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Abstract. This paper introduces a Genetic Algorithm (GA) for training
Artificial Neural Networks (ANNs) using the electromagnetic spectrum
signal of a combustion process for flame pattern classification.Combustion
requires identification systems that provide information about the state
of the process in order to make combustion more efficient and clean.
Combustion is complex to model using conventional deterministic meth-
ods which motivates the use of heuristics in this domain. ANNs have been
successfully applied to combustion classification systems; however, tra-
ditional ANN training methods get often trapped in local minima of the
error function and are inefficient in multimodal and non-differentiable
functions. A GA is used here to overcome these problems. The proposed
GA finds the weights of an ANN than best fits the training pattern with
the highest classification rate.
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1 Introduction

Currently, combustion is the most important source of energy for power gener-
ation, heating, and transportation in the world, and this trend is expected to
continue in the foreseeable future [1]. Control systems that provide information
about combustion are of great importance. However, combustion is a dynamic,
highly nonlinear and multivariable process, which is particularly complex to
model using conventional deterministic methods.

Diagnostic methods based on monitoring flames have been implemented as
strategies to provide status of the combustion process with which one can imple-
ment control and optimization systems to make more efficient the combustion
process, optimizing fuel consumption and reducing emissions. Several monitor-
ing flame techniques have been developed for combustion processes using Fuzzy
Logic [2], Expert systems [1], Support Vector Machines [3], Artificial Neural
Networks (ANNs) [4] and Genetic Algorithms (GAs) [5, 6], focussing mainly on
combustion gases analysis and prediction.



Monitoring flames through spectral analysis approaches arises as an alterna-
tive to monitoring techniques such as image analysis, which are difficult to imple-
ment in combustion systems and require more computer processing. Combustion
processes such as those occurring in the power generation industry frequently
employ optical sensors as a safety measure indicating the presence or absence
of the flame inside the furnace. These sensors could provided more information
about the flame state that can be used for combustion optimization.

GAs are heuristic search methods based on the mechanism of genetics and
natural selection. GAs require minimum specific domain knowledge about the
search space, which makes their use very general. GAs are also easy to use and
can be particularly useful when dealing with optimization problems having a very
large, complex and little known search space, in which traditional mathematical
programming techniques tend to fail [7].

Performance of ANNs is largely influenced by the architecture as well as
by the weights used for its connections. The training stage in an ANN is the
process of adjusting the weights such that the training patterns fit with the
lowest error while having a profitable generalization ability to recognize new
patterns. Traditional training methods for ANNs are based on gradient descent
and get often trapped in local minima of the error function. Therefore, such
methods are very inefficient in multimodal and non-differentiable functions [8].
In such cases, the use of metaheuristics such as a GA is more appropriate. The
GA proposed here aims to adapt the parameters of an ANN including the weights
of its connections [12], its architecture [13–15], its learning rules and its transfer
functions [16].

The study reported here focuses on the electromagnetic spectrum signal anal-
ysis and on the use of GAs to train an ANN for the classification of pattern flames
of a combustion process.

The remainder of this paper is organized as follows. In Section 2, we describe
the methodology adopted for our study, including a description of the data ac-
quisition and the features extraction processes of the electromagnetic spectrum.
In Section 3, we describe the main features of the GA that is used to train an
ANN and we also provide a description of the experimental design adopted. Our
results are shown in Section 4 and our conclusions and some possible paths for
future research are provided in Section 5.

2 Methodology

This section provides a description of the methodologies that have been used
for flame classification. In Figure 1, we show a general diagram of the system
adopted in our study, which includes three main stages: 1) data acquisition, 2)
features extraction and 3) the use of an ANN trained by a GA.

2.1 Data Acquisition

In our study, the electromagnetic spectrum of a combustion process was mea-
sured using a flame scanning system with a solid-state optical sensor that op-
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Fig. 1: Diagram of the system adopted in our study.

erates between the ultraviolet peak at 350 nm and the infrared peak at 700
nm. The scanning system output is 450 hexadecimal data, containing the sensor
configuration and the flame signal in both the time and the frequency domains.

The most important condition of the combustion process optimization is
the air/fuel ratio. Particularly, there are three conditions related to this ratio
balance: fuel rich, fuel lean and air/fuel balance. In Figure 2, we show the signals
associated to the following flame states:

1. No flame (background radiation)
2. Stable flame (air fuel balance)
3. Flame with air excess (fuel lean)
4. Flame with fuel excess (fuel rich)

A database was created using signals of the four flame states using a program
written in Visual Basic for data acquisition. The database is composed of 480
signals (we stored 120 for each flame pattern). Each signal contains 256 values
corresponding to the voltage equivalent to the flame intensity in 500 ms.

