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Abstract—In recent years, evolutionary computation has signif-
icantly advanced in processes related to machine learning. How-
ever, the reciprocal integration of machine learning techniques
into evolutionary computation remains relatively unexplored.
Machine learning can substantially enhance the understanding
of processes within Multi-Objective Evolutionary Algorithms
(MOEAs) by harnessing its proficiency in identifying patterns
and employing data-driven approaches. Existing studies lack a
comprehensive understanding of the intricate interaction between
machine learning models and evolutionary algorithms, necessi-
tating prioritized investigation to ensure the efficacy, reliabil-
ity, and compatibility of integrated models within optimization
frameworks. This paper addresses this gap by examining the
behavior of using Generative Artificial Intelligence (AI) models as
a population variation operator in Multi-objective Optimization
Problems. Our experimental results reveal that Generative AI,
particularly Distributional Adversarial Networks (DANs), sur-
passes the performance of a traditional Generative Adversarial
Network. Furthermore, DANs improve the population by gen-
erating novel non-dominated solutions and augmenting overall
performance and diversity. This study reveals the potential of
the integration of Generative AI in evolutionary computation,
presenting a pathway for advancements in addressing common
challenges within multi-objective optimization problems.

Index Terms—Generative Artificial Intelligence, Population
Variation Operator, Machine Learning, Multi-objective Opti-
mization

I. INTRODUCTION

Multi-objective Evolutionary Algorithms (MOEAs) have
been a powerful tool to handle uncertainty while finding
global and robust optimal solutions in Multi-objective Opti-
mization Problems (MOPs) [1]. Being population-based search
approaches, they inherently have the capability for parallel
computing and can generate a set of solutions in a single
run. Nevertheless, the increasing complexity of MOPs poses
a multifaceted challenge, marked by factors such as the
high cost of function evaluations [2], numerous objectives
[3], and large-scale search spaces [4]. Despite substantial
progress in MOEAs in recent decades, the challenges of MOPs
have limited the effectiveness of conventional optimization
approaches, requiring more sophisticated approaches. MOEAs
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have synergized with Machine Learning (ML) to foster inte-
gration between these two research domains [5], leveraging
the strengths of both approaches and combining evolutionary
principles for optimization with the adaptability and learning
capabilities intrinsic to ML.

Integrating MOEAs into ML frameworks has ushered in
a new era of improved model robustness and adaptability,
fostering breakthroughs in optimizing machine learning model
parameters, enhancing feature selection processes, fine-tuning
hyperparameters, and optimizing ensemble learning strate-
gies [6]. Nevertheless, more exploration is still needed to
incorporate ML techniques seamlessly into MOEAs. Recently,
ML techniques have been employed to support and enhance
the evolutionary components of MOEAs [7]. For example,
employing machine learning methods for systematically an-
alyzing feasible solutions produced by the exploration of an
MOEA in the variable space that generates a substantial vol-
ume of data for a deeper understanding of the search behavior,
enhancing the MOEA’s future search capability [8]. Dimen-
sionality reduction and spatial transformation techniques can
simplify the objective and search spaces [9]. Reinforcement
learning can identify suitable evolutionary operators (actions)
based on any parent (state), thereby guiding the generator in
producing offspring of high quality [10]. Therefore, MOEAs
with machine learning have received extensive attention in
Evolutionary Computation because they promise to create
more adaptive, intelligent algorithms capable of learning and
adapting to dynamic environments.

Traditional genetic operators like mating selection,
crossover, and mutation in Multi-Objective Evolutionary
Algorithms (MOEAs) may need help to fully capture the
diversity and complexity of the solution space. Generative
Artificial Networks (GANs) offer a solution by autonomously
generating data, images, and content with high fidelity
[11]. By integrating GANs into MOEAs, we can overcome
these limitations. Traditional GANs analyze individual
sample points, whereas Distributional Adversarial Networks
(DANs) distinguish themselves by having discriminators
analyze samples containing more than one example (n > 1),
enhancing the ability to understand the distribution of data
[12]. Figure 1 shows the use of a Generative AI model as a
population variation operator in a MOEA.



Fig. 1: Generative AI as a population variation operation in a
MOEA.

