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Abstract—The Team Formation Problem in Social Networks
(TFP-SN) describes the process of finding an effective group of
people, drawn from a network of experts, to perform a particular
task. For a team to be considered as effective, it requires to
comply with a task-specific skills set while also showing a high
degree of cohesiveness. Although team effectiveness is subject
to multiple criteria, the study of the problem from a multi-
objective (MQO) perspective is still scarce. In this paper, we
focus on an MO TFP-SN whose objective is to maximize the
team’s level of expertise and the team’s density, simultaneously.
To solve this problem, we introduce two novel recombination
operators to be used within the framework of the well-known
NSGA-II. Our proposed crossover operators act as heuristics
that compute the parents’ unique and shared information, which
is then combined for generating potentially improved offspring.
Our experiments show that each of the two proposed crossover
operators lead to significantly better results when compared to
a naive crossover operator taken from the specialized literature.
Particularly, the results consistently show higher hypervolume
values when compared to the use of a simple recombination
operator. The good performance of our proposed operators may
be attributed to the incorporation of knowledge that exploits the
structure of the problem.

Index Terms—Team formation problem, Recombination oper-
ators, Multi-objective optimization, Combinatorial optimization

I. INTRODUCTION

Teams are pervasive, establishing themselves as the building
blocks of most organizations [18]. Featuring agile and flexible
responses to complex dynamic tasks [15], [22], teams enable
the potential to accomplish things beyond the reach of any
individual acting alone [12]. From businesses, governments,
communities, military, health, science, and everyday services,
teams of people are the brains—and sometimes also the
motor—behind many modern world activities [16].

Whenever a new team of people is required, a team for-
mation problem arises. Team formation is the process of
identifying suitable candidates to constitute a team, and the
problem is to find the most effective team to undertake a
particular task [14]. Team formation in the context of social
networks deals with a problem variant where the candidates
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and their relationships are captured within a network of
experts [17]. This network is typically modeled with a social
graph. In such graphs, a node represents a candidate, and
an edge represents some type of social relation. Also, each
skill that a candidate possesses is preserved as an attribute of
its corresponding node. Then, in its basic version, the Team
Formation Problem in Social Networks (TFP-SN) consists of
finding a set of candidates, with tightly knitted relationships,
whose combined skills set is a superset of the task’s demanded
skills set [14], [17].

It has been over a decade since Lappas et al. [17] introduced
the TFP-SN. Initially, research on this problem solely focused
on single-objective formulations, mostly aimed at minimizing
communication distance [17] or maximizing collaboration
density [10]. However, as time progressed, other specific
objectives (e.g., expertise level, personnel cost, geographical
location distance) started gaining attention, leading to the
exploration of multi-objective studies. In spite of this increase
in multi-objective formulations, they still remain relatively
scarce compared to the single-objective ones.

Multi-objective  TFP-SN formulations have often been
addressed using multi-objective evolutionary algorithms
(MOEAs). However, most MOEA implementations for this
problem have been simply regarded as black-box optimization
tools, overlooking prior knowledge about the problem. For
instance, commonly used recombination operators for the TFP-
SN include adaptations of SBX [1], [4], n-point crossover
[2], [9], [19] and uniform crossover [5], [11], [13], [20],
which are relatively generic and somewhat naive. However,
there is ample literature available about the problem (whether
single-objective or multi-objective), allowing us to heuristi-
cally design more effective recombination operators and move
beyond generic black-box approaches [14]. Other problems
have benefited from what is called grey-box optimization,
designed to actively exploit some structure or property about
them [23].

In this paper, we direct our attention at a MO TFP-SN
formulation that simultaneously maximizes the team’s level
of expertise and the team’s density. In practice, these two
objectives often conflict, as the most experienced individuals
are not necessarily the most likely to work together and vice



versa. To solve this problem, we present two novel grey-box
recombination operators to be used within the framework of
the well-known NSGA-II. We aim to study the effects of
our proposed recombination operators in the performance of
the NSGA-II. Our preliminary results show improved non-
dominated fronts compared to those obtained from a naive
black-box recombination operator, over a battery of test in-
stances.

The remainder of this paper is organized as follows. Sec-
tion II formally states the multi-objective problem to be solved,
while Section III briefly reviews the previous related works.
Section IV describes our proposed recombination operators.
The experimental setup, including the data-set and the test
instances adopted, along with the analysis of the results are
described in Section V. Finally, in Section VI we present our
conclusions and some possible paths for future research.

