 1/Dim for the mutation rate,
15 for the distribution index for crossover, and 20 for the distribution index for
mutation. DEMO uses Pr = 0.3, and F = 0.5. OMOPSO uses C1, C2 = U ∼
(1.5, 2.0), and w = U ∼ (0.1, 0.5). Finally, SMPSO uses C1, C2 = U ∼ (1.5, 2.5),
and w = U ∼ (0.1, 0.5). MOPEDS adopted Pm = 0.2, F = G(0.5, 0.5), C1, C2 =
U ∼ (1.2, 2.0) and Pr = 0.2, since these parameters provided the best behavior
in our preliminary tests. The w parameter is used as described in Section 4.2.
We have measured all algorithms with the IGD performance measure using
2000, 3500, and 5000 objective function evaluations in order to obtain more de-
tailed information about their performance. There is one plot for each problem

4 The implementation of OMOPSO used in our experiments differs from its original
proposal [7] in that ε-dominance is not adopted.

5 We took the code available at: http://www.iitk.ac.in/kangal/codes.shtml
6 Please do not confuse DEMO with MODE. DEMO is an specific implementation of

MODE which refers to multi-objective differential evolution.



where each algorithm is presented at the three mentioned function evaluation
numbers (see Figure 4).

ZDT1 - In this problem it can be observed that MOPEDS is ahead of all the
other algorithms at the 2000 function evaluations. This shows the fast conver-
gence rate of our proposal on this problem. Moreover, at the 3500 evaluations
MOPEDS is still ahead and DEMO is just a little behind. Finally, when reaching
the 5000 evaluations MOPEDS and DEMO show IGD values very close to 0 (the
ideal value).

ZDT2 - Again, MOPEDS has the best performance at 2000 function evalu-
ations. In fact, MOPEDS is capable of obtaining considerable advantage over
the rest of the algorithms in this number of evaluations. At the 3500 evalua-
tions, IGD values for MOPEDS are already very close to 0 while OMOPSO and
DEMO are a little behind. Finally, at the 5000 function evaluations, OMOPSO
and DEMO have reached values as good as MOPEDS.

ZDT3 - MOPEDS shows the best IGD values at 2000 and 3500 evaluations.
Nonetheless, at 3500 evaluations DEMO is very competitive also. Furthermore,
at the 5000 evaluations MOPEDS and DEMO have a very similar performance.

ZDT4 - In this problem, it is clear the SMPSO shows much better results
than any other algorithm, while OMOPSO shows the poorest. Acknowledging
this, we will omit OMOPSO and SMPSO from the discussion of this problem. At
2000 evaluations, our proposal is ahead of DEMO and a little behind NSGA-II.
At 3500 evaluations, MOPEDS and NSGA-II show similar results. Nonetheless,
the box is bigger for MOPEDS indicating a bigger dispersion than NSGA-II.
Finally, at 5000 evaluations, our proposal is again competitive with NSGA-II.

ZDT6 - It is clear that all algorithms (except one) get close to the true Pareto
front very early in the search (only 2000 function evaluations). In this problem
NSGA-II takes a bigger number of function evaluations to reach the true Pareto
front.

Since SMPSO achieved such excellent results in ZDT4, we decided to ana-
lyze this algorithm in more detail. SMPSO is actually a modification of OMOPSO
in which a velocity constriction mechanism is used7. Basically, this constriction
factor limits the values that the velocity can take before moving a particle. The
velocity is limited using Equations (8) and (9):

vi,j =

delta if vi,j > deltaj
−deltaj if vi,j ≤ −deltaj
vij otherwise.

(8)

deltaj =
(upper_limitj − lower_limitj)

2
(9)

This constriction factor is the main difference with respect to the original
OMOPSO. After analyzing the behavior of this approach in ZDT4, we reached
the following conclusions. For ZDT4 (from the second to the tenth variables)
δ = 5 and −δ = −5. Moreover, SMPSO (as many other MOEAs) truncates vari-
ables to their upper and lower limits when these go beyond their predefined

7 Please refer to [5] for further details on this algorithm
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(a) Five algorithms on ZDT1
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(b) Five algorithms on ZDT2
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(c) Five algorithms on ZDT3
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(d) Five algorithms on ZDT4
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(e) Five algorithms on ZDT6

Fig. 4. Comparison of 5 algorithms using the IGD performance measure at 2000, 3500,
and 5000 function evaluations in the ZDT test suite.



bounds. For ZDT4, these bounds are −5 and 5. Therefore, if a variable at iter-
ation t lands above its upper limit, this variable will be truncated to 5. Then,
at iteration t + 1, if it happens that the velocity goes below −5 (which is −δ),
this velocity will be truncated to −δ = −5. Therefore, when we add the ve-
locity to the current particle’s position 5 + (−5), we end up with 0 which is
precisely in the region where the Pareto optimal set for this test problem is lo-
cated. Even when this is a very clever mechanism and works perfectly in ZDT4,
we decided to observe the robustness of SMPSO when the ranges of ZDT4 are
changed. Thus, we moved the lower limit (again from the second to the tenth
variable) to−2. The upper limit was not changed. Moreover, we also tested our
proposal using these modifications with ZDT4. Both algorithm were run using
25000 function evaluations (100 particles and 250 iterations). Results are shown
in Figure 5.
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Fig. 5. MOPEDS and SMPSO at a modified version of ZDT4, using 25, 000 evaluations

From Figure 5, we can observe that the performance of SMPSO is clearly de-
teriorated when changing the ranges of the variables for the ZDT4 problem. We
can see that SMPSO works very well some times while reporting poor results at
other executions. Regarding our proposal, we observe that the modification did
not have a significant impact on its performance. In fact, some improvements
were achieved with regards to its execution at 2000, 3500, and 5000 evaluations.
It is important to note, however, that our proposal was never able to reach the
true Pareto front but could only closely approximate it.

6 Conclusions and Future Work
In conclusion, our proposal shows competitive results when compared with
other state of the art MOEAs using a small number of function evaluations.
Moreover, it is important to note that our proposal is able to reach competitive
results in the multifrontal problem ZDT4 which has found to be quite difficult
for most current MOPSOs. Therefore, we believe this indicates that MOPEDS is
benefitting from the high convergence rate of MOPSO while maintaining diver-
sity using the DE scheme. It is important to note, however, that the number of



evaluations adopted (except for 25000) are relatively small and, therefore, the
plots presented here do not give further information about the performance of
MOPEDS if we extend its execution. This seems important since our algorithm
was not able to reach the true Pareto front at 25000 evaluations. This is certainly
an issue that deserves some further work. Finally, we also believe that further
investigation on mechanisms to fine tune the parameters of our proposed ap-
proach are a promising research path.
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