Integrating ML models into MOEAs has become increas-
ingly prevalent in Evolutionary Computation. However, there
is a noticeable gap in the literature regarding thoroughly ana-
lyzing these models’ behavior before their integration. Existing
studies often focus solely on technical aspects, overlooking
the intricate interaction between machine learning models and
evolutionary algorithms. Therefore, there is a critical need for
research prioritizing a comprehensive understanding of these
models’ behavior to ensure the integrated model’s efficacy, re-
liability, and compatibility within the optimization framework.
This study addresses this gap by examining the behavior of
using Generative AI models as a population variation operator
in MOPs. It evaluates the behavior of a DAN and GAN model
using four key indicators: the C-metric, the Hypervolume, the
IGD+ indicator, and the Riesz S-energy function. Additionally,
the study employs a one-tailed Wilcoxon ranksum test to
validate the statistical confidence of the results obtained by
the models.

Throughout the subsequent sections of this paper, we pro-
vide a succinct overview of the theoretical background in
Section II. The experimental setup is outlined in Section III.
Subsequently, Section IV presents and discusses the obtained
results. Lastly, conclusive insights are drawn in Section V.

II. THEORETICAL BACKGROUND

In this section, we establish the theoretical background for
MOEAs assisted by ML. Before delving into the specifics, it is
essential to provide a concise overview of the general flow of
an MOEA from the perspective of ML. This brief introduction
will show the fundamental operational aspects and the inter-
play between evolutionary algorithms and machine learning
within multi-objective optimization. The starting step in a
typical MOEA begins with creating an initial parent population
composed of randomly sampled solutions. Next, a population
of offspring solutions is generated through a generative or
reproductive model composed of genetic operators, such as

mating selection, crossover, and mutation [13]. The newly gen-
erated solutions are assessed through a function evaluator to
determine the value obtained in each objective function. Then,
a merged population of parents and offspring is introduced into
a discriminative or selective model, which ranks and filters the
best solutions that will survive for the next generation. Usually,
these two models are commonly referred to as the evolutionary
generator and discriminator. The evolutionary generator aims
to create offspring with superior qualities over their parents,
while the evolutionary discriminator endeavors to discern the
qualities between parent and offspring solutions and then select
the best individuals for the next generation (Fig. 2). Therefore,
by exploring various solutions that gradually converge, an
MOEA is able to approximate the optimal solutions in MOPs
driven by these two processes (generation and discrimination).

Fig. 2: Evolutionary process assisted by Machine Learning.

In this context, ML can have a fundamental role in enhanc-
ing the evolutionary process [7]. Two main research avenues
have emerged from this challenge: (1) Evolutionary Genera-
tors: Existing genetic operators deteriorate their performance
in large-scale spaces, almost becoming a random process
emphasizing the importance of learning strategies to enhance
the generator’s search capability for effectively solving Large-
Scale Multi-Objective Problems [14]; and (2) Evolutionary
Discriminators: As the number of objectives increases, the
effectiveness of evaluation and selection strategies diminishes.
Therefore, the discriminator’s ability to converge and maintain
diversity needs improvement in MOPs [15].

On one hand, random-based genetic operators frequently
struggle to find a proper direction to speed up the search, caus-
ing the population to progress in a coarse and sluggish manner,
a challenge that becomes complex with larger search spaces
[16]. Therefore, there is a raise in the computing resources
required to approximate optimal solutions in MOPs. On the
other hand, Covariance Matrix Adaptation evolution strategies
may struggle with multi-objective optimization due to their
single-objective focus and the exponential computational over-
head of maintaining the covariance matrix, potentially limiting
scalability in high-dimensional problems [17].

Generative models in machine learning have gained pop-
ularity for their ability to learn and represent the statistical
distribution of training data, allowing the generation of new
samples based on learned patterns [18]. Among these models,
GANs have emerged as a prominent approach. GANs consist



of two neural networks (see Fig. 3), a Generator (G) and a
discriminator (D), engaged in an adversarial training process
[19]. The generator produces synthetic data by considering
samples from the dataset, while the discriminator distinguishes
between real and synthetic data, driving the generator to
produce more realistic samples.

