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Abstract—This article presents the multi-objective variants of two 
popular metaheuritics of the current interest namely, the 
artificial bee colony algorithm, and the teaching-learning-based 
optimization algorithm to solve the real-parameter, bound 
constrained multi-objective optimization problems. The multi-
objective variants are based on a decomposition approach, where 
a multi-objective optimization problem is decomposed into a 
number of scalar optimization sub-problems and these are 
optimized simultaneously. The proposed algorithms are tested on 
seven unconstrained benchmarks proposed for the special session 
and competition on multi-objective optimizers held under IEEE 
CEC (Congress on Evolutionary Computation) 2009 and also on 
five classical bi-objective test instances. The proposed approaches 
are compared with two other decomposition-based multi-
objective evolutionary algorithms which are representative of the 
state-of-the-art in the area. Our results indicate that the proposed 
approaches are highly competitive in most of the test instances 
with respect to the algorithms in comparison. 

Keywords—Multi-objective optimization; artificial bee colony; 
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I.  INTRODUCTION 

In many practical applications, there are several (possibly 
conflicting) objectives that need to be optimized 
simultaneously. These applications can be modeled as multi-
objective optimization problems (MOP). In this kind of 
problems since the objectives are in conflict with one another, 
there no longer exists a single optimal solution, but rather a 
whole set of possible solutions of equivalent quality. A Pareto-
optimal solution to an MOP is a candidate for the best trade-
offs among the objectives. The Pareto set/front is the set of all 
Pareto-optimal solutions in the decision/objective space. 

The past few years have witnessed significant progress in 
the development of evolutionary algorithms for dealing with 
multi-objective optimization problems, comprehensive surveys 
can be found in [1, 2]. The major advantage of these multi-
objective evolutionary algorithms (MOEAs) over other 
methods is that they work with a population of potential 
solutions and therefore they can produce a set of Pareto-
optimal solutions to approximate the Pareto front in a single 
run. In recent years several meta-heuristics such as: particle 
swarm optimization (PSO) [3] which imitates the collective 

intelligence emerging from the group behavior of natural 
creatures; artificial bee colony (ABC) [4] which works on the 
foraging behavior of a honey bee, teaching-learning-based 
optimization (TLBO) [5] which works on the philosophy of 
teaching and learning, etc. have been applied to solve the multi-
objective optimization problems. 

The majority of the existing MOEAs aim at producing a 
number of Pareto-optimal solutions as diverse as possible to 
approximate the whole Pareto front. Therefore, these methods 
need some other techniques for ranking solutions (e.g., 
crowding distance, fitness sharing, niching). Among these 
methods, non-dominated sorting genetic algorithm II (NSGA-
II) [6], and strength Pareto evolutionary algorithm 2 (SPEA2) 
[7] have received much attention in the real world applications. 
However, it is shown that these methods cannot always provide 
good results, especially when the multi-objective optimization 
problem is complicated [8, 9].  

Recently, a new MOEA framework, multi-objective 
evolutionary algorithm based on decomposition (MOEA/D) 
[8], has been proposed. This framework decomposes an MOP 
into several single-objective optimization sub-problems with 
neighborhood relations. In this way, a set of approximate 
solutions to the Pareto front is achieved by minimizing each 
sub-problem instead of using Pareto ranking. This has given 
rise to a new generation of multi-objective evolutionary 
algorithms. 

In this paper, we present a modified ABC and a TLBO 
algorithm in the MOEA/D framework. The performance of our 
proposed approaches is compared with two MOEAs/D, which 
are representative of the state-of-the-art in the area: MOEA/D-
DE [9], and MOEA/D-DRA [10]. The algorithms are tested 
over seven unconstrained MOP taken from the IEEE Congress 
on Evolutionary Computation 2009 [11] and five widely used 
bi-objective ZDT test instances [12]. The comparison is made 
in terms of the inverted generational distance (IGD) [13]. Our 
comparison results indicated that our proposed approaches are 
highly competitive and suggest that can be appear as very 
promising meta-heuristics candidates in the domain of multi-
objective optimization problems. 

Organization of the remaining paper is in order. Section II 
provides the basic background of the multi-objective 



optimization problem. In section III, the general framework of 
the proposed approaches is summarized. Section IV presents 
and discusses the results of our comparative study. Finally, the 
paper is concluded in Section V. 

