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Abstract. In this paper, we use an alternative preference relation that
couples an achievement function and the ǫ-indicator in order to improve
the scalability of a Multi-Objective Evolutionary Algorithm (MOEA) in
many-objective optimization problems. The resulting algorithm was as-
sessed using the Deb-Thiele-Laumanns-Zitzler (DTLZ) and the Walking-
Fish-Group (WFG) test suites. Our experimental results indicate that
our proposed approach has a good performance even when using a high
number of objectives. Regarding the DTLZ test problems, their main dif-
ficulty was found to lie on the presence of dominance resistant solutions.
In contrast, the hardness of WFG problems was not found to be signifi-
cantly increased by adding more objectives.

1 Introduction

Since the first implementation of a Multi-Objective Evolutionary Algorithm
(MOEA) in the mid 1980s, a wide variety of new MOEAs have been proposed,
gradually improving in both their effectiveness and efficiency to solve Multiob-
jective Optimization Problems (MOPs) [1]. However, most of these algorithms
have been evaluated in problems with only two or three objectives, in spite of
the fact that many real-world problems have more than three objectives.

Recently, the Evolutionary Multiobjective Optimization community has de-
voted important efforts to investigate the performance of MOEAs in problems
with a high number of objectives. These MOPs are usually known as Many-
objective Optimization Problems (MOPs). One of the first findings in this area [2,
3] is that MOEAs based on Pareto optimality scale poorly with respect to the
number of objectives. Currently, two main difficulties that make a problem
harder when the number of objectives is increased have been suggested:

– Increase of the proportion of nondominated solutions. Since in MOPs almost
all solutions are equivalent in terms of Pareto optimality, many researchers
have suggested [4–6] that in such problems, the selection of the appropriate
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2 A. López, C.A. Coello, A. Oyama, K. Fuji

individuals for steering the population towards the Pareto optimal set gets
more difficult. However, as pointed out by Schütze et al. [7], the increase of
the number of nondominated individuals is not a sufficient condition for an
increase of the hardness of a problem. They found that in a class of uni-modal
problems, the difficulty was marginally increased when more objectives are
added.

– Effectiveness of crossover operators. In a combinatorial class of MOPs, Sato
et al. [8] observed that solutions in decision variable space become more
distant3 from each other as more objectives are added. As a result, even if
two parents close to the Pareto front are recombined, the generated offspring
might be far from the Pareto front.

Although not related with the search ability of the MOEA, there are other im-
portant difficulties associated with a MOP. For example, the visualization of the
Pareto front in high dimensional spaces, or the generation of an accurate sample
of the Pareto front, since the required number of points increases exponentially
with the number of objectives.

Although the rise of the proportion of incomparable solutions might not
significantly determine the difficulty of a MOP per se, it seems that the addition
of objectives aggravates some particular difficulties observed in the context of 2
or 3 objectives. This is the case of the so called Dominance Resistant Solutions
(DRSs) or outliers [9–11]. DRSs are non Pareto optimal solutions with a poor
value in at least one of the objectives, but with near optimal values in the others.
These kinds of solutions represent potential difficulty since the number of DRSs
grows as the number of objectives is increased.

In this paper, we propose the use of the recently introduced Chebyshev pref-
erence relation [12] in order to improve the scalability of a MOEA in MOPs. That
new preference relation divides the objective space in two regions. In the region
farther from the ideal point, the solutions are compared using an achievement
scalarizing function, whereas in the region near the ideal point, solutions are
compared using the usual Pareto dominance. The idea behind this proposal is to
increase the selection pressure when the solutions are far from the Pareto front.
This way, we have a discriminative criterion to evaluate nondominated solutions.

Additionally, we introduce the idea of coupling the Chebyshev relation with
two preference relations based on the ǫ-indicator. These new preference relations
show that a straightforward use of the ǫ-indicator produces a good approximation
of the Pareto front.

The experiments are concentrated in evaluating the performance of the Cheby-
shev preference relation and also in the sources of difficulty when the number of
objectives is increased. For the experiments we employed 5 problems from the
DTLZ test suite, and 2 problems from the WFG test suite.