The database was divided in three subsets:

1. Data Training: Data used for training our ANN (see Section 3). The quadratic
error is minimized in the fitness function of the GA adopted to train the
ANN. This data corresponds to 50% of the total data set.

2. Data Validation: Data for computing the percentage of generalization. This
data corresponds to 20% of the total data set.

3. Data Test: New data to test the ANN. This data corresponds to 30% of the
total data set.

2.2 Features Extraction

Flame signals were preprocessed to extract features that capture the whole possi-
ble information (e.g., trends, periodicity, signatures of chaos) required to describe
the flame patterns. We provide next a description of the formulation of these
features.
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Fig. 2: Signal of the four flame patterns considered in our study

2.3 Statistical Features

Statistical Moments Statistical moment analysis is a technique that can be
used for data series characterization, since it gives a set of parameters that
describe and provide information of a probability distribution function. The
second, third, and fourth normalized central moments of the distribution of the
flame signal intensity were calculated in order to provide information derived
from the comparison of the shape of the electromagnetic spectra.

The formal definition of a statistical moment is:

Mk = E[x− E(x)]k (1)

Where:
Mk= k order statistical moment
E[ ]=Expected value
x= Data signal

Autocorrelation sum (Box-pierce) Autocorrelation measures the linear cor-
relation in a time series. The autocorrelation sum is calculated as:

Q(τmax) = nΣτmax
τ=1 r(τ)2 (2)

where:

r(τ) =
∑n
t=τ+1 (xtxt−τ − x2)∑n

t=τ+1 x
2
t − x2 (3)



2.4 Oscillation-related Features

Oscillation-related features have been applied considering an oscillating behavior
in the flame signal (although this is not always true) and are calculated as in [9].
The signal is spanned with a data window of length k, and we checked if the
center is either a minimum or a maximum. The oscillation period is defined as
the time between successive peaks. The Oscillation-related features calculated
are the mean, and standard deviation of the period and peak, which are defined
as:

Period average:

T̄ =
1
n
Σn
i=1Ti (4)

where:
Ti= Period of the ith oscillation.

Peak average:

z̄ =
1
n
Σn
i=1zi (5)

where:
zi=Peak of the ith oscillation.

Period standard deviation

ST =

√
1

n− 1
Σn
i=1(T 2

i − T̄ 2) (6)

Peak standard deviation

Sz =
1

n− 1
Σn
i=1(zi − z̄2) (7)

2.5 Principal Components Analysis

Principal Components Analysis (PCA) is a data transformation technique that
can be useful to reveal simple structures, patterns or tendencies underlying in
complex data sets using analytical solutions. This technique provides a measure
to quantify the relative importance of each dimension allowing the characteriza-
tion of large data sets with a reduced number of components.

Let X be a (m × n) matrix and XtX a quadratic matrix of range q. Then,
X could be expressed as:

X = UΣV t (8)

where U and V are m order matrices containing the eigenvector of XtX and Σ
is a diagonal matrix that contains the square roots of the eigenvalues of XtX:
(σ1, σ2, σ3, . . . , σq), with σ1 ≥ σ2 ≥ σ3 ≥, ..., σq > 0.

In this study, we first compute the distance matrix of the data of a flame
signal and then, PCA is applied.



Principal Components Selection It is expected that keeping n � m com-
ponents produces a high variance of the original data set. Then, the number of
components to retain is based on the cumulative contribution of the variance of
the first several components, which can be expressed as:

CVk =
k∑
i=1

100λi∑m
j=1 λj

(9)

where:
CVk = cumulative variance of the component k
m = Total number of components

In Figure 3, we show the cumulative variance of the first 20 principal com-
ponents of a flame signal. As we can see, the first five components explain the
92.7% variability percentage and the 6th component increases it by only 1.28%.
Therefore, since the first five components have a high percentage of variability,
only these are retained.
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Fig. 3: Cumulative variance of the first 20 principal components

3 Genetic Algorithm Parameters

A real-coded GA was implemented, together with a two-layer perceptron archi-
tecture using a hyperbolic tangent transfer function in both the hidden and the
output layers. Figure 4 highlights the architecture of the ANN and in Figure 5
we show the weights encoding scheme adopted.