II. SCIENTIFIC BACKGROUND 

A. Multi-objective optimization 

A multi-objective optimization problem may be formulated 
as follows, 


 1min ( ) ( ), , ( )
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mF x f x f x

x
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
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where x is the vector of decision variables and Ω is the feasible 
region within the decision space. F: Ω→Rm is defined as the 
vector of m objective functions  

In multi-objective optimization, the goal is to find the best 
possible trade off among the objectives since, frequently, one 
objective can be improved only at the expense of worsening 
another. To describe the concept of optimality for problem (1) 
the following definitions are provided [14]: 

Definition 1. Let ,x y , such that x y , we say that x 
dominates y (detonated by x y ) if and only if 

( ) ( )i if x f y  for all i = 1, ..., m. 

Definition 2. Let x  , we say that x  is a Pareto optimal 
solution, if there is no other solution y  such 

that y x . 
Definition 3. The Pareto Optimal Set (PS) is defined by 

{  is Pareto Optimal Solution}PS x x  , 

while its image { ( ) }PF F x x PS   is called 

the Pareto Optimal Front. 

B. Decomposition of a multi-objective optimization problem 

It is well-known that a Pareto-optimal solution to a multi-
objective optimization problem, under certain conditions, could 
be an optimal solution of a single objective optimization 
problem in which the objective is an aggregation function of all 
individual objectives. Therefore, approximation of the Pareto 
front can be decomposed into a number of single objective 
optimization sub-problems. This is the basic idea behind many 
traditional mathematical programing methods for 
approximating the Pareto front. Several methods for 
constructing aggregation functions can be found in the 
literature (see for example [15]). These methods use a weighted 
vector to define a scalar function. In this way and under certain 
assumptions (e.g., the minimum is unique, the weighting 
coefficients are positive, etc.) a Pareto optimal solution is 
achieved by minimizing such function. Among these methods, 
probably the two most widely used are the Tchebycheff and the 
Weighted Sum approaches. 

In this paper, the weighted Tchebycheff approach is used to 
decompose the multi-objective optimization problems. Under 
this scheme, the scalar optimization problem can be stated as 
[15]: 
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where w = (w1,..,wm) is a weighting vector and wi ≥ 0 for all 
i = 1,..., m. Ʃ wi = 0 and z* = (z*

1,…, z*
m) represent the reference 

point, i. e.,  * min ( )iz f x x   , i = 1, …, m. 

For each Pareto-optimal solution x* there exists a weighting 
vector w such that x* is the optimal solution of (2), and each 
optimal solution is a Pareto-optimal solution for (1). Therefore, 
it is possible to obtain different Pareto optimal solutions using 
different weighting vectors w. 

C. Modified Artificial Bee Colony 

The first framework of the Artificial Bee Colony (ABC) 
was introduced by Karaboga in 2005 as a new swarm 
intelligent technique inspired by the foraging behavior of a 
honey bee swarm [16]. The colony of artificial bees consists of 
three groups of bees: employed bees, onlooker bees, and scout 
bees. In the algorithm, the position of a food source represents 
a possible solution to the optimization problem, and the nectar 
amount of a food source corresponds to the quality (fitness) of 
the associated solution. Each food source is exploited by only 
one employed bee. In other words, the number of employed 
bees is equal to the number of food sources existing around the 
hive (number of solutions in the population). The employed 
bee whose food source has been abandoned becomes a scout.  

Akay and Karaboga [17] proposed some modifications to 
the standard ABC algorithm in order to improve the 
convergence rate. The main steps of the modified ABC 
algorithm proposed by Akay and Karaboga can be summarized 
in the following way: 

1) Initial food sources: At the first step, the algorithm 
generates a randomly distributed initial population (food 
sources position) within the range of the boundaries of the 
parameters, 

 min max min
, (0,1) ( )i j j j jx x rand x x     

where i = 1,..., SN,  j = 1,.., D. SN is the number of food sources 
(potential solutions) and D is the number of optimization 
parameters. In addition, counters which store the numbers of 
trials of solutions are reset to 0 in this phase. 