3 In terms of Hamming distance between binary encoded solutions.
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2 Basic Concepts and Notation

This section briefly presents the concepts and notation used throughout the rest
of the paper.

2.1 Multiobjective Optimization Problems

Definition 1. A MOP is defined as:

Minimize f(x)
x∈X

= [f1(x), f2(x), . . . , fk(x)]. (1)

The vector function f : X → R
k is composed by k ≥ 2 objective functions

fi : X → R (i = 1, . . . , k). The image of the feasible set X ⊆ R
n under the

function f is a subset of the objective function space denoted by Z = f(X ).
The sets R

n and R
k are known as decision variable space and objective function

space, respectively.
In multiobjective optimization, the Pareto dominance relation is usually

adopted to compare vectors in R
k.

Definition 2. A vector z1 ∈ R
k is said to dominate vector z2 ∈ R

k (denoted
z1 ≺par z2) if and only if: z1

i ≤ z2
i (i = 1, . . . , k), and z1 6= z2.

Definition 3. A solution x∗ ∈ X is Pareto optimal if there is no solution x ∈ X
such that f(x) ≺par f(x∗).

Definition 4. The Pareto optimal set, Popt, is composed by all the Pareto op-
timal solutions.

Definition 5. The image of Popt under the vector function f(x) is called the
Pareto optimal front and is denoted by PFopt.

In practice, the goal of a MOEA is finding the best approximation set of
the Pareto optimal front. We denote an approximation set by PFapx. Currently,
it is well accepted that the quality of an approximation set is determined by
the closeness to the Pareto optimal front, and the spread over the entire Pareto
optimal front.

In some cases it is useful to know the lower and upper bounds of the Pareto
front. The ideal point represents the lower bound and is defined by z⋆

i = minz∈Z(zi)
for all i = 1, . . . , k. In turn, the upper bound is defined by the nadir point, which
is given by znad

i = maxz∈PFopt
(zi) for all i = 1, . . . , k.

2.2 Achievement Scalarizing Functions

The preference relation adopted in this paper is based on the achievement scalar-
izing function approach proposed by Wierzbicki [13].
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Definition 6. An achievement (scalarizing) function is a parameterized func-
tion s(z|zref) : R

k → R, where zref ∈ R
k is a reference point representing the

desired aspiration levels.

The augmented Chebyshev achievement function [14] is one of the most com-
mon achievement functions.

Definition 7. The augmented Chebyshev achievement function is defined by

s∞(z|zref) = max
i=1,...,k

{λi(zi − zref
i )} + ρ

k∑

i=1

λi(zi − zref
i ), (2)

where zref is a reference point, λ = [λ1, . . . , λk] is a vector of weights such that
∀i λi ≥ 0 and, for at least one i, λi > 0, and ρ > 0 is a sufficiently small
augmentation coefficient.

3 Related Work

In the current literature, some alternative preference relations have been used to
deal with MOPs. However, the optimal solution set induced by these preference
relations is a subset of PFopt. As a consequence, when one of these preference
relations is applied, for example, on the current population of a MOEA, the
optimal solutions regarding the alternative preference relation would belong to
a portion of PFopt. Thus, some parts of the Pareto front will not be generated.

Among the alternative preference relations that have been proposed we can
find the following. The Average Ranking and Maximum Ranking relations [15]
which have the drawback of favoring extreme solutions. These preference rela-
tions have been used in [16] to deal with MOPs. Drechsler et al. [17] proposed
the favour relation which also emphasizes extreme solutions.

The Preference Order Relation, developed by di Pierro [18], compares two
solutions by discarding objectives until one of them dominates the other. The
disadvantage of this approach is its high computational cost.

Sato et al. [19] proposed a preference relation to control the dominance area
of a solution. This relation emphasizes solutions in the middle region of the
Pareto front.