II. PROBLEM DEFINITION

As a foreword to this section, Lappas et al’s [17] TFP-
SN notation has become common ground on this problem, we
will utilize most of it, accordingly. Additionally, we will adopt
the MO TFP-SN formulation from [13] as a model of study.
Details of the problem definition will be described throughout
this section.

A. Notation

Let G = (X,FE) be an undirected weighted graph en-
coding a social network of experts. The set of nodes X =
{1,2,--- ,n} represents the indices for each of the n candi-
dates. The set of edges E = {(¢,4)}, represents the pairwise
collaborations of candidates i,7’ € X. Also, let w : E —+ N
be a function that assigns a weight of collaboration to each
edge. Then, a team X' C X is represented by a subset of the
candidates, and their relations are captured within the induced
subgraph G[X”].

Let A denote the universe of skills that any candidate could
possess. Then, the particular skills set of candidate i € X is
denoted by X; C A. Additionally, let us define the support
set of a skill @ € A as S(a) = {i € X|a € X;}, ie., the
subset of candidates that possess skill a. Finally, let us define
atask T = {(a1,kq,), (a2, kas), -+ 5 (@m, ka,, )} as the set of
m pairs (a;, kq;) where a; € A and k., € N, which indicates
the required number of candidates (kaj) concerning any given
skill (a;). Thus, X" C X is a valid team if V(a;, k,;) € T,
|X" N S(az)] > ka,.

B. Objective 1: Density

TFP-SN formulations are mostly concerned with either
distance-based or density-based objectives [14]. In this paper,
we focus on teams that show their effectiveness potential
through a highly collaborative density.

Given G = (X,F) and a team X’ C X, the team’s
collaborative density is modeled as the weighted graph density
of G[X']. Formally, the collaborative density is defined as:
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where Eqpy/ represents the set of edges of the graph G[A”].
Note that this objective is defined as the weighted graph
density, as opposed to the subgraph density studied in [10]. A
previous study [13] revealed that graph density as an objective
may perform better than subgraph density in terms of resulting
team size and disconnected team components.

C. Objective 2: Expertise

Usually, for the TFP-SN, it is not only relevant to make sure
that the demanded skill set is covered, but also to quantify the
expertise level of a team with respect to the task.

Let z;(a) be an non-negative integer that represents the level
of expertise of a candidate i € X on a skill a € A. If a ¢ X;,
then z;(a) = 0. Thus, the total level of expertise of a team X"
over a given task 7" is defined as:
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Note that the total level of expertise exclusively quantifies
the skills demanded by the task. Also note that this objective
is a ratio of expertise to team size; otherwise, teams would
grow excessively.

D. Multi-objective TFP-SN

In the team formation context, two conflicting objectives
have been described: the density objective and the expertise
objective. On the one hand, we may have a tightly knit team
but very inexperienced, while on the other hand, we may
have a very disjoint group of people yet very skillful. Both
objectives deserve careful thought when constituting a new
team [13].

The multi-objective team formation problem in social net-
works is formally defined as: Given a social graph G and a
task 7T,

imi DX, Z(X'
maximize (D(X"), Z(X")),
subject to | X' N S(a;)| > ka,, 3)

V(aj, kaJ) eT.

Let us recall that in multi-objective optimization, we aim
to optimize all the objectives simultaneously. Since there are
often conflicting objectives, the goal is not to find a single
solution but rather to search for a set of trade-off solutions.
Specifically, we seek for the “best” set of trade-off solutions
that cannot be improved in any individual objective without
worsening any of the others. For additional information on
multi-objective optimization, we refer the reader to [6].

III. PREVIOUS RELATED WORK

In recent years, the number of studies on Team For-
mation Problems addressing multiple objectives has grown,
yet they still remain somewhat scarce. Early multi-objective
formulations, which were closer to Operations Research, were
less focused on the social networks version of the problem.
Feng et al. [9] introduced a formulation for team member
selection based on three objectives: individual performance,



collaborative performance within the team, and collaborative
performance outside the team, each comprising multiple cri-
teria. Zhang and Zhang [24] proposed a MO TFP consid-
ering team member capabilities and relationships based on
personality composition. Awal and Bharadwaj [2] simultane-
ously optimized team expertise score and team trust score.
Ahmed et al. [1] addressed cricket team selection with three
objectives: batting performance, bowling performance, and
fielding performance. Pérez-Toledano et al. [20] focused on
basketball teams, maximizing the Performance Index Rating
while minimizing overall team cost.