2) Employed Phase: An employed bee produces a 
modification on the position of the food source (solution) for 
finding a new food source (new solution), and then evaluates 
its quality (fitness value) of the new food source. Finding a new 
food source is defined by [17], 
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,
,
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x otherwise
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By means of this modification, for each parameter xi,j, an 
uniformly distributed random number (Ri,j) within the range 
[0,1] is produced, then parameter xi,j is modified by (4) where 
MR is the modification rate, j is a random integer within the 
range [1,D] and {1,..., }k SN  is randomly chosen index that 



has to be different from i. ϕi,j is a random number between [-
1,1]. If a parameter value produced by this operation exceeds 
its predetermined boundaries, the parameter can be set to an 
acceptable value. After producing a new solution (vi) within the 
boundaries, a fitness value for a minimization problem is 
assigned to the solution (vi) given by, 


1/ (1 ) if 0

1 ( ) if 0
i i

i
i i

f f
fitness

abs f f

 
   

 

Where fi is the cost value of the solution vi. A greedy selection 
is applied between xi and vi; therefore the better one is selected 
depending on its fitness values. If the new source at vi is equal 
or better than the old source xi in terms of quality, the 
employed bee memorizes the new position and forgets the old 
one. Otherwise the previous position is kept in memory. If xi 
cannot be improved, its counter of the number of trials is 
incremented by 1; otherwise, the counter is reset to 0. 

3) Calculate probability: After all employed bees complete 
their searches; an onlooker bee evaluates the nectar information 
taken from all employed bees and chooses a food source site 
with a probability related to its nectar amount. This 
probabilistic selection depends on the fitness values of the 
solutions in the population and is calculated by the following 
expression, 


1

i
i SN

ii

fitness
p

fitness





 

In this probabilistic selection scheme, the fitness value of the 
solution i evaluated is proportional to the nectar amount of the 
food source in the position i. In other words, as the nectar 
amount of food sources (the fitness of solutions) increases, the 
number of onlookers visiting them increases, too. In this way, 
the employed bees exchange their information with the 
onlookers. 

4) Onlooker Phase: In this phase a random number (ri) 
within the range [0,1] is generated for each source. If the 
probability value pi associated with that source is greater than ri 
then the onlooker bee produce a modification on the position of 
this food source by using (4). As in case of the employed 
phase, after the source is evaluated, greedy selection is applied 
and the onlooker bee either memorizes the new position by 
forgetting the old one or keeps the old one. If solution xj cannot 
be improved, its counter of the number of trials is incremented 
by 1; otherwise, the counter is reset to 0. 

5) Scout Phase: In a cycle, after all employed bees and 
onlooker bees complete their searches, the algorithm checks to 
see if there is any exhausted source to be abandoned. In order 
to decide if a source is to be abandoned, the counters which 
have been updated during search are used. If the value of the 
counter is greater than the control parameter, known as the 
“limit”, then the source associated with this counter is 
abandoned. The food source abandoned by its bee is replaced 
with a new food source discovered by the scout. This is 
simulated by randomly produce a new position by using (3) 
and replacing it with the abandoned one. It is assumed that only 

one source can be abandoned in each cycle. If more than one 
counter exceeds the “limit” value, one of the maximum ones 
might be chosen. 

D. Teaching-Learning based optimization algorithm 

The original teaching learning based optimization (TLBO) 
was proposed by Rao et al. [18] to obtain global solutions for 
continuous non-linear functions. In this algorithm, the design 
variables are analogous to different subjects offered to learners. 
The learners' grade is analogous to the 'fitness' as in any other 
evolutionary algorithm, and the teacher is considered as the 
best solution obtained so far. Hence, the TLBO’s performance 
is based on two main phases: the teacher phase, which involves 
learning from the teacher, and the learner phase, which 
involves learning through the interaction among learner [18]. 

1) Teacher Phase: In this phase, each class consists of a 
number of learnears with diffetents grades; the learner with the 
best grade  is selected as the teacher. The teacher tries to help 
learners to get good marks or grades. Therefore, a teacher 
increases the mean of the class according to his/her capability. 