4 Solving MOPs Using an Alternative Preference Relation

In this section we first present the Chebyshev preference relation introduced
in [12] and we describe how to use this relation to approximate the entire Pareto
front.
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4.1 The Chebyshev Preference Relation

The Chebyshev preference relation combines the Pareto dominance relation
and an achievement function to compare solutions in objective function space.
First, this relation defines a Region of Interest (RoI) with respect to a given
reference point. This region contains all solutions with an achievement value
s∞(z|zref) ≤ smin + δ, where smin = minz∈Z s∞(z|zref), and δ is a threshold
that determines the size of the RoI. Fig. 1 shows the RoI defined by means of
the achievement function. Solutions in this region are compared using the usual
Pareto dominance relation, while solutions outside of the RoI are compared using
their achievement function value.

Fig. 1. Nondominated solutions with respect to the Chebyshev relation.

The Chebyshev preference relation is formally defined as follows:

Definition 8. A solution z1 is preferred to solution z2 with respect to the Cheby-
shev relation (z1 ≺ch z2), if and only if:

1. s∞(z1|zref) < s∞(z2|zref) ∧ {z1 /∈ R(zref , δ) ∨ z2 /∈ R(zref , δ)}, or,

2. z1 �par z2 ∧ {z1, z2 ∈ R(zref , δ)},

where R(zref , δ) = {z : s∞(z|zref) ≤ smin + δ} is the Region of Interest with
respect to a given reference point zref .

As an illustration of the preference relation, consider solutions z1 and z2

presented in Fig. 1. Since z2 /∈ R(zref, δ) and s∞(z1, zref) < s∞(z2, zref), then
z1 ≺ch z2.

Since, in general, the objective ranges of PFopt might be different, the weight
vector λ (Eq. 2) is used for normalizing each objective function. The weights are
set as λi = 1/(znad

i − z⋆
i ), for all i = 1, . . . , k. As the ideal and nadir points are

not usually known in advance, these values are approximated using the current
PFapx. In order to approximate these bounding points, the Chebyshev relation
always considers extreme solutions as nondominated in order to keep them in the
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population. This way, the approximation of the bounding points can be improved
during the course of the search. To approximate z⋆, the following set must be
updated at each generation: Φ = {z1, . . . , zk | zi = argminz∈PFapx

(zi)}. That is,
the solutions having the best value for each objective. The approximation of the
ideal point is then ż⋆ = {zi

i, . . . , z
k
k} with zi ∈ Φ. Similarly, to approximate znad,

the following set is computed: Θ = {z1, . . . , zk | zi = arg maxz∈PFapx
(zi)}.

Thus, the normalized Chebyshev relation is defined by:

Definition 9. A solution z1 is preferred to z2 with respect to the normalized
Chebyshev preference relation (z1 ≺n-ch z2) if and only if: z1 ≺ch z2, and
z2 /∈ {Φ ∪ Θ}.

Additionally, the threshold δ can be normalized using the current range of the
achievement function. Thus, the user can provide a normalized δ′ ∈ [0, 1], and the
actual value used for computing the Chebyshev relation is δ = δ′ · (smax − smin),
where smax = maxz∈PFapx

s∞(z|zref ) and smin = minz∈PFapx
s∞(z|zref).

In order to incorporate the (normalized) Chebyshev relation into a MOEA

we only have to replace the usual Pareto dominance checking procedure by the
procedure that implements the new relation.

4.2 Using the Chebyshev Relation to Approximate the Entire

Pareto Front in Many-objective Problems

Although the Chebyshev relation was proposed to guide the search towards a
subset of PFopt, in this section we propose the use of this relation to approximate
the entire range of the Pareto front.

As previously mentioned, the Chebyshev relation ranks solutions outside the
region of interest using the achievement function. This way it can help to rank
solutions considered as incomparable by the Pareto dominance relation. In order
to approximate the entire Pareto front we used as reference point the approxi-
mation of the ideal point maintained by the Chebyshev relation. In addition, we
adopted a threshold δ′ = 0.9, comparing this way most of the solutions using
Pareto dominance, while solutions far from the current PFapx will be compared
using their achievement function value. The basic idea is to use a stringent cri-
terion for solutions far from the Pareto front for guiding the solutions towards
the ideal point, and when the solutions are near to the Pareto front, then we use
Pareto dominance to cover the entire Pareto front.