The inputs vector of the ANN is formed by the 13 features described in
the previous section, while the outputs correspond to the four different flame
patterns being considered. In Figure 6, we show the targets for the flame states.

The pseudocode of the GA that we implemented is depicted in Algorithm 1.



Algorithm 1 Pseudocode of the GA used to train our ANNs

Require: Population size N , Maximum number of generations G
Ensure: Trained artificial neural network
1: Load features extracted from flame signals.
2: Normalize features.
3: Perform data training, data validation and data testing.
4: Initialize the population Pi of N individuals:
5: k = 1
6: repeat
7: Generate random weights for the adjacency matrix of ANNk .
8: Define the first chromosome with a concatenation of the weights of the hidden

layer of the adjacency matrix.
9: Define the second chromosome with a concatenation of the weights of the output

layer of the adjacency matrix.
10: Perform an elimination of the connection weights using the connection elimina-

tion operator with a probability of 0.35.
11: k = k + 1
12: until k = N
13: i← 0
14: repeat
15: Evaluate fitness of population Pi.
16: Perform roulette wheel selection
17: Generate offspring P ′

i .
18: Apply mutation operator to P ′

i .
19: Apply the elimination connection operator to P ′

i with a probability of Pmut
2

.
20: Apply elitismPi+1 ← P ′

i .
21: i← i + 1
22: until Termination condition is reached
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Fig. 4: Architecture of the ANN adopted and the representation as a adjacency
matrix.
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Fig. 5: Adjacency matrix encoding in our GA.

Our GA uses elitism (the best individual from each generation passes intact
to the next one), as well as roulette wheel selection, arithmetic crossover [10] and
uniform mutation. Each of the main elements of our GA are briefly described
next.

1
-1
-1
-1

-1
1
-1
-1

-1
1
-1

1
-1
-1
-1

-1
-1
1

No flame Stable
Oxigen
excess

Fuel
excess

-1-1

Fig. 6: Targets for the four classes of flames during the training of the ANN.

3.1 Initial population

The initial population is created with randomly generated real values in the
range [−50, 50] for both chromosomes. Then, a connection elimination operator
in applied. This operator sets the weights equal to zero with a probability of
0.35.

3.2 Fitness function

The objective function commonly used to adjust the weights of an ANN is the
mean squared error (MSE). However, this is not necessarily the best choice when
using a GA. In our study, we adopted a different scheme in which we aim to find
the weights of an ANN that provide a good generalization performance while
also providing the best matching with respect to the training set.

Thus, the fitness function adopted by our GA is:

Fitness =‖
n∏
i=1

(1 + e2i ),
n∑
i=1

e2i , Etest ‖ (10)



where:
ei=Error associated to the training data set i
Etest=Percentage of misclassifications in the test data set
n=Size of the training data set

From now on, this fitness function will be referred to as the error norm.

3.3 Genetic Operators

As indicated before, we adopted roulette wheel selection with a probability of
0.9.

We also incorporated uniform crossover, which is defined as follows:
Let’s consider the following two parents F1 and F2:

F1 = 〈v1, . . . , vk, . . . , vm〉 (11)
F2 = 〈w1, . . . , wk, . . . , wm〉 (12)

Their offspring are generated, using:

O1 = 〈av1 + (1− a)w1, . . . , a× wk + (1− a)wk, . . . , a× vm + (1− a)wm〉(13)
O2 = 〈aw1 + (1− a)v1, . . . a× wk + (1− a)vk, . . . , a× wm + (1− a)vm〉 (14)

In our case, we adopted a = 0.6.
We also adopted uniform mutation with a probability Pmut = 0.05.
Given an individual P , the mutated version is:

P ′ = 〈v1, . . . , v′k, . . . , vm〉 (15)

where

v′k =
{
vk +mk if LB ≤ vk +mk ≤ UB,
vk −mk other case. (16)

and:
mk = rand(LB,UB) and [LB,UB] are the lower bound (LB) and upper bound
(UB) of vk, which is the original position of the individual to be mutated.

Finally, we also adopted the elimination connection operator, in order to
allow the remotion of connections during the evolutionary search. This operator
was applied with a probability of Pmut

2 (except for the initial generation in which
a higher probability was used, as indicated before).

3.4 Experimental Design

The 13 features extracted from the database of four experimental flames patterns
were linearly normalized and were used as the inputs of our ANN. The GA was



tested with a population of 30 ANNs having 10 neurons in the hidden layer.
First, MSE was used as our fitness function and then, we adopted the fitness
function defined in equation (10).