GANs have succeeded in various applications, with remark-
able achievements in computer vision [20]. Their contributions
in image-related domains span from synthesizing and enhanc-
ing images to performing transformative tasks like super-
resolution [21], deep fake technology for image generation
[22], among others. Even the generation of synthetic data for
training machine learning models when real data is limited or
difficult to obtain [23].

Fig. 3: GAN architecture composed of the generator (G) and
discriminator (D) models. Z denotes the noise source, X ′ is
the synthetic data sample, X is the original data sample, and
Y is the label (real≈ 1, fake≈ 0).

Despite achieving success, GANs face several well-
recognized challenges, with their training process being a focal
point of concern [24]. During training iterations, a tendency
for oscillation between the generator and discriminator occurs,
and even a subtle imbalance in their respective capacities may
contribute to the divergence of the training process. Another
challenge occurs when the generator learns a distribution
focusing on a limited set of modes within the original data
distribution, neglecting the remaining space. This issue, called
mode collapse, becomes apparent in the generation of synthetic
data that, despite their realism, exhibit a remarkable deficiency
in diversity, converging toward a limited array of prototypes
[25].

A training framework that uses distributional adversaries
called Distributional Adversarial Network (DAN) [12] miti-
gates the mode collapse problem, and for each prediction, it
adapts the discriminator to consider an entire sample rather
than a singular sample point. Specifically, the discriminator is
defined as a set function denoted by M : 2R

d → R, designed
to operate on a sample x1, . . . , xn with potentially varying
sizes.

In contrast to the conventional GAN discriminator, DANs
employs a data-driven technique known as the Deep Mean
Encoder (DME). This approach utilizes the mean as a piv-
otal statistic for discerning between distributions, playing a
crucial role in integrating the Maximum Mean Discrepancy
(MMD) [26]. MMD stands out as a robust metric with strong
theoretical foundations, specifically designed for measuring

the discrepancy between distributions. Rather than employing
explicit mapping, the Deep Mean Encoder (DME) adopts a
more sophisticated approach by learning this function through
the parameterization of ϕ as a neural network. The resulting
expression for the DME, denoted as µ, assumes the following
form:

µ(P) = EX∼P[ϕ(x)] (1)

In practical applications, µ is constrained to access P
through finite-sized samples, consequently adopting the fol-
lowing form:

µ({x1, . . . ,xn}) =
1

n

n∑
i=1

ϕ(xi) (2)

The main feature of the DAN model is the distributional en-
coder (DME). However, to fully integrate eq. (2) as part of the
discriminator in the adversarial training involves employing a
classifier. Specifically, when presented with a vector encoding,
a sample originating from either the data distribution Px or the
generated distribution PG, the classifier φs assigns a label of
1 to indicate the sample’s origin from Px and 0 otherwise.
The quantification of the distribution discrepancy can be
realized by assessing the classifier’s confidence and employing
a logistic loss. This formulation obtains the following objective
function:

ds(P0,P1) = log(φs(µ(P1)) + log(1− φs(µ(P1)) (3)

This formulation bears similarity to the original GAN
objective but diverges in a pivotal aspect: the expectation is
encapsulated within φs. In essence, while in GANs the loss of
a sample is defined as the expected loss across sample points,
in DAN, the sample loss is a singular value derived from the
deep mean embedding of its expected value. The full model
(sample classifier) is denoted as Ms := φs · µ, encompassing
the DME and the classifier.

III. EXPERIMENTAL SETUP

This section presents the experimental setup to evaluate the
Generative Artificial Intelligence (AI) models as population
variation operators. Our objective is to empirically assess the
performance of DAN and compare it with a traditional GAN
in the context of MOPs.

The experiment began by the empirical evolution of popula-
tions from NSGA-II in an intermediate step, where the Pareto
front is shaped, and the distribution of individuals is defined.
Subsequently, GANs and DANs were employed to generate
new individuals. The objective of this experiment was to study
the behavior of these models across various geometries derived
from benchmark problems. For the performance evaluation,
we adopted the c-metric to measure the coverage of the
newly generated individuals compared to the original set in
the objective space. After that, the two sets were merged,
and applied non-dominated sorting with crowding distances
to select the best individuals to match the original population



size. Then, the Hypervolume was employed to quantify the
volume of the objective space that is dominated by a particular
set of solutions, the IGD+ indicator measured the inverted
generational distance between the population and the Pareto
front, and the Riesz S-energy function provided insight into the
dispersion or concentration of individuals within the objective
space. Additionally, an one-tailed Wilcoxon ranksum test was
used to compare the results obtained by DAN and GAN.