Furthermore, since the Chebyshev relation preserves the vectors that gener-
ate the approximations of z⋆ and znad in the current population, the extreme
solutions of the Pareto front will be found.

Additionally, since the relation used inside RoI is not essential for the mecha-
nism of the Chebyshev relation, a different preference relation can be used as the
second criteria. In this paper we investigate the performance of two preference
relations derived from the additive ǫ-indicator [20]:

Iǫ(A, B) = inf
ǫ∈R

{∀z2 ∈ B ∃z1 ∈ A : z1
i ≤ ǫ + z2

i for i = 1, . . . , k},
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where A and B are two nondominated sets. In other words, Iǫ(A, B) is the mini-
mum ǫ value such that added to any vector in B, then A � B. As shown in [21],
the ǫ-indicator is dominance preserving since if z1 ≺par z2, then Iǫ({z

1}, {z2}) <
Iǫ({z

2}, {z1}).
In order to use the information provided by the ǫ-indicator we need to de-

fine a function for measuring the performance of a solution z1 ∈ P with re-
spect to the members in the population P . In this paper we have adopted
two functions for this purpose. The first function uses the minimum value of
Iǫ({z

2}, {z1}) among every z2 in the current population. That is, Fmin
ǫ (z1) =

minz2∈P\{z1} Iǫ({z
2}, {z1}). This function is also known as maximin fitness func-

tion4 [22].
The second fitness function was proposed by Zitzler and Künzli [21] and it

is defined by F sum
ǫ (z1) =

∑
z2∈P\{z1} − exp(−Iǫ({z

2}, {z1})/(c · κ), where c is a

normalizing factor given by c = maxz1,z2∈P |Iǫ({z
2}, {z1})|, and κ is a scaling

factor that regulates the influence of the dominating solutions over dominated
ones. In our computations we used κ = 0.05 since this value yielded good results
in [21].

Using these different fitness functions we can define appropriate preference
relations in order to integrate them into the Chebyshev preference relation.

Definition 10. A solution z1 is preferred to solution z2 with respect to the
Isum
ǫ -relation (z1 ≺sum

ǫ z2), if and only if: F sum
ǫ (z1) > F sum

ǫ (z2).

Definition 11. A solution z1 is preferred to solution z2 with respect to the
Imin
ǫ -relation (z1 ≺min

ǫ z2), if and only if: Fmin
ǫ (z1) > Fmin

ǫ (z2).

5 Experimental Evaluation and Analysis

In this section, we analyze the Chebyshev relation coupled with each preference
relation derived from the ǫ-indicator, i.e., solutions outside the RoI are compared
using their achievement value, while solutions inside the RoI are compared em-
ploying the relations Imin

ǫ or Isum
ǫ , respectively.

5.1 Algorithms and Parameter Settings

The experiments presented in this section were designed with two goals in mind.
First, to investigate whether the Chebyshev relation is able to improve the scala-
bility of Nondominated Sorting Genetic Algorithm II (NSGA-II) w.r.t. the num-
ber of objectives. Secondly, to analyze the effect of DRSs on the performance of
Pareto-based MOEAs.

For the first goal, we compare the performances of NSGA-II using three dif-
ferent preference relations, namely: usual Pareto dominance, Chebyshev relation
with Isum

ǫ , and Chebyshev relation with Imin
ǫ . We evaluated the cases with 3, 4,

6, 8, 10, 12 and 14 objectives.

4 Since the maximin fitness is to be minimized, the value −Fmin
ǫ

(z1) is used instead.
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The Chebyshev relation relies on two key elements: the evaluation of the
solutions far from the Pareto front using the achievement function, and the ap-
proximation of the ideal point and the nadir point. Therefore, the selection of the
test problems was made in order to evaluate whether the pressure selection bi-
ased towards solutions near the ideal point might lead to premature convergence
in problems with several local Pareto fronts. Besides, we want to test the qual-
ity of the approximation of the bounding points in problems with disconnected
Pareto fronts and different objective ranges.