Transitioning to MO TFP-SN formulations, Niveditha et al.
[19] proposed a model minimizing communication cost, team
member cost, and team size. Chen et al. [5] introduced a
TFP-SN minimizing communication costs and geographical
location distance for a software development team. Juarez and
Brizuela [13] incorporated team expertise level and collabo-
rative density into the model. Selvarajah et al. [21] presented
a TFP-SN formulation with four objectives: communication
cost, expertise, geographical proximity, and collective trust.
Gomez-Zaré et al. [11] introduced a multi-team bi-objective
TFP-SN for maximizing diversity and familiarity. Similarly,
Casotti and Krohling [4] proposed a multi-team bi-objective
TFP-SN for maximizing cohesion and disagreement (as a
proxy for diversity).

All the aforementioned MO TFP(-SN) works solve their
version of the problem using some form of evolutionary
computation, with the majority (i.e., [1], [5], [9], [11], [13],
[19]-[21]) resorting to implementations of the well-known
NSGA-II algorithm [7]. Although the performance of NSGA-
IT and other (MO)EAs rely on their recombination operators
[6], the literature tackling MO TFPs normally use generic
crossover operators, such as SBX in [1], [4], n-point crossover
in [2], [9], [19], or adaptations of the uniform crossover in [5],
[11], [13], [20].

IV. RECOMBINATION OPERATORS

Within (MO)EAs, recombination operators play a crucial
role in generating new feasible individual solutions by com-
bining the information from two (or more) parent solutions [8].
However, in the context of the (MO) TFP-SN, the employed
operators have been usually variants of generic recombi-
nations. Furthermore, the problem constraints yield simple
recombinations to often produce infeasible offspring. This
encourages further investigation into more suitable operators,
leveraging on the structure and characteristics of the problem.
It is also desired that both the solution codification and the
recombination operators work in a way that the individuals
are regularly feasible.

In the subsequent subsections, we will introduce the individ-
ual representation along with its exploitable structure, followed
by our proposed recombination operators explicitly designed
to leverage on the parents’ unique and shared information.
Moreover, these recombinations not only ensure that the
offspring are always feasible but also promote that the quality
of the offspring is no worse than that of its parents.

A. Individual representation

The individual solution representation is simply the team
definition in the problem formulation (Section II-A). That is,
a feasible individual Z C X" is a subset of the input nodes
such that V(a;,k.;) € T, |Z N S(aj)| > k. Additionally,
let us refer to the support set of a particular candidate Z, for
some skill a;, as Sz(a;) = {i € Z|a; € X;}. Figure 1 shows
an illustration of two feasible individuals, each representing a
set of candidates possessing specific skill sets, which comply
with the skill requirements of a given task.

B. An exploitable structure

For any two feasible individuals Z; and Z,, the following
partitions of candidates could be obtained: the intersection
subset H = 7Z; N Zy, and the symmetric difference subset
D =U; UU,, with U; =1, \IQ and Uy =15 \1-1.

Given partitions H and D, all candidates from one partition
can be combined with a subset of candidates from the other, to
form new (and potentially better) individuals. That is, a new
team can be generated by using candidates from partition H
as a base and selecting some additional candidates from D to
complement it. Similarly, we may use partition D as a base of
candidates and complement it with a subset of candidates from
H. Ultimately, this structure defines a suitable search space
for producing feasible offspring. Figure 2 shows an example
of this concept featuring the individuals from the previous
example (from Figure 1). In the following subsections, we will
show how this structure could be used to efficiently produce
feasible offspring. In algorithm 1, lines 2, 3 and 4,

Fig. 1: Example of two feasible individuals Z; = {a, b, c,d}
(continuous-line circle) and Zo = {c,d,e, f,g} (dashed-line
circle), with skills s; (green), so (orange) and s3 (blue),
considering task T' = {(s1,2), (s2,3), (s3,2)}, where X, =
Xd = {81,52}, Xb = Xp = {52, 83}, XC = {53}, Xf = {82},
Xy ={s1}.