The experiment implementation was made using the Py-
moo library [27], with TensorFlow [28] for implementing
Generative Adversarial Networks (GANs) and Distributional
Adversarial Networks (DANs). Population size was set to 100
individuals. For each algorithm for each test problem, we
performed 30 independent runs.

A. Benchmark

Based on the review from [29], and considering recent
benchmarks such as the ZCAT test problems [30]. We se-
lected the Zitzler, Deb, and Thiele (ZDT) Test Suite for
our analysis, considering its widespread use in the literature.
This benchmark aligns with our goal of conducting an initial
exploration with a limited number of variables and objectives.
This constraint facilitates the visualization of Pareto fronts and
streamlines our initial analysis.

The ZDT test suite comprises six MOPs (ZDT1-6) and
stands out as one of the most widely utilized benchmarks
in the literature [31]. ZDT5 is often omitted from analysis
in the literature due to its binary encoding. These problems,
representative of diverse challenges, encompass features such
as multimodality, leading to phenomena like Pareto many-to-
one problems (as seen in ZDT6), disconnected problems (as in
ZDT3), and multifrontal problems (as presented in ZDT4). All
the ZDT test problems are characterized by employing only
one position parameter, underscoring their dependency on a
single variable. Although widely embraced, the ZDT test suite
must provide a comprehensive evaluation framework for the
diverse landscape of multi-objective optimization problems.

TABLE I: ZDT Benchmark

Problem Variables Objective Geometry
ZDT1 30 2 convex
ZDT2 30 2 concave
ZDT3 30 2 disconnected
ZDT4 10 2 convex
ZDT6 10 2 concave

In Tab. I, we present a comprehensive overview of the
ZDT test problems, highlighting key characteristics such as
the number of variables, objectives, and their geometry. In
our experimental setup, we used the ZDT test suite (ZDT 1-6,
excluding ZDT5) to evaluate the proposed methodology.

B. Indicators

In this section, we will outline the indicators adopted in the
evaluation process and their definitions. We use the c-metric
from [32] that considers two Pareto front approximations

A,B ⊆ X. The C-metric maps the ordered pair (A,B) to
the interval [0;1]:

C(A,B) =
|{b ∈ B | ∃ a ∈ A : a ⪯ b}|

|B|
(4)

When C(A,B) = 1, it indicates that all elements in B are
dominated by or equal to the elements of A. Contrarily, when
C(A,B) = 0, it means that all elements in B strictly dominate
the elements in set A. It is worth to say that C(A,B) ̸=
1 − C(A,B). This indicator quantifies the ratio of points in
a Pareto set approximation A dominated by the Pareto set
approximation B.

For the HV, we use the implementation from [33], which
is described as the volume of the space in the objective space
dominated by the Pareto front approximation S and delimited
from above by a reference point r ∈ Rm such that for all z ∈
S, z ≺ r. The mathematical expression for the HV indicator
is defined as follows:

HV (S, r) = λm(
⋃
z∈S

[z; r]) (5)

where λm is the m-dimensional Lebesgue measure. For
IGD+, we used the original definition from [34]. This par-
ticular modification enhances the IGD indicator, rendering
it weakly Pareto compliant and defined by the following
mathematical expression:

IGD+(A) =
1

|Z|

 |Z|∑
i=1

d+
2

i

1/2

. (6)

In the context of minimization, the modified distance
d+i = max{ai − zi, 0} denotes the distance from zi to the
nearest solution in set A with the associated value ai. Pair-
potential functions, such as Riesz s-energy function, have been
employed in MOEAs to quantify point distribution based on
pairwise interactions, aiming to enhance population diversity
in the objective space [35]. For calculating the s-energy [36]
of a set of approximation points A = {a1, . . . ,aN}, where
ai ∈ Rm is given by:

Es(A) =

N∑
i=1

N∑
j=1,j ̸=i

1

∥ai + aj∥s
(7)

where ∥·∥ denotes the Euclidean distance, and s ≥ 0 is a
parameter that determines the power to which the distances
are raised.