We adopted 7 test problems presented in Table 1 taken from the DTLZ [10],
and WFG [11] test suites . The variables of these problems are divided in position-
related and distance-related parameters.

For the second goal of the experiments we kept the same number of distance-
related variables for any number of objectives in order to isolate the effect of
the number of objectives, namely, k − 1 position-related variables and we fixed
the number of distance-related variables to 5 for DTLZ1, and for the other test
problems to 20. Similarly, we carried out the same number of function evalua-
tions in every problem in order to observe variations in performance when more
objectives are added. In Table 2, we can see the standard parameter values used
for NSGA-II. For all the configurations we carried out 30 runs for each MOEA.
The results presented were averaged over the total of this number of runs.

Problem Features

DTLZ1, DTLZ3 Multiple local Pareto
fronts.

DTLZ4 Nonuniform solution
density.

DTLZ7, WFG2 Disconnected PFopt.
WFG6 Nonseparable MOP.

Table 1. Adopted MOPs.

Parameter Value

Population size 200
Generations 200
Crossover rate 0.9
Mutation rate 1/n
Crossover index 20
Mutation index 20

Table 2. NSGA-II parameters.

Another reason for our selection of MOPs is that the generational distance
(GD) can be computed without the need of having a discrete representation of the
Pareto optimal front. For these problems we took advantage of their geometrical
shape or their known Pareto optimal set.

For computing GD for DTLZ1 we used GD = (‖z‖/|P |)−0.5 since its Pareto
front is a hyperplane that intersects each axis in 0.5, while for DTLZ2, DTLZ3

and DTLZ4 we used GD = (‖z‖2/|P |) − 1 since its Pareto front is a sphere of
radius 1. In DTLZ7, we used the value of the auxiliary function g(x) ≥ 1 (see [10]
for details). The Pareto optimal front of DTLZ7 is achieved when g(x) = 1. Thus,
we use this function to compute a variant of GD, defined by GDg = g(x) − 1.
Since the optimal solutions of WFG2 and WFG6 are those for which the distance-
related variables are equal to 0.35, we adopted another variant of GD, denoted
by GDx, which measures distance in decision variable space. For the sake of
clarity, in the following discussion we refer to all these variants just as GD.
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Additionally, to evaluate distribution we employed the inverted generational
distance (IGD). As reference set, we used the nondominated set resulting from
the union of all the PFapx sets generated in the experiments for each problem.

In order to directly compare the performance of the MOEAs we used the
additive ǫ-indicator previously presented. Roughly speaking, A is better than B
if Iǫ(A, B) < Iǫ(B, A).

5.2 Discussion of the results

From observing the GD values obtained (Table 3 and Fig. 4) we can confirm
that the convergence ability of the original NSGA-II deteriorates as the number
of objectives is increased. In contrast, when the Chebyshev relation is employed
the performance is degraded by some small degree. In particular, the perfor-
mance achieved by using Isum

ǫ -relation or Imin
ǫ -relation is very similar in most

of the test problems. Only on DTLZ1 (Fig. 4) we can see that Imin
ǫ -relation

achieved a bad GD on some objectives. This suggests that Imin
ǫ -relation can lead

to get stuck in local Pareto fronts in some runs. The results obtained using the
ǫ-indicator confirm that the performance of NSGA-II is greatly improved by in-
troducing the Chebyshev relation (see Fig. 5 for problem DTLZ1). Although not
shown here, the results for the other DTLZ problems showed a tendency simi-
lar to that of DTLZ1. Specifically, in all the DTLZ problems we observed that
Iǫ(nsga2-iǫ,nsga2) < Iǫ(nsga2,nsga2-iǫ).

With respect to the distribution, the results of IGD suggest that the Cheby-
shev relation was able to cover the full range of the Pareto front in all the test
problems considered in this paper. In Table 4 we show a representative selection
of the obtained results.