C. Recombination 1 (Ry)

This recombination operator functions similarly to an ex-
haustive local search, computing all feasible offspring com-
binations based on the information from two individuals. In
Algorithm 1, lines 2 and 3, two core partitions U; and U,
are computed. Then, for each pair (u1,us) in Uy X Us, two



Fig. 2: Example of partitions H and D, and their possible
offspring, given the parents from Figure 1.

new offspring are generated by swapping candidates u; and
ug within individuals Z; and Z, (lines 5 and 6). Subsequently,
any feasible offspring produced this way is stored in a set Q)
(lines 7-10). Finally, the non-dominated individuals in @ are
returned (lines 12 and 13). Due to the exhaustive exploration
involved, Algorithm 1 ensures that it will find a feasible
offspring better than its parents, if any exist.

As an example, given parents Z; and Z,, and a task T
from Figure 1, the following offspring would been generated
01 = {evbac7d}’ 0y = {C7d7aafag}7 O3 = {f,b,c,d},
04 = {c,d,aa,g}, 05 = {g,b,C,d}, 06 = {Cadaevaa}’
O; = {a,e,¢,d}, Og = {c,d,b, f,g}, Og = {a,f,c,d},
O = {07 dye, bvg}’ O11 = {a7 9,6 d}’ O12 = {Ca d,e, f’ b}
However, not all of them represent a feasible solution, only
Oy, 0g,07,0s, and Oy are feasible concerning 7'. Finally,
only the non-dominated ones are kept.

The worst-case scenario is when the intersection of the
parents 77 N Zs is empty, which means that U; = Z; (from
line 2) and Us = Z, (from line 3), which also means a
total of 2 - |Z; x Z| possible offspring. Note that, for a
given task 7', no individual Z in the pool is larger than
IZ| < K = Z(aj,ka].)eT k., but no smaller than |Z| >
k= max(, k, )er (a,). The number of basic operations
is O(K?®) in the for loop (lines 5 — 10), plus O(2K?) in
the Fast-non-dominated-sort(:) procedure (line 12).
Thus, the overall complexity of Algorithm 1 is O(K?), with
Q(k3) when Z; NZy = (). However, the worst case scenario is
only expected during early generations, where individuals are
generally less likely to share candidates.

D. Recombination 2 (Ry)

The recombination operator described here, unlike the pre-
vious one, utilizes a stochastic process to generate offspring.
Algorithm 2 generates two offspring, each centered around
partition sets H and D (lines 2—4). Then for each skill deficit
in each offspring, the missing skills are covered by randomly
adding candidates from the complementary partition’s support
set (lines 7-10). That is, offspring whose core team is given
by H is complemented with suitable candidates from D, and
vice versa. Finally, the algorithm discards any offspring that

Algorithm 1: Recombination R

input : two individuals, Z; and Z,, and a task T'
output: a set of individuals @

1 Q<+ 0

2 U1 (—Il \IQ;

3 Uy +— 1o \Il;

4 for (ul,u2) e U; x Uy do

5 O+ (Il \{ul}) U {Ug};
6 | O« (To)\ {us)) U fur}:
7 if 1svalid(O,T) then

s | | QeQuos

9 | if isvalid(O’,T) then
10 | Q+QUO;

11 end

12 F + Fast-non-dominated-sort(Q);
13 return Q < F7;

fails to dominate at least one of the two parents (lines 12—15).
Algorithm 2 ensures that the generated offspring is feasible
(by default), but also that it is better than at least one of the
parents.

As an example, given parents Z; and Z», and a task T
from Figure 1, the offspring would have been initialized as
01 = {¢,d} and O2 = {a,b,e, f,g}. While O is already
valid, i.e., has no deficit concerning 7'. On the other hand, O
requires additional candidates to meet the demanded skill set.
The missing candidates are randomly drawn from D according
to the support set of the skills deficit.

Similar to Recombination 1, the worst case scenario for
Recombination 2 occurs when H is empty (line 2), which
implies that offspring O; is initialized as an empty set (line
4). It would also imply that the deficit of O; concerning task
T is total. There is a mirroring scenario when D is empty
(although this would imply that Z; = Z,). In that case, Os
is initialized as an empty set (line 5). The Sampling(S,k)
routine computes a randomly sampled subset of size k£ from an
input set S, which would take O(|S]) u.t., with |S| < |Zy| +
|Z5|, but since |Z| < K, then the complexity corresponding
to the lines 8—11 can be simply rewritten as O(K ) units of
time. Thus, the overall time complexity for this algorithm is
O(K -|T)).