IV. RESULTS

In Figs. 4 and 5, we present visual comparisons depicting
examples of the original and the generated populations for
each of the ZDT test problems using the GAN and DAN
models. In the displayed image, the x-axis represents the
number of decision variables, the y-axis denotes individual
instances, and the intensity of each pixel corresponds to the
respective variable value. Our observations show that the



generated populations exhibit discernible patterns derived from
the original individuals. However, the DAN model shows its
capability to construct more precise individuals and to estab-
lish a more remarkable similarity with the original population.
This comparative analysis reveals that while the generated
populations from the GAN model learn some information
from the original individuals, the DAN model surpasses this
by constructing more precise populations using distributional
information.

Table II presents the results of the C-metric and the HV indi-
cators. Regarding the C-metric, DAN consistently outperforms
GAN, demonstrating superiority by yielding nearly seven
times more non-dominated solutions in the best-case scenario
(ZDT4). In the worst-case scenario, DAN achieved a mean
value of 0.2048 having more coverage than GAN (0.1096).
The intricate nature of ZDT6, a many-to-one problem where
multiple solutions in the decision space map to the same
solution in the objective space, makes both models unable to
produce non-dominated solutions. Regarding HV, the mean
value for the problems ZDT1-4 increased when individuals
from DAN were integrated into the population. The one-tailed
Wilcoxon ranksum test also indicates significant differences,
showing that the DAN results are significantly better than those
of the GAN.

TABLE II: Statistical results (mean and standard deviation) of
the C metric and HV values on the ZDT test suite.

C-metric HV
GAN DAN Original GAN DAN

Problem Mean (Std.) Mean (Std.) Mean (Std.) Mean (Std.) Mean (Std.)
ZDT1 0.1975 (0.2496) 0.4095 (0.1904)∗ 0.6554 (0.0360) 0.6568 (0.0360) 0.6586 (0.0359)∗
ZDT2 0.1902 (0.2371) 0.2535 (0.2165)∗ 0.3698 (0.0751) 0.3708 (0.0753) 0.3714 (0.0752)∗
ZDT3 0.1042 (0.1096) 0.2048 (0.1261)∗ 0.9499 (0.0465) 0.9514 (0.0443) 0.9518 (0.0456)∗
ZDT4 0.0699 (0.1950) 0.5015 (0.3119)∗ 0.6282 (0.1555) 0.6289 (0.1560) 0.6381 (0.1536)∗
ZDT6 0 (0) 0 (0) 0.3419 (0.0213) 0.3419 (0.0213) 0.3419 (0.0213)

The best result is shown in gray. The symbol ∗ is placed when the
DAN result is statistically different from the GAN result based on a
one-tailed Wilcoxon ranksum test with a significance level of 5%.

In Table III, we present the results from applying the
IGD+ and the Riesz S-energy indicators to the original set
and the merged sets, which include individuals generated by
both GAN and DAN models. Regarding IGD+, we observe
lower values when DAN individuals are merged with the
original population. Despite being a small contribution to the
indicator, this decrease underscores the meaningful impact on
both convergence and coverage. In the context of the Riesz
S-energy function, we compute the logarithm of the indicator
to make the resulting values easier to interpret. We note a
consistent trend where incorporating DAN individuals reduces
the indicator value, indicative of a more evenly distributed
population. The one-tailed Wilcoxon ranksum test shows a
significant superiority of DAN over GAN in most cases;
however, for ZDT2 and ZDT3, where the IGD+ indicator was
used, no significant differences were found, possibly due to the
concave nature of ZDT2 and the disconnected Pareto front in
ZDT3, which are challenging for optimization algorithms.In Figures 6 and 7, we provide visual comparisons of bench-
mark problems, including the Pareto front, original population,
and generated individuals by the GAN and DAN models.

TABLE III: Statistical results (mean and standard deviation)
of the IGD+ and Riesz S-energy function values on the ZDT
test suite.