The results obtained in problems WFG2 and WFG6 deserve a more detailed
analysis since according to the ǫ-indicator (Fig. 5), the incorporation of the
Chebyshev relation yielded a small improvement for NSGA-II. However, by in-
specting the GD values of the WFG problems (Table 3 and right plot of Fig. 4),
NSGA-II’s performance is not as remarkably deteriorated as we observed in the
DTLZ problems, especially in problem WFG2.

By analyzing some plots and performance indicator results we hinted that
the divergence problems of the Pareto-based MOEAs when the number of ob-
jectives increases was due to the so-called DRSs. Fig. 2 shows an example of
DRSs generated by NSGA-II in problem DTLZ3. Although the pointed DRSs in
the figure have poor values in objective f3, for example, they are nondominated
solutions because they have values close to zero in objectives f1 and f2.

As Figs. 2 and 3 suggest, an important source of the scalability issues ob-
served in the DTLZ test problems might be due to the generation of DRSs.
Other DTLZ test problems not included in this paper have a similar feasible
search space to that of DTLZ2 or DTLZ3. Therefore, we can expect that other
DTLZ test problems will also have DRSs.

In order to evaluate in a quantitative manner the effect of DRSs in problems
DTLZ and WFG we suggest using the distribution of the maximum tradeoff of the
solutions of PFapx. We define the maximum tradeoff of solution z as Λmax(z) =
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Fig. 2. Illustration of dominance resistant
solutions in DTLZ3 using NSGA-II (objs.
values are divided by 20 to observe the
distribution wrt the Pareto front).

Fig. 3. Feasible objective function
space of 2-objective DTLZ2 and
20 000 solutions generated at ran-
dom.

maxi=1,...,k(zi)/(mini=1,...,k(zi) + 1). By using this value, DRSs would receive a
very large Λmax value since they have in at least one objective a small value and
in at least another objective a large value. It is worth noting that solutions far
from the Pareto front but located in the middle region of the objective space
would not obtain a large Λmax, since they have large values in all the objectives.

For computing this measure, we used the exact z⋆ and znad points for nor-
malizing the achieved PFapx by each MOEA. Therefore, for every MOP, we have
that maxz∈PFopt

{Λmax(z)} = 1. Any solution with Λmax > 1 is a potential DRS.

In Figs. 6–8 we show the distribution of Λmax for the solutions generated
by NSGA-II and NSGA-II with Isum

ǫ -relation. For DTLZ1 (Fig. 6) we can clearly
see that the proportion of DRSs not removed by NSGA-II is very high when
the number of objectives is large. In contrast, by using the Chebyshev relation
almost all DRSs are eliminated from the population even for 12 objectives. In
the case of DTLZ2 (Fig. 7) the effect of the number of objectives on NSGA-II

is more clear since the number of DRSs drastically increases with the number
of objectives. WFG6 is an interesting test problem (Fig. 8), since in this case,
regardless of the number of objectives, DRSs are not maintained by NSGA-II.

NSGA-II is specially sensitive to DRSs since they are spread in a very large
space and, therefore, their crowding distance is larger compared to that of solu-
tions nearby the Pareto front. As a consequence, DRSs are preferred over good
solutions to compose the next generation.

On the other hand, when the Chebyshev relation is used, solutions far from
the Pareto front are compared using the achievement function value. Thus, al-
though DRSs are equally ranked by the Pareto relation, the Chebyshev relation
ranks DRSs worse than other nondominated solutions located nearby the Pareto
front. As a result, as it was shown in the experiments using DTLZ test problems,
the Chebyshev relation can effectively discard dominance resistant solutions.
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Finally, the results suggest that WFG2 and WFG6 do not induce the rise of
dominance resistant solutions.

