
Two Decomposition-based Modern Metaheuristic
Algorithms for Multi-objective Optimization – A

Comparative Study

Miguel A. Medina1, Swagatam Das2, Carlos A. Coello Coello3, Juan M. Ramirez4
1,3,4Centro de Investigación y de Estudios Avanzados del IPN.1,4Unidad Guadalajara., 3Unidad Zacatenco.

1,4Guadalajara, Jalisco., 3Mexico, D.F., MEXICO
2Electronics and Communications Sciences Unit, Indian Statistical Institute, Kolkata 700 108, India

1,4{mmedina, jramirez}@gdl.cinvestav.mx, 3ccoello@cs.cinvestav.mx

Abstract—This article presents the multi-objective variants of two
popular metaheuritics of the current interest namely, the
artificial bee colony algorithm, and the teaching-learning-based
optimization algorithm to solve the real-parameter, bound
constrained multi-objective optimization problems. The multi-
objective variants are based on a decomposition approach, where
a multi-objective optimization problem is decomposed into a
number of scalar optimization sub-problems and these are
optimized simultaneously. The proposed algorithms are tested on
seven unconstrained benchmarks proposed for the special session
and competition on multi-objective optimizers held under IEEE
CEC (Congress on Evolutionary Computation) 2009 and also on
five classical bi-objective test instances. The proposed approaches
are compared with two other decomposition-based multi-
objective evolutionary algorithms which are representative of the
state-of-the-art in the area. Our results indicate that the proposed
approaches are highly competitive in most of the test instances
with respect to the algorithms in comparison.

Keywords—Multi-objective optimization; artificial bee colony;
teaching-learning algorithm; decomposition approach

I. INTRODUCTION

In many practical applications, there are several (possibly
conflicting) objectives that need to be optimized
simultaneously. These applications can be modeled as multi-
objective optimization problems (MOP). In this kind of
problems since the objectives are in conflict with one another,
there no longer exists a single optimal solution, but rather a
whole set of possible solutions of equivalent quality. A Pareto-
optimal solution to an MOP is a candidate for the best trade-
offs among the objectives. The Pareto set/front is the set of all
Pareto-optimal solutions in the decision/objective space.

The past few years have witnessed significant progress in
the development of evolutionary algorithms for dealing with
multi-objective optimization problems, comprehensive surveys
can be found in [1, 2]. The major advantage of these multi-
objective evolutionary algorithms (MOEAs) over other
methods is that they work with a population of potential
solutions and therefore they can produce a set of Pareto-
optimal solutions to approximate the Pareto front in a single
run. In recent years several meta-heuristics such as: particle
swarm optimization (PSO) [3] which imitates the collective

intelligence emerging from the group behavior of natural
creatures; artificial bee colony (ABC) [4] which works on the
foraging behavior of a honey bee, teaching-learning-based
optimization (TLBO) [5] which works on the philosophy of
teaching and learning, etc. have been applied to solve the multi-
objective optimization problems.

The majority of the existing MOEAs aim at producing a
number of Pareto-optimal solutions as diverse as possible to
approximate the whole Pareto front. Therefore, these methods
need some other techniques for ranking solutions (e.g.,
crowding distance, fitness sharing, niching). Among these
methods, non-dominated sorting genetic algorithm II (NSGA-
II) [6], and strength Pareto evolutionary algorithm 2 (SPEA2)
[7] have received much attention in the real world applications.
However, it is shown that these methods cannot always provide
good results, especially when the multi-objective optimization
problem is complicated [8, 9].

Recently, a new MOEA framework, multi-objective
evolutionary algorithm based on decomposition (MOEA/D)
[8], has been proposed. This framework decomposes an MOP
into several single-objective optimization sub-problems with
neighborhood relations. In this way, a set of approximate
solutions to the Pareto front is achieved by minimizing each
sub-problem instead of using Pareto ranking. This has given
rise to a new generation of multi-objective evolutionary
algorithms.

In this paper, we present a modified ABC and a TLBO
algorithm in the MOEA/D framework. The performance of our
proposed approaches is compared with two MOEAs/D, which
are representative of the state-of-the-art in the area: MOEA/D-
DE [9], and MOEA/D-DRA [10]. The algorithms are tested
over seven unconstrained MOP taken from the IEEE Congress
on Evolutionary Computation 2009 [11] and five widely used
bi-objective ZDT test instances [12]. The comparison is made
in terms of the inverted generational distance (IGD) [13]. Our
comparison results indicated that our proposed approaches are
highly competitive and suggest that can be appear as very
promising meta-heuristics candidates in the domain of multi-
objective optimization problems.

Organization of the remaining paper is in order. Section II
provides the basic background of the multi-objective

optimization problem. In section III, the general framework of
the proposed approaches is summarized. Section IV presents
and discusses the results of our comparative study. Finally, the
paper is concluded in Section V.