V. EXPERIMENTS

In this section, we evaluate the performance of our proposed
recombination operators for the Multi-objective Team Forma-
tion Problem in Social Networks. We describe the experimen-
tal setup, including the dataset, test instances, and running
parameters. For comparison purposes, we also implemented
a recombination operator introduced in [13] for this problem
and a random choice hyper-heuristic recombination. We refer
to each of them as R, and R., respectively. For simplicity,
throughout this section, we will also refer to our proposed
recombination operators as R, for Algorithm 1 and R, for
Algorithm 2. All the operators are implemented within the



Algorithm 2: Recombination R

input : two individuals, Z; and Z,, and a task T’
output: a set of individuals @
Q « 0;
H + Il N IQ;
D+ (Il \IQ) U (IQ \Il);
01 «— H;
Oy <+ D;
for (a;,kq;) €T do
if |So, (a;)| < k4, then
01 — .
O1U sampling(Sp(ay), ks, —|So,(a;)]);
9 | if [So,(a;)| < kq; then
10 Oy
Oz U sampling(Sg(a;),ka; — |So,(a;)

e NN U R W N -

)
11 end

12 if O; dominates 7Z; V O; dominates Z, then

B | Q@+ QUO;

14 if Oy dominates 77 V Oy dominates Z, then

15 | Q<+ QUOsy;

16 return Q;

NSGA-II because it is one of the most widely used MOEAs
for this problem [14] (for particular details about this method
refer to [7]). Our experimental results, are presented next. We
also show some of the obtained non-dominated fronts.

A. Other recombination operators

For comparison purposes, we present Algorithm 3 originally
introduced in [13] for this problem. Algorithm 3, or R,
for short, is a recombination operator inspired by uniform
crossover [8], particularly tailored for this problem. R, per-
forms uniform crossover, not for every candidate, but for each
skills support set (S(a;)), as dividing sections. Since each
parent’s support set meets the required number of skilled
candidates by the task, then the resulting offspring is always
valid.

Algorithm 3: Recombination R,

input : two individuals, Z; and Z,, and a task T’
output: two individuals, O; and O,

1 O1<—@;

2 Oy @;
3 for (aj,k,;) €T do

4 if CoinFlip () = Heads then
5 01+~ 01U Sll (aj);

6 0o (—OQUSIZ(GJ‘);

7 else

8 01 (*01USIQ(CL]‘);

9 02 <—OgUSIl(aj);

10 end

11 end

12 return O, Oo;

As a supplementary comparison, we adopted a no-learning
random selection hyper-heuristic, denoted as R.. The proce-
dure for this recombination is as follows: Every ten genera-
tions, a new recombination is randomly chosen with uniform
probability from R, R, or R,. While this method utilizes
the proposed recombinations, its primary aim is to show an in-
termediate trade-off between computing time and the quality of
Pareto front approximations. Also, it is worth mentioning that
recent success has been observed in hyper-heuristics selecting
recombinations for addressing other community detection-
related problems [3].

B. The DBLP dataset

The DBLP has become one of the primary sources of data
for benchmarking and testing in the TFP-SN literature. It is an
online bibliographic information system on computer science
publications and authors. Its data—openly available through
a webpage' or an XML file’—is used to produce the input
social graph, where each author is represented by a node,
and mutually co-authored publications are represented by an
edge. The general methodology to generate the social graph,
including candidates, skills-set, an collaborations, is described
in [10], [13], [17]. The papers published in 16 selected confer-
ences are categorized in the domains of Artificial Intelligence
(AI), Databases (DB), Data Mining (DM), and Theory (T) as
follows: Al = {ICML, ECML, COLT, UAI}, DB = {SIGMOD,
VLDB, ICDE, ICDT}, DM = {WWW, KDD, SDM, PKDD}, and
T = {SODA, FOCS, STOC, STACS}. The set of candidates X
contains authors skilled in at least one of these four domains.
The skillset of any author ¢ is determined as follows: if ¢ has
three or more publications in, say Al, then i € S(AI) and
Al € X;. The same goes for every other domain. An edge
e = (i,7) in E, i,j € X, exists if candidates i and j are
coauthors in at least two publications. Also, the total number
of collaborations between i and j determines the weight w(e)
of the edge e = (4, j). Then, the level of expertise z;(a;) of
a candidate ¢ € X over a particular skill a; € A is given by
the total number of publications within that skill domain. We
used the DBLP XML data from a snapshot taken on March
02, 2015, to produce the input social network graph.