MOP MOEA 3 4 6 8 10 12 14

DTLZ1

NSGA-II
0.0095 5.2103 248.836 359.990 406.337 425.471 436.947

0.0058 3.3177 20.6124 17.4954 16.5937 13.9222 12.5937

NSGA-II-Isum
ǫ

0.0034 0.0069 0.0106 0.0122 0.0120 0.0266 0.0223

0.0018 0.0028 0.0090 0.0121 0.0107 0.0925 0.0742

NSGA-II-Imin
ǫ

0.1397 0.0265 0.0249 0.0088 0.0107 0.0444 0.0264

0.4940 0.0897 0.0890 0.0079 0.0087 0.1201 0.0898

DTLZ2

NSGA-II
0.0085 0.0290 0.7404 3.3684 3.9733 4.1150 4.1956

0.0008 0.0030 0.1456 0.2080 0.0965 0.0832 0.0657

NSGA-II-Isum
ǫ

0.0104 0.0275 0.0500 0.0575 0.0661 0.0735 0.0778

0.0011 0.0026 0.0044 0.0063 0.0067 0.0094 0.0078

NSGA-II-Imin
ǫ

0.0105 0.0276 0.0482 0.0577 0.0671 0.0722 0.0759

0.0010 0.0027 0.0063 0.0064 0.0061 0.0082 0.0097

DTLZ3

NSGA-II
39.41 193.98 1436.66 2557.56 3058.35 3310.95 3409.70

11.5519 29.1555 117.9495 146.3092 76.1268 68.8680 57.1938

NSGA-II-Isum
ǫ

10.9479 11.0799 14.5876 17.8609 23.6319 28.3081 29.1092

3.4523 3.8608 4.8746 6.6429 7.9697 8.2998 12.3618

NSGA-II-Imin
ǫ

55.0847 70.4200 17.1429 19.5645 24.7109 28.4519 28.5141

26.6606 16.3303 4.5782 7.2080 7.9627 8.2112 9.3669

DTLZ4

NSGA-II
0.0063 0.0257 1.4083 3.9525 4.2261 4.3055 4.3426

0.0031 0.0075 0.3612 0.1322 0.0687 0.0717 0.0562

NSGA-II-Isum
ǫ

0.0041 0.0120 0.0305 0.0337 0.0416 0.0440 0.0491

0.0044 0.0099 0.0086 0.0073 0.0066 0.0058 0.0078

NSGA-II-Imin
ǫ

0.0060 0.0190 0.0230 0.0309 0.0377 0.0434 0.0464

0.0046 0.0082 0.0112 0.0081 0.0056 0.0077 0.0091

DTLZ7

NSGA-II
0.0145 0.0534 0.2565 0.8974 1.7709 2.3915 2.7311

0.0018 0.0042 0.0297 0.1338 0.1491 0.1747 0.1816

NSGA-II-Isum
ǫ

0.0094 0.0198 0.0343 0.0428 0.0506 0.0694 0.0718

0.0009 0.0017 0.0034 0.0033 0.0050 0.0062 0.0086

NSGA-II-Imin
ǫ

0.0099 0.0198 0.0332 0.0433 0.0484 0.0680 0.0748

0.0011 0.0023 0.0032 0.0042 0.0040 0.0078 0.0079

WFG2

NSGA-II
0.0524 0.0722 0.0999 0.1192 0.1351 0.1353 0.1280

0.0307 0.0178 0.0157 0.0128 0.0254 0.0322 0.0278

NSGA-II-Isum
ǫ

0.0374 0.0564 0.0605 0.0509 0.0490 0.0451 0.0469

0.0065 0.0079 0.0130 0.0124 0.0158 0.0128 0.0135

NSGA-II-Imin
ǫ

0.0372 0.0578 0.0634 0.0514 0.0448 0.0431 0.0471

0.0066 0.0084 0.0132 0.0101 0.0095 0.0126 0.0118

WFG6

NSGA-II
0.6961 0.7180 0.7265 0.7761 0.7454 0.8848 0.8664

0.1967 0.1534 0.1686 0.1428 0.1921 0.1478 0.1510

NSGA-II-Isum
ǫ

0.6793 0.6545 0.6939 0.7310 0.7048 0.6851 0.7055

0.1895 0.1457 0.1415 0.1176 0.1094 0.1157 0.1471

NSGA-II-Imin
ǫ

0.6780 0.6498 0.7085 0.6842 0.6774 0.7183 0.6884

0.1405 0.1318 0.1229 0.1186 0.1331 0.1218 0.1253

Table 3. Results of GD for 3 to 14 objectives. The first line for each MOEA is the mean
of GD (best values are shown in bold type) and the second line, the standard deviation.