Let Mi be the mean of the class and Mbest,i be the best 
solution so far and therefore the teacher in the i-th iteration. 
Hence, Mbest,i will try to move the mean Mi towards its own 
level. Thus, the new mean will be Mbest,i, designated as Mnew,i. 
The solutions are updated according to the difference between 
the mean of the class (Mi) and the new mean (Mnew,i) by [18], 

  , , ,new i old i i new i F ix x r M T M    

where TF is a teaching factor that determines the mean value to 
be changed; ri is a random number within [0, 1]. The value of 
TF can be either 1 or 2, which is decided randomly with equal 
probability as TF = round [1 + rand (0, 1)]. The new solutions 
(xnew) are accepted if they give better function values. The 
algorithm uses the best solution of the iteration to change the 
existing solution, thereby increasing the convergence rate. 

2) Learning phase: A learner interacts randomly with 
other learners through group discussions, presentations, formal 
communications, etc. [18]. Thus, each learner can acquire new 
knowledge if the others have more knowledge than him/her. 
Learners’ modification is expressed as follows, 

 ,
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end f
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The new solutions (xnew) are accepted if they give better 
function values. The new solutions (xnew) update the initial 
learners and the teaching-learning process continues until the 
termination criterion is achieved. 



III. MULTI-OBJECTIVE ALGORITHMS BASED ON 

DECOMPOSITION 

A. Muti-objective modified Artificial Bee Colony  

The proposed Multi-objective modified Artificial Bee 
Colony Algorithm based on Decomposition (MOABC/D) 
utilizes the Tchebycheff approach to decompose the multi-
objective problem into N scalar optimization sub-problems by 
choosing N weight vectors. The proposed MOABC/D solves 
these sub-problems simultaneously by evolving a population of 
solutions that mimics the intelligent behavior of a honey bee 
swarm in a similar way as is described in the modified ABC 
[17]. Neighborhood relations among these sub-problems are 
defined by computing the minimum Euclidean distances 
between the weighted vectors. The neighborhood of each sub-
problem represents an artificial colony and the group of bees: 
employed, onlooker and scout bees are responsible to solve 
each sub-problem by using mainly the information from its 
neighboring sub-problems. 

In the proposed algorithm, each food source is exploited by 
only one employed bee. In other words, the number of 
employed bees is equal to the number of food sources around 
the hive. The employed bee whose food source has been 
abandoned by its bee becomes a scout. The position of a food 
source represent a potential solution to the optimization 
problem and the nectar amount of a food source corresponds to 
the quality (fitness) of the associated solution. 

The main steps of the proposed MOABC/D can be 
summarized as follows, 

1) Employed Phase: In the phase, the neighborhood of the 
j-th sub-problem becomes an artificial colony. This colony can 
be expressed as, 


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where the subscript Tn is the size of the neighborhood, and D is 
the number of design variables. In this phase, an employed bee 
produces a modification on the position of the food source 
(solution) for finding a new food source (new solution), and 
then evaluates its quality (fitness value) of the new food source. 
In MOABC/D, a new food source (vi) is generated by (4). If a 
parameter value produced by this operation exceeds its 
predetermined boundaries, the parameter is set to an acceptable 
value. 

After producing a new solution (vi) within the boundaries, 
a fitness value for a minimization problem is assigned to the 
solution (vi) by mean (5). A greedy selection is applied after the 
new source is evaluated. If solution xj cannot be improved, its 
counter of the number of trials is incremented by 1, otherwise, 
the counter is reset to 0. 

2) Calculate probability: In this phase, an onlooker bee 
evaluates the nectar information taken from all employed bees 
and chooses a food source site with a probability related to its 
nectar amount. This probabilistic selection is calculated by (6). 

3) Onlooker Phase: In this phase a random number (ri) 
within the range [0,1] is generated for each source. If the 
probability value pi associated with that source is greater than ri 
then the onlooker bee produce a modification on the position of 
this food source by using, 
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where index j corresponds to the current index of j-th sub-
problem, xi is the food source which its probability value (pi) is 
greater than (ri); the index d is a random integer within the 
range [1, D]. (ϕj,d) is a random number between [-1,1], (Rj,d) is 
an uniformly distributed random number within the range [0,1] 
and the MR is the modification rate. 