II. SCIENTIFIC BACKGROUND

A. Multi-objective optimization

A multi-objective optimization problem may be formulated
as follows,


 1min () (), , ()

subject to
mF x f x f x

x






 

where x is the vector of decision variables and Ω is the feasible
region within the decision space. F: Ω→Rm is defined as the
vector of m objective functions

In multi-objective optimization, the goal is to find the best
possible trade off among the objectives since, frequently, one
objective can be improved only at the expense of worsening
another. To describe the concept of optimality for problem (1)
the following definitions are provided [14]:

Definition 1. Let ,x y , such that x y , we say that x
dominates y (detonated by x y) if and only if

() ()i if x f y for all i = 1, ..., m.

Definition 2. Let x  , we say that x is a Pareto optimal
solution, if there is no other solution y such

that y x .
Definition 3. The Pareto Optimal Set (PS) is defined by

{ is Pareto Optimal Solution}PS x x  ,

while its image { () }PF F x x PS  is called

the Pareto Optimal Front.

B. Decomposition of a multi-objective optimization problem

It is well-known that a Pareto-optimal solution to a multi-
objective optimization problem, under certain conditions, could
be an optimal solution of a single objective optimization
problem in which the objective is an aggregation function of all
individual objectives. Therefore, approximation of the Pareto
front can be decomposed into a number of single objective
optimization sub-problems. This is the basic idea behind many
traditional mathematical programing methods for
approximating the Pareto front. Several methods for
constructing aggregation functions can be found in the
literature (see for example [15]). These methods use a weighted
vector to define a scalar function. In this way and under certain
assumptions (e.g., the minimum is unique, the weighting
coefficients are positive, etc.) a Pareto optimal solution is
achieved by minimizing such function. Among these methods,
probably the two most widely used are the Tchebycheff and the
Weighted Sum approaches.

In this paper, the weighted Tchebycheff approach is used to
decompose the multi-objective optimization problems. Under
this scheme, the scalar optimization problem can be stated as
[15]:

    * *

{1,.., }
Minimize , max ()

Subject to
i i ii m

g x w z w f x z

x


 


 

where w = (w1,..,wm) is a weighting vector and wi ≥ 0 for all
i = 1,..., m. Ʃ wi = 0 and z* = (z*

1,…, z*
m) represent the reference

point, i. e.,  * min ()iz f x x  , i = 1, …, m.

For each Pareto-optimal solution x* there exists a weighting
vector w such that x* is the optimal solution of (2), and each
optimal solution is a Pareto-optimal solution for (1). Therefore,
it is possible to obtain different Pareto optimal solutions using
different weighting vectors w.

C. Modified Artificial Bee Colony

The first framework of the Artificial Bee Colony (ABC)
was introduced by Karaboga in 2005 as a new swarm
intelligent technique inspired by the foraging behavior of a
honey bee swarm [16]. The colony of artificial bees consists of
three groups of bees: employed bees, onlooker bees, and scout
bees. In the algorithm, the position of a food source represents
a possible solution to the optimization problem, and the nectar
amount of a food source corresponds to the quality (fitness) of
the associated solution. Each food source is exploited by only
one employed bee. In other words, the number of employed
bees is equal to the number of food sources existing around the
hive (number of solutions in the population). The employed
bee whose food source has been abandoned becomes a scout.

Akay and Karaboga [17] proposed some modifications to
the standard ABC algorithm in order to improve the
convergence rate. The main steps of the modified ABC
algorithm proposed by Akay and Karaboga can be summarized
in the following way:

1) Initial food sources: At the first step, the algorithm
generates a randomly distributed initial population (food
sources position) within the range of the boundaries of the
parameters,

 min max min
, (0,1) ()i j j j jx x rand x x     

where i = 1,..., SN, j = 1,.., D. SN is the number of food sources
(potential solutions) and D is the number of optimization
parameters. In addition, counters which store the numbers of
trials of solutions are reset to 0 in this phase.

2) Employed Phase: An employed bee produces a
modification on the position of the food source (solution) for
finding a new food source (new solution), and then evaluates
its quality (fitness value) of the new food source. Finding a new
food source is defined by [17],

 , , , , ,

,
,

() if i j i j i j k j i j

i j
i j

x x x R MR
v

x otherwise

  
 


 

By means of this modification, for each parameter xi,j, an
uniformly distributed random number (Ri,j) within the range
[0,1] is produced, then parameter xi,j is modified by (4) where
MR is the modification rate, j is a random integer within the
range [1,D] and {1,..., }k SN is randomly chosen index that

has to be different from i. ϕi,j is a random number between [-
1,1]. If a parameter value produced by this operation exceeds
its predetermined boundaries, the parameter can be set to an
acceptable value. After producing a new solution (vi) within the
boundaries, a fitness value for a minimization problem is
assigned to the solution (vi) given by,


1/ (1) if 0

1 () if 0
i i

i
i i

f f
fitness

abs f f

 
   

 

Where fi is the cost value of the solution vi. A greedy selection
is applied between xi and vi; therefore the better one is selected
depending on its fitness values. If the new source at vi is equal
or better than the old source xi in terms of quality, the
employed bee memorizes the new position and forgets the old
one. Otherwise the previous position is kept in memory. If xi
cannot be improved, its counter of the number of trials is
incremented by 1; otherwise, the counter is reset to 0.