6 Conclusions and Future Work

In this paper we replaced the Pareto dominance by a new preference relation
that couples the Chebyshev relation and an ǫ-indicator based relation. The new
preference relation improves drastically the scalability of NSGA-II with respect
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Fig. 4. GD values for DTLZ1 and WFG6 varying the number of objectives from 3 to 14.
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Fig. 5. Results of the ǫ-indicator for DTLZ1 and WFG2. Each subplot presents the
values for 3 to 14 objectives (ns is the short for NSGA-II). Hint: A is better than B if
Iǫ(A,B) < Iǫ(B, A).
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MOP MOEA 3 4 6 8 10 12 14

DTLZ2

NSGA-II
0.0151 0.0163 0.0239 0.0380 0.0469 0.0421 0.0443

0.0010 0.0010 0.0030 0.0077 0.0113 0.0111 0.0104

NSGA-II-Isum
ǫ

0.0079 0.0105 0.0132 0.0148 0.0183 0.0230 0.0331

0.0025 0.0036 0.0047 0.0043 0.0091 0.0112 0.0185

NSGA-II-Imin
ǫ

0.0087 0.0104 0.0121 0.0159 0.0165 0.0189 0.0220

0.0027 0.0039 0.0028 0.0060 0.0070 0.0071 0.0099

DTLZ7

NSGA-II
0.0896 0.0759 0.3300 2.3732 12.7540 23.0939 38.0094

0.2740 0.0071 0.0830 0.6462 4.8488 7.9811 9.5044

NSGA-II-Isum
ǫ

0.0138 0.0295 0.2226 1.2982 4.9511 11.3958 9.1685

0.0029 0.0038 0.0083 0.0323 0.3701 0.1847 0.3093

NSGA-II-Imin
ǫ

0.0150 0.0304 0.2229 1.2806 4.9978 11.4871 9.2333

0.0061 0.0053 0.0073 0.0250 0.2918 0.1453 0.1852

WFG6

NSGA-II
0.0075 0.0081 0.0120 0.0146 0.0187 0.0230 0.0271

0.0034 0.0023 0.0049 0.0047 0.0052 0.0066 0.0071

NSGA-II-Isum
ǫ

0.0073 0.0075 0.0091 0.0119 0.0141 0.0189 0.0232

0.0024 0.0024 0.0020 0.0051 0.0038 0.0093 0.0240

NSGA-II-Imin
ǫ

0.0075 0.0079 0.0087 0.0114 0.0132 0.0180 0.0209

0.0015 0.0029 0.0025 0.0051 0.0050 0.0075 0.0085

Table 4. Results of IGD for 3 to 14 objectives. The first line for each MOEA is the
mean of IGD (best values are shown in bold type) and the second line, the standard
deviation.
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in WFG6.

to the number of objectives. One important finding is that the main source of dif-
ficulty of DTLZ problems is the presence of dominance resistant solutions whose
proportion increases with the number of objectives. Nonetheless, the Chebyshev
relation was able to successfully eliminate these solutions preserving this way,
the search ability in MOPs. On the other hand, since WFG problems do not
induce DRSs, even the standard NSGA-II was able to maintain the same level
of performance despite the number of objectives. Although these problems are
hard for other reasons (e.g., nonseparability, multimodality), it seems that the
number of objectives does not significantly affect their difficulty.

We are aware that there are other sources of difficulty for MOPs. However,
since DRSs might be present in other problems, we suggest that the development
of a MOEA integrates mechanisms to overcome these types of solutions.

In the future we plan to apply the Chebyshev preference relation in real-
world problems in order to investigate if DRSs are also present. Finally, we will
compare the performance of the Chebyshev relation against other optimization
techniques that have shown good scalability in MOPs.
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EMO 2005, Guanajuato, México, Springer. Lecture Notes in Computer Science
Vol. 3410 (March 2005) 280–295
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