As in case of the employed phase, after the new source is 
evaluated, greedy selection is applied. If solution xj cannot be 
improved, its counter of the number of trials is incremented by 
1, otherwise, the counter is reset to 0. 

4) Scout Phase: In a cycle, after all employed bees and 
onlooker bees complete their searches, the algorithm checks to 
see if there is any exhausted source to be abandoned. In order 
to decide if a source is to be abandoned, the counters which 
have been updated during search are used. If the value of the 
counter is greater than the control parameter, known as the 
“limit”, then the source associated with this counter is 
abandoned. The food source abandoned by its bee is replaced 
with a new food source discovered by the scout. This is 
simulated by randomly produce a new position by using (3) 
and replacing it with the abandoned one. If more than one 
counter exceeds the “limit” value, one of the maximum ones 
might be chosen. 

Summarizing, the proposed MOABC/D algorithm can be 
described in pseudo-code format in the following way: 

Step1) Initialization 
 Step 1.1. Generate a well-distributed set of N weighting 

vectors wj = (w1
j,…,wm

j), j = 1,..N., and find the 
neighborhood of each sub-problems: ( ) { ,..., }j jB j w w  

for j =1,..,N. 
  Step 1.2. Generated the initial population {x1,..xN} 

according to (3) and evaluated its fitness. Set trial (j) = 0. 
Step 1.3. Initialize the reference point z*. 

Step 2) For j = 1 to N do 
Step 2.1. Determine the colony according to: 

( )

{1,..., } otherwise

B j if rand
C

N


 


  

 where rand is a random number within [0,1] and δ the 
probability to select the neighborhood as the colony. 
Step 2.2. Employed phase. 
Step 2.3. Update the reference point z*. 
Step 2.4. Update (sr) solutions. where (sr) is the maximal 
number of solutions replaced by each new solution 
obtained. 

Step 3) For j = 1 to N do 
Step 3.1. Determine the colony according to: 



( )

{1,..., } otherwise

B j if rand
C

N


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

  

Step 3.2. Onlooker Phase 
Step 3.3. Update the reference point z*. 

 Step 3.4. Update (sr) solutions. 
Step 4) Scout Phase 
Step 5) Stop Criterion: If the stop condition is satisfied, then 

stop MOABC/D and the output becomes: {x1, .., xN} and 

1{ ( ),..., ( )}NF x F x . Otherwise go to Step 2). 

B. Multi-objective Teaching-Learning Algorithm 

The proposed Multi-Objective Teaching Learning 
Algorithm based on Decomposition (MOTLA/D) utilizes the 
Tchebycheff approach to decompose the multi-objective 
problem into N scalar optimization sub-problems. The 
proposed approach solves these sub-problems simultaneously. 
Neighborhood relations among these sub-problems are defined 
by computing the minimum Euclidean distances between the 
weighted vectors. The neighborhood of each sub-problem 
represents a group of learners or a class, responsible to solve 
each sub-problem. 

The main steps of the proposed MOTLA/D can be 
summarized as follows: 

1) Teacher phase: In this pahse, for the j-th sub-problem, 
the size of the neighborhood becomes the number of learners 
in the class. This class can be expressed as, 


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where the subscript Tn is the size of the neighborhood, and D is 
the number of design variables. Within the teacher phase, the 
mean of the class (M) for each design variable is calculated, 

 1 2[ , ,..., ]DM m m m  
The teacher (Mnew) for the j-th sub-problem represents the 

best learner of the class Cj. Thus, the teacher is determined by 

 *{ min ( , )}
j

j
new j jTnx

M x g x w z

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The solutions are updated according to the difference 
between the mean of the class (M) and the new mean (Mnew) by, 
  , , ,new i j i i new i F ix x r M T M    

where index j corresponds to the current index of j-th sub-
problem, ri is a random number within the range [0,1]. TF is the 
teaching factor which value can be either 1 or 2, which is 
decided randomly with equal probability. The new solution 
(xnew) is accepted if it gives a better function value. 