C. Test instances

We have adopted the 15 test instances from [13], which
consist of five tasks for each size of K = {4,8,12}. Due to
the small sizes of the first set of instances, we have randomly
generated an additional set of tests, and five tasks for each size
of K = {14, 16, 18}. We use 30 tasks in total, as a benchmark
for our experiments. Let us recall that K = j ka,, where kg,
specifies the minimum required number of experts in a team to
cover the skill a;, from a task 7. Each new task 7' is generated
by randomly choosing one skill from {AI, DM,DB,T},
repeated K times. All the test instances, former (left side)
and new (right side), are presented in Table I.

Thttp://dblp.uni-trier.de/
Zhttp://dblp.uni-trier.de/xml/



TABLE I: Randomly generated benchmark set of test in-
stances.

Tasks K Al DM DB T Tasks K Al DM DB T
Test | 7 T T 0 2 [ TestI6 14 0 7 g 3
Test 2 4 1 1 2 0 | Test17 14 4 3 3 4
Test 3 4 2 0 0 2 | Test18 14 2 1 5 6
Test 4 4 0 3 1 O | Test19 14 3 3 6 2
Test 5 4 2 1 1 0 | Test20 14 4 4 6 0
Test 6 8 3 2 3 0 [ Test2 16 2 ] 8 2
Test 7 8 1 2 4 1 | Test22 16 4 4 2 6
Test 8 8 2 2 2 2 | Test23 16 5 3 2 6
Test 9 8 2 3 2 1 | Test24 16 4 4 3 5
Test 10 8 2 1 5 0 | Test25 16 5 2 2 7
Test IT 12 4 2 3 37| Test26 18 3 ] 5 6
Test 12 12 3 3 3 3 | Test27 18 4 9 4 1
Test 13 12 2 3 5 2 | Test28 18 4 10 4 0
Test 14 12 4 0 6 2 | Test29 18 7 7 0 4
Test 15 12 1 5 4 2 | Test30 18 4 3 2 9

D. Experimental setup and results

All the algorithms?, including the NSGA-II, were imple-
mented in Java (1.8) and the corresponding tests were per-
formed on an ASUS TUF FX505DY, AMD Ryzen 5 CPU (64
bits), Windows 10 machine with 8 GB of memory.

The running parameters for NSGA-II were set as follows:
population size = 50, tournament size = 2, generations = 500,
recombination probability = 0.95, and mutation probability =
0.05 (utilizing the same mutation operator as in [13]). We
carried out 30 independent runs for each task (from Table I),
for each recombination. For a fair comparison, each recom-
bination was tested using a consistent initialized population.
For performance assessment of the recombination operators,
we selected the hypervolume (HV) indicator [25]. Furthermore
we visualized some of the empirical attainment functions from
the resulting populations of the runs [25].

Table II displays the average HV indicator values (with
reference point at the origin) and their standard deviations
obtained from the experiment. The cells in dark- and light-gray
shade represent the best and second-best results, respectively,
for each test. The superscripts (X, +,o0,*) next to each HV
value indicate statistical significance (p-value < 0.05), based
on a one-tailed Wilcoxon rank-sum test, over the recombi-
nation indicated by the superscript. The overall results in
Table II show that recombination operators R, R, and R,
outperformed R, in terms of HV. Most remarkably, R, failed
to secure a first or second place in any test. In contrast, Ry
achieved the best results in 11 tests and the second-best results
in 10 tests (21 top results in total), R4 scored 15 first places
and seven second places (22 in total), while R, attained only
four best results and 13 runner-up positions (17 in total).

At first glance, it appears that operators R, and R, exhibit
slightly better overall performance than R, although statistical
significance supporting this observation is only achieved on
a few tests. Furthermore, Ry and R, seem to produce
comparable results. However, when focusing exclusively on
the larger tests (tests 15-30), it becomes evident that R,
outperformed Ry in 10 out of the 15 tests, showing a trend
of better performance for R, on larger tests. Nevertheless,
drawing definitive conclusions from the available experiments

3All the codes and algorithms will be available upon request.