The stopping criterion for all the runs of the GA was to reach the best
possible fitness value (i.e., Fitness = 1 for equation (10) and Fitness = 0 for
MSE), or when reaching 2000 generations (whatever happened first).

The results obtained from the GA when using equation (10) were compared
with respect to those produced by the scaled conjugate gradient method (SCG)
[11], which is a traditional approach for training ANNs. Our results are presented
next.

4 Discussion of Results

In Figure 7, we plot the fitness values versus the generation number. We show
there the results corresponding to the best individual found in a run of the GA
using equation (10). This plot shows how, in a few generations, an individual
with a fitness value of one (i.e., the best possible value) was found.
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Fig. 7: Fitness function of the best individual as defined in equation (10)

Table 1: ANN training with GA. Average of 10 runs

average % correct classification average generations

MSE 98.1712963 2000
Norm 99.5138889 913.333333

In Table 1, we provide the results of the ANN training when using MSE as
the fitness function. In Figure 8, we show a comparison of the MSE of the best
individual using both fitness functions. As we can see, the use of MSE needs more
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Fig. 8: Comparison of the MSE with the two different fitness functions adopted in our
study

generations to reach an acceptable fitness value, whereas the use of equation (10)
provides good results with a lower number of generations.

The results of 30 runs of the GA with the fitness function defined in equa-
tion (10) are given in Table 2. A fitness value equal to 1 was reached, on average,
after 881.4 generations. Having a low average MSE implies a good fit with the
data training set, and having a high percentage of correct classification corre-
sponds with a good generalization ability. As Table 3 indicates, our results are
better than those obtained using SCG (this approach produced higher MSE
values than our GA using the fitness function defined in equation (10)).

Table 2: Average of 30 independent runs of ANN training using a GA

Aver-
age

MSE

Total
misclassified

signals

Average % Correct
Classification

Average of
misclassified

signals

Class 1 5.7628E-
17

2 99.9444444 0.06666667

Class 2 6.8257E-
15

52 98.5555556 1.73333333

Class 3 1.421E-
13

13 99.6388889 0.43333333

Class 4 1.0938E-
17

0 100 0

Total data set 2.3157E-
15

67 99.5347222 2.23333333

In Table 5, we compare the best and worst results of both training algo-
rithms. The best results obtained by our proposed GA significantly outperform
the results obtained by SCG.



Table 3: ANN training using SCG. Average of 30 independent runs

Total misclassification Average % Correct Classification Average of misclassified signals

Class 1 120 96.66666667 4
Class 2 121 96.63888889 4.03333333
Class 3 1 99.97222222 0.03333333
Class 4 246 93.16666667 8.2
Total data set 488 96.61111111 4.06666667

Table 4: MSE results with Scaled Conjugate Gradient method

Average MSE Average %error

training 0.0084154 3.26385333
validation 0.0088272 3.33308833
test 0.00959884 3.63403133

Table 5: Comparison of the best and worst results obtained with a GA and with the
Scaled Conjugate Gradient method

MSE training MSE Validation MSE Test % Correct Classification

AG best result 6.77E-18 7.62E-18 9.01E-16 100
AG worst result 2.77E-13 1.66E-09 9.66E-01 98.95833
SCG best result 9.25E-08 8.81E-08 3.30E-04 100
SCG worst result 6.73E-02 6.10E-02 6.10E-02 74.8



5 Conclusions and Future Work

A Genetic Algorithm was developed to train Artificial Neural Networks for flames
classification using the electromagnetic spectrum. The proposed GA was com-
pared with respect to the use of the Scaled Conjugate Gradient method in the
training of artificial neural networks. Our preliminary results indicate that our
proposed approach has a better performance, since it generates solutions with
a lower error and an improved generalization ability. Additionally, our results
show that the features extracted from signal spectra could provide information
about the combustion state and could be used for flame characterization and
combustion monitoring. All flame classes were classified with a high percentage
while using ANNs trained with our proposed GA.

As part of our future work, we are considering the use of ANNs for the
classification of signals of a combustion process in power generation systems, in
which there is a more complicated dynamics. We are also interested in evolving
weights connections of different ANN architectures, such as recurrent ANNs and
generalized multilayer perceptrons, using genetic algorithms.

The results show that the features extracted from signal spectra could provide
information about the combustion state and could be useful for flame character-
ization and combustion monitoring.
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