2) Learner Phase: In the phase for the j-th sub-problem, 
two learners xi, and xk are selected randomly such that i ≠ k ≠ j. 
A new solution (xnew) is generated as follows, 



 ( ) ( )
( )

( )

k i

new j i k i

new j i i k

if f x f x
x x r x x

else
x x r x x

end


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  
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Additionally, a polynomial mutation operator is applied to 
maintain solutions’ diversity. The new solution (xnew) is 
accepted if it gives a better function value. If a parameter value 
produced in the teacher o learner phase exceeds its 
predetermined boundaries, the parameter is set to an acceptable 
value. 

The proposed MOTLA/D may be summarized as follows, 

Step1) Initialization 
 Step 1.1. Generate a well-distributed set of N weighting 

vectors wj = (w1
j,…,wm

j), j = 1,..N. and find the 
neighborhood of each sub-problems: ( ) { ,..., }j jB j w w  

for j =1,..,N. 
  Step 1.2. Generated the initial population {x1,..xN} 

according to (3) and evaluated its fitness. 
Step 1.3. Initialize the reference point z*. 

Step 2) For j = 1 to N do 
Step 2.1. Determine the class according to: 

( )

{1,..., } otherwise

B j if rand
C

N


 


  

 Where rand is a random number within [0,1] and δ the 
probability to select the neighborhood as the class. 
Step 2.2. Teacher phase 
Step 2.3. Update the reference point z*. 
Step 2.4. Update (sr) solutions. where (sr) is the maximal 

number of solutions replaced by each new solution obtained. 
Step 3) For j = 1 to N do 

Step 3.1. Determine the class according to: 
( )

{1,..., } otherwise

B j if rand
C

N


 


  

Step 3.2. Leaner Phase 
Step 3.3. Update the reference point z*. 

 Step 3.4. Update (sr) solutions. 
Step 4) Stop Criterion: If the stop condition is satisfied, then 

stop MOTLA/D and the output becomes: {x1, .., xN} and 

1{ ( ),..., ( )}NF x F x . Otherwise, go to Step 2). 

IV. EXPERIMENTAL RESULTS 

In order to assess the performance our proposed algorithms, 
the MOABC/D and MOTLA/D have been compared with 
respect to two multi-objective evolutionary algorithms based 
on decomposition, which are representatives of the state-of-the-
art in this area: MOEA/D-DE [9] and MOEA/D-DRA [10]. For 
this comparison we have used a set of well-known test 
instances. The quality of solutions obtained has been measured 
using the inverted generational distance (IGD) metric. 

A. Test Problems 

We have tested our proposed algorithms over two groups of 
well-known test functions. The first group consists on seven 



unconstrained bi-objective functions (UF) taken from the CEC 
2009 [11] and the second group consists of the bi-objective test 
suite of Zitzler-Deb-Thiele (ZDT) [12]. We used 30 decision 
variables for the UF, ZDT1, ZDT2 and ZDT3 test functions. 
ZDT4 and ZDT6 were tested using 10 decision variables.  

B. Inverted Generational Distance 

The concept of the generational distance was introduced by 
Van Veldhuizen and Lamont [13] as a way of estimating how 
far the Pareto-optimal solutions obtained by the algorithm are 
from those in the Pareto front of the problem. In this work, we 
implement an inverted general distance metric [11] in which 
we use as a reference the Pareto front, and we compare all its 
elements with respect to the Pareto-optimal solutions produced 
by the algorithms. This metric is described as follows, 

Let P* be a set of points uniformly distributed on the Pareto 
front and A be the approximation obtained by the algorithm. 
IGD represents the average distance from P* to A defined as, 


**

*

( , )
( , ) v P

d v A
IGD A P

P
   

where d (v, A) is the minimum Euclidean distance between 
v and the points in A. If the points in the set P* can 
appropriately represent the Pareto front, IGD can be measure 
both the diversity and convergence of set A. The smaller is the 
value of this metric, better is the performance of the algorithm. 
A value of IGD equal to zero implies that all obtained solutions 
lies on the Pareto Front and they cover all the extension of the 
Pareto front. 