IGD+ Riesz S-energy
Original GAN DAN Original GAN DAN

Problem Mean (Std.) Mean (Std.) Mean (Std.) Mean (Std.) Mean (Std.) Mean (Std.)
ZDT1 0.1472 (0.0250) 0.1462 (0.0250) 0.1446 (0.0248)∗ 14.9596 (0.9782) 14.6738 (0.9712) 14.0325 (0.9613)∗
ZDT2 0.0964 (0.0230) 0.0959 (0.0229) 0.0955 (0.0228) 14.9693 (0.9934) 14.5667 (0.8940) 14.1700 (1.0696)∗
ZDT3 0.1808 (0.0334) 0.1798 (0.0340) 0.1792 (0.0339) 14.7601 (1.2790) 14.5081 (1.3737) 14.1491 (1.1388)∗
ZDT4 0.16 (0.1585) 0.1595 (0.1587) 0.1594 (0.1612)∗ 15.3285 (2.1976) 15.1156 (2.0662) 14.1642 (2.3520)∗
ZDT6 0.1237 (0.0170) 0.1237 (0.0170) 0.1237 (0.0170) 15.9503 (1.3602) 15.9503 (1.3602) 15.9503 (1.3602)

The best result is shown in gray. The symbol ∗ is placed when the
DAN result is statistically different from the GAN result based on a
one-tailed Wilcoxon ranksum test with a significance level of 5%.

We classify the generated solutions as dominated or non-
dominated by the original population, offering insights into
the coverage as evaluated by the C-metric. Remarkably, DAN
excels over GAN in generating new non-dominated solutions,
while both models face challenges dealing with disconnected
shapes, as shown in ZDT3. The many-to-one problem, exem-
plified by ZDT6, poses a substantial challenge. Although both
models generate similar populations, as depicted in Figures 4
and 5, a considerable portion of these populations converges
to the same location in objective space. This underscores
the complexity of addressing many-to-one problems in multi-
objective optimization.

V. CONCLUSIONS

This research provides valuable insights into the role of
Generative AI as a population variation operator within Multi-
objective Problems. Generative AI showed effectiveness, par-
ticularly in addressing more straightforward problems such
as ZDT1, ZDT2, and ZDT4, where it successfully captures
and reproduces the underlying distribution of the population.
However, challenges arise when dealing with more complex
problems, such as the disconnected shape in ZDT3 or the
multifrontality leading to Pareto many-to-one problems in
ZDT6, highlighting the limitations faced by these models.

Our findings suggest that the integration of the generated
individuals into the evolving population has the potential to
yield remarkable improvements, as evidenced by changes in
several performance indicators. Tables II and III highlight the
improvements obtained by Generative AI models. The DAN
model shows a superior performance compared to a traditional
GAN, offering more non-dominated solutions, better coverage
(C-metric), and improvements in HV for ZDT1-4, while also
having a positive impact on diversity, obtaining lower IGD+
values and a more evenly distributed population according
to the Riesz S-energy indicator. Additionally, the one-tailed
Wilcoxon ranksum test also showed significant differences,
indicating that the DAN results are significantly better than
those of the GAN. These changes highlight how Generative
AIs significantly impact the overall population, improving the
performance across several problem instances.

In conclusion, the findings from our exploration of Gener-
ative AI as a population variation operator in MOPs reveal
promising avenues for further research and practical imple-



(a) ZDT1 (b) ZDT2 (c) ZDT3
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Fig. 4: Visual Comparison between original and generated population using a GAN.

mentation. The observed results in performance indicators
underscore the potential benefits of integrating generated indi-
viduals into the population. As part of our future work, we
envision extending this research to recent benchmarks that
can handle large-scale multi-objective optimization problems
where existing genetic operators deteriorate their performance.
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[16] A. Vié, “Qualities, challenges and future of genetic algorithms,” Avail-
able at SSRN 3726035, 2020.

[17] Y. Akimoto and N. Hansen, “Diagonal acceleration for covariance matrix



(a) ZDT1 (b) ZDT2 (c) ZDT3

(d) ZDT4
(e) ZDT6

Fig. 5: Visual Comparison between original and generated population using a DAN.
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Fig. 6: Visual Comparison between the Pareto front, original population and generated individuals using a GAN divided by
dominated and non-dominated solutions.
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