TABLE II: Comparative analysis of average hypervolume
indicator scores (and standard deviations) from each recombi-
nation operator on the test instances.

Test No. Ry Ry R, R,
1 2185.26° 2272.02° 1895.31 2171.27°
(481.03) (403.61) (588.09) (488.74)
) 14157.54 15619.57 11886.43 = 15080.62°%+
(4275.00) (1015.71) (5547.91) (3109.39)
3 1613.03°* 1540.84°* 1203.65 1387.64°
(187.51) (212.61) (402.16) (302.43)
4 4890.60° 4256.17° 2964.05 4925.34°
(3005.05) (2561.77) (2631.52) (2774.40)
5 4729.06° 4633.30 3774.91 4342.05
(1287.05) (1333.69) (1885.26) (1666.17)
6 2725.15 2929.93°% 2594.93 2811.01°
(426.35) (264.49) (469.86) (372.62)
7 4188.48° 4162.71° 3359.19 4089.35°
(363.02) (433.82) (1019.16) (303.53)
] 1745.88° 1657.22 1556.01 1782.96°
(300.66) (289.74) (340.47) (330.43)
9 2194.31° 2603.59°* 1741.07 2028.06
(788.79) (942.51) (841.74) (841.20)
10 3900.27° 3927.06° 3135.67 3950.83°
(371.91) (377.52)  (815.24) (340.63)
1 847.27° 839.21° 712.30 840.19°
(95.63) (108.79) (128.44) (135.81)
12 1122.64° 1088.55° 904.93 1118.44°
(165.79) (148.82) (180.50) (187.06)
13 2083.38° 2080.72° 1738.46 2101.93°
(202.45) (231.71) (399.54) (202.80)
14 1174.35° 1198.26°* 943.77 1121.51°
(121.31) (101.37) (121.61) (138.60)
15 2540.83° 2504.88° 2031.26 2400.48°
(476.57) (534.66) (678.25) (514.51)
16 1370.27° 1556.81°% 1158.59 1513.07°%
(334.61) (G12.73) | (330.76) (325.34)
17 784.89°+ 759.06° 650.90 777.02°
(84.64) (101.97) (105.00) (108.70)
18 916.83° 942.56° 792.19 925.71°
(85.13) (88.12) (114.41) (118.51)
19 1513.24° 1535.97° 1274.31 1479.97°
(150.32) (76.39) (260.06) (158.09)
20 1802.46° 1867.13° 1531.62 1846.46°
(162.86) (130.31) (271.08) (137.23)
1 1686.87° 1702.23° 1306.45 1649.33°
(152.55) (164.48) | (263.20) (144.25)
2 607.90°+* 574.01° 500.31 575.37°
(62.91) (57.03) (79.94) (59.54)
23 542.15°+* 506.11° 403.00 505.84°
(38.47) (33.49) (63.60) (54.01)
" 697.19°F | 649.83° 568.82 692.42°%
(60.98) (49.19) (110.18) (61.73)
25 462.23° 468.86°* 380.82 446.75°
(47.61) (32.76) (45.82) (46.50)
26 778.44° 773.56° 627.40 763.50°
(73.50) (57.30) (93.53) (64.44)
27 916.88° 927.81° 708.85 903.82°
(224.75) (188.44) (249.31) (214.06)
28 883.56° 986.10°% 608.14 892.69°
(234.51) (225.34) (135.37) (214.56)
29 434.73° 461.07° 338.86 458.53°
(49.68) (77.85) (48.06) (62.58)
30 399.31° 423.14°%* 343.71 399.28°
(31.35) (29.16) (41.39) (40.28)

and executions is challenging, as statistical significance was
not consistently observed in the results.

Figure 3 shows some non-dominated fronts of 50% empir-
ical attainment functions for selected tests. These tests and
their corresponding figures effectively showcase the trade-
offs between the two objectives, while also illustrating certain
typical scenarios. First, in all six figures, we observe that
operator R, is visibly outperformed by Ry, R4, and R,. In
Figures 3a, 3b, and 3c, there is a better performance from
R, compared to the other recombination operators, while
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Fig. 3: 50% empirical attainment non-dominated fronts using recombination operators Ry (green Xx), Ry (cyan +), R, (blue

() and R, (red %), from selected test instances.

in Figures 3d, 3e, and 3f, it is R, that outperforms the
other operators. Once again, distinguishing a clear superiority
between Ry and R, is challenging, whereas R, exhibits
regular performance (sometimes better sometimes worse), and
R, shows a consistently poor overall performance.