C. Experimental Settings 

For the UF instances, ten independent runs were performed 
with each algorithm whilst for the ZDT instances twenty 
independent runs were performed by each algorithm. The 
parameters used in each algorithm are summarized in table I, 
where Spop represents the population size (600 for the UF 
instances and 150 for ZDT functions). Ngen represents the 
number of generations. It is worth mentioning that the stop 
condition of each algorithm is the number of function 
evaluations (300,000 function evaluations for UF instances and 
30,000 for ZDT instances). Sr, is the number of solutions which 
are replaced in the neighborhood. Tn defines the neighbor size. 
Cr is the crossover rate. For MOABC/D the Cr is equal to its 
MR parameter. F is the scaling factor used in the MOEA/D [9]. 
ηm, is the mutation index. For the algorithms using the mutation 
operator, the mutation rate (Pm=1/n), was considered. δ is the 
probability of select solutions from the neighborhood. For 
MOEA/D-DRA, πs and Δr, represent the percentage selection 
and decay rate for the utility, respectively; limit is the algorithm 
parameter of the MOABC/D. In table I, the number in 
parentheses indicate the values of the parameters used by each 
algorithm in the ZDT test instances. The value of the 
parameters used by MOEA/D-DRA in UF instances were taken 
from [10], and the control parameter of the remaining 
algorithms are selected through experiment. 

For each test instance, the algorithms were evaluated using 
the IGD metric previously indicated. The results are 
summarized in table II and table III. Each of these tables 

presents the average and the standard deviation (in 
parentheses) of IGD metric for each test instance. The best 
results for each test instance are displayed in boldface. 

Figures 1-12, show the final Pareto front obtained by the 
algorithms on the test instances. These plots show the final set 
of Pareto-optimal solutions found by each algorithm and 
correspond to the run with the lowest IGD value in each test 
instance. 

TABLE I.  PARAMETERS FOR MOABC/D, MOTLA/D AND MOEAS/D 

Parameter
MOABC/D MOTLA/D MOEA/D-DE MOEA/D-DRA
UF - (ZDT) UF - (ZDT) UF - (ZDT) UF - (ZDT) 

Spop 600 - (150) 600 - (150) 600 - (150) 600 - (150) 
Ngen 250 - (100) 250 - (100) 500 - (200) 500 - (200) 
Tn 60 - (30) 60 - (30) 60 - (30) 60 - (30) 
Sr 2 - (2) 6 - (2) 6 - (2) 6 - (2) 
δ 0.9 - (0.9) 0.9 - (0.9) 0.9 - (0.9) 0.9 - (0.9) 

Cr 0.4 - (0.8) - 1 - (0.5) 1 - (0.5) 
limit 15 - (15) - - - 
ηm - 20 - (20) 20 - (20) 20 - (20) 
F - - 0.5 - (0.5) 0.5 - (0.5) 
πs - - - 5 
Δr - - - 0.95 

 

D. Discussion of results 

As shown in table II and table III, our proposed algorithms 
outperformed both MOEA/D-DE and MOEA/D-DRA in most 
of the test problems with respect to the IGD metric.  

It can be observed in Table II, that in terms of IGD metric, 
our proposed algorithms outperformed the MOEA/D-DE in all 
UF test instance and only in some test instances are better than 
MOEA/D-DRA. This table indicates that MOABC/D 
outperformed MOEA/D-DRA in UF4, UF5 and UF6 test 
instances meanwhile MOTLA/D outperformed MOAE/D-DRA 
only in UF3 test function. 

As noticed in table III, the MOABC/D outperformed both 
MOEA/D-DE and MOEA/D-DRA in all ZDT test problems. 
This indicates that our algorithm achieved better convergence 
than these algorithms. Meanwhile MOTLA/D outperformed 
MOEAD/D-DRA in all test instances and outperformed 
MOEA/D-DE in most ZDT instances with exception of ZDT6. 
For ZDT4, the IGD values obtained by both MOEAs/D are 
very large compare with respect to the IGD values obtained by 
our proposed algorithms. This poor performance can be clearly 
seen in figure 11. 
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Figure 1.  Approximated Pareto front obtained by MOEAs/D in UF1. 
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Figure 2.  Approximated Pareto front obtained by MOEAs/D in UF2 

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

0.2

0.4

0.6

0.8

1

1.2

1.4
UF3

f1

f2

 

 
MOABC/D
MOTLA/D
MOEA/D-DE
MOEA/D-DRA
PF

 
Figure 3.  Approximated Pareto front obtained by MOEAs/D in UF3 
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Figure 4.  Approximated Pareto front obtained by MOEAs/D in UF4 
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Figure 5.  Approximated Pareto front obtained by MOEAs/D in UF5 