Figure 4 displays a box plot summarizing the distribution of
the average running times of NSGA-II implementing different
recombination operators across all tests. Each rectangular box
represents the interquartile range, encapsulating the middle
50% of the corresponding data, with a line inside denoting the
median. From this figure, it is evident that the overall lowest
running time is achieved by R,, while R« and R, have the
highest median and worst running times, respectively. On the
other hand, the overall running time of R, falls somewhat
between these two groups. In general, the running times of R,
R, and R, align with expectations based on their correspond-
ing time complexities. However, achieving better performance
with one recombination operator often comes with a trade-
off. Particularly, the trade-off of quality is associated with
an increased number of comparisons, embedded in the non-
domination sorting (line 13) in Algorithm 1 and the dominance
comparisons (lines 13—-16) in Algorithm 2. This, of course,
creates an unfair comparison for R, since the experiments are
fixed to the number of generations rather than to the number
of evaluations. For future studies, it would be intriguing not
only to set a fixed number of evaluations but also to assess the
impact on quality by removing these additional comparisons.

300
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= 200
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2 il
= e —

100

Ro Rx R+ R*

Recombination

Fig. 4: Box plot comparison of the execution times of the
NSGA-II featuring different recombination operators.

E. Discussion

The overall results favor the proposed recombination oper-
ators Ry and R;. However, certain issues require a careful
discussion. Firstly, the parameter values were consistent across
all operators. In other words, no specific effort was made to
determine optimal parameter values for each recombination.
This aspect needs attention in future tests, as the overall
performance of these operators may vary depending on the
parameter values.

Furthermore, it is important to note that R, is not the
only recombination operator that should be tested against the
proposed recombination operators. While R, is a more suit-
able and straightforward recombination as it does not require



any modification to the individual solution representation,
comparisons with respect to other recombination operators
are necessary. However, adaptations to other recombination
operators might influence their performance.

Finally, although R, was intended as a supplementary
comparison, the success of Ry over R, in some test instances,
and vice versa in others, alongside with the performance of
R., suggests that a more sophisticated hyper-heuristic scheme
might potentially yield better results.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we addressed the multi-objective Team For-
mation Problem in Social Networks, optimizing team expertise
and density. We introduced two novel grey-box recombination
operators (Ryx and R.) which were incorporated into the
NSGA-II. Both recombination operators were designed to
make use of the individual representation and problem’s struc-
ture to produce potentially improved solutions, specifically
for the MO TFP-SN. The experiments were performed using
the DBLP dataset, tested over 15 benchmark instances from
[13], in addition to 15 newly bigger instances. The results
were compared against a variation of the uniform crossover
from [13] (R,) and to a random choice hyper-heuristic (R.)
which randomly selects a new recombination, among the three
aforementioned options, to use it every ten generations.

Our experimental results, assessed using both the hypervol-
ume indicator and empirical attainment functions, consistently
favored R., Ry, and R, over R,. On the one hand, R,
showed competitive results in some of the tests but, overall, it
seems to fall slightly behind both Ry and 2. On the other
hand, R« and R showed a similar performance, occasionally
outperforming each other. However, R, exhibited a more
consistent superior performance on larger tests (tests 15-30).
An analysis of running times revealed that R, had the lowest
overall time, while Ry and R. exhibited higher medians.
These results, coupled with the ones regarding the hyper-
volume indicator, illustrate the expected trade-off between
computational cost and quality.

Based on these observations, we believe that designing
recombination operators that leverage our understanding of
the TFP-SN is indeed a promising idea. Future work aims to
compare the proposed recombination operators with adapta-
tions of other recombination operators that were excluded due
to their unsuitability. Additionally, we plan to explore new
and original recombination designs for the TFP-SN using al-
ternative cutting-edge multi-objective evolutionary algorithms.
Furthermore, we intend to investigate the effects of combining
the strengths of multiple recombination operators through a
more sophisticated hyper-heuristic, as has been done in other
studies for different problems.
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