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4
UF6

f1

f2

 

 
MOABC/D
MOTLA/D
MOEA/D-DE
MOEA/D-DRA
PF

 
Figure 6.  Approximated Pareto front obtained by MOEAs/D in UF6 
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Figure 7.  Approximated Pareto front obtained by MOEAs/D in UF7 
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Figure 8.  Approximated Pareto front obtained by MOEAs/D in ZDT1 
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Figure 9.  Approximated Pareto front obtained by MOEAs/D in ZDT2 
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Figure 10.  Approximated Pareto front obtained by MOEAs/D in ZDT3 
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Figure 11.  Approximated Pareto front obtained by MOEAs/D in ZDT4 
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Figure 12.  Approximated Pareto front obtained by MOEAs/D in ZDT6 

TABLE II.  RESULTS OF INVERTED GENERATIONAL METRIC 

The IGD statistics based on 10 independent runs 

Test 
Instances 

MOABC/D MOTLA/D 
MOEA/D-

DE 
MOEA/D-

DRA 

Average 
(Std. Dev.) 

Average 
(Std. Dev.) 

Average 
(Std. Dev.) 

Average 
(Std. Dev.) 

UF1 
0.023153 

(0.005069) 
0.004098 

(0.001017) 
0.057012 

(0.052169) 
0.002588 

(0.000695)

UF2 
0.013172 

(0.003303) 
0.010337 

(0.002558) 
0.035477 

(0.020442) 
0.005767 

(0.002693)

UF3 
0.069995 

(0.019425) 
0.006579 

(0.003987) 
0.246116 

(0.085832) 
0.008762 

(0.007035)

UF4 
0.041484 

(0.001177) 
0.065032 

(0.005339) 
0.079533 

(0.005295) 
0.059114 

(0.005599)

UF5 
0.22254 

(0.052683) 
0.366491 

(0.070979) 
0.562263 

(0.078414) 
0.336049 

(0.089490)

UF6 
0.147803 

(0.233392) 
0.49662 

(0.169310) 
0.595379 

(0.173685) 
0.366361 

(0.294446)

UF7 
0.012865 

(0.003923) 
0.004901 

(0.000651) 
0.408011 
0.244096) 

0.002198 
(0.000432)

TABLE III.  RESULTS OF INVERTED GENERATIONAL METRIC 

The IGD statistics based on 20 independent runs 

Test 
Instances 

MOABC/D MOTLA/D MOEA/D-DE 
MOEA/D-

DRA 

Average 
(Std. Dev.) 

Average 
(Std. Dev.) 

Average 
(Std. Dev.) 

Average 
(Std. Dev.) 

ZDT1 0.0026495 
(5.59E-05) 

0.0026875 
(8.48E-05) 

0.00288 
(4E-05) 

0.0043255 
(4.93E-03) 

ZDT2 
0.0025575 
(2.33E-05) 

0.0025395 
(2.91E-05) 

0.0026435 
(6.08E-05) 

0.0055125 
(6.5E-03) 

ZDT3 
0.0069805 
(5.9E-05) 

0.0065425 
(1.10E-03) 

0.0074185 
(0.000172) 

0.0079755 
(4.83E-03) 

ZDT4 
0.002506 

(1.81E-05) 
0.0023675 
(1.83E-05) 

1.783268 
(0.75269) 

1.6235585 
(0.90677) 

ZDT6 
0.001265 

(6.06E-06) 
0.002635 

(1.46E-05) 
0.001267 

(4.44E-06) 
0.008002 

(1.72E-02) 

V. CONCLUSIONS 

In this paper, we presented two multi-objective 
optimization methods based on decomposition. The first 
method based on intelligent behavior of honey bees and the 
second one based on the teaching-learning process. Our 
proposed algorithms were able to outperform two MOEAs/D, 
which are representative of the state-of-the-art in the area, in 
most of the test instances. 

The experimental results presented show that our proposed 
methods are highly competitive with respect to the algorithms 

in comparison and suggest that can be appear as very 
promising meta-heuristics candidates in the domain of multi-
objective optimization problems. 
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