3) Calculate probability: After all employed bees complete
their searches; an onlooker bee evaluates the nectar information
taken from all employed bees and chooses a food source site
with a probability related to its nectar amount. This
probabilistic selection depends on the fitness values of the
solutions in the population and is calculated by the following
expression,


1

i
i SN

ii

fitness
p

fitness





 

In this probabilistic selection scheme, the fitness value of the
solution i evaluated is proportional to the nectar amount of the
food source in the position i. In other words, as the nectar
amount of food sources (the fitness of solutions) increases, the
number of onlookers visiting them increases, too. In this way,
the employed bees exchange their information with the
onlookers.

4) Onlooker Phase: In this phase a random number (ri)
within the range [0,1] is generated for each source. If the
probability value pi associated with that source is greater than ri
then the onlooker bee produce a modification on the position of
this food source by using (4). As in case of the employed
phase, after the source is evaluated, greedy selection is applied
and the onlooker bee either memorizes the new position by
forgetting the old one or keeps the old one. If solution xj cannot
be improved, its counter of the number of trials is incremented
by 1; otherwise, the counter is reset to 0.

5) Scout Phase: In a cycle, after all employed bees and
onlooker bees complete their searches, the algorithm checks to
see if there is any exhausted source to be abandoned. In order
to decide if a source is to be abandoned, the counters which
have been updated during search are used. If the value of the
counter is greater than the control parameter, known as the
“limit”, then the source associated with this counter is
abandoned. The food source abandoned by its bee is replaced
with a new food source discovered by the scout. This is
simulated by randomly produce a new position by using (3)
and replacing it with the abandoned one. It is assumed that only

one source can be abandoned in each cycle. If more than one
counter exceeds the “limit” value, one of the maximum ones
might be chosen.

D. Teaching-Learning based optimization algorithm

The original teaching learning based optimization (TLBO)
was proposed by Rao et al. [18] to obtain global solutions for
continuous non-linear functions. In this algorithm, the design
variables are analogous to different subjects offered to learners.
The learners' grade is analogous to the 'fitness' as in any other
evolutionary algorithm, and the teacher is considered as the
best solution obtained so far. Hence, the TLBO’s performance
is based on two main phases: the teacher phase, which involves
learning from the teacher, and the learner phase, which
involves learning through the interaction among learner [18].

1) Teacher Phase: In this phase, each class consists of a
number of learnears with diffetents grades; the learner with the
best grade is selected as the teacher. The teacher tries to help
learners to get good marks or grades. Therefore, a teacher
increases the mean of the class according to his/her capability.

Let Mi be the mean of the class and Mbest,i be the best
solution so far and therefore the teacher in the i-th iteration.
Hence, Mbest,i will try to move the mean Mi towards its own
level. Thus, the new mean will be Mbest,i, designated as Mnew,i.
The solutions are updated according to the difference between
the mean of the class (Mi) and the new mean (Mnew,i) by [18],

  , , ,new i old i i new i F ix x r M T M    

where TF is a teaching factor that determines the mean value to
be changed; ri is a random number within [0, 1]. The value of
TF can be either 1 or 2, which is decided randomly with equal
probability as TF = round [1 + rand (0, 1)]. The new solutions
(xnew) are accepted if they give better function values. The
algorithm uses the best solution of the iteration to change the
existing solution, thereby increasing the convergence rate.

2) Learning phase: A learner interacts randomly with
other learners through group discussions, presentations, formal
communications, etc. [18]. Thus, each learner can acquire new
knowledge if the others have more knowledge than him/her.
Learners’ modification is expressed as follows,

 ,

,

 1 to number of learners
 select one learner , such that

(()
()

()
 i

 f

j i j

i j

new i i i i j

new i i i j i

for i
Randomly x x x

if f x f x
x x r x x

else
x x r x x

end f
end or




 
  

  

 

The new solutions (xnew) are accepted if they give better
function values. The new solutions (xnew) update the initial
learners and the teaching-learning process continues until the
termination criterion is achieved.

III. MULTI-OBJECTIVE ALGORITHMS BASED ON

DECOMPOSITION

A. Muti-objective modified Artificial Bee Colony

The proposed Multi-objective modified Artificial Bee
Colony Algorithm based on Decomposition (MOABC/D)
utilizes the Tchebycheff approach to decompose the multi-
objective problem into N scalar optimization sub-problems by
choosing N weight vectors. The proposed MOABC/D solves
these sub-problems simultaneously by evolving a population of
solutions that mimics the intelligent behavior of a honey bee
swarm in a similar way as is described in the modified ABC
[17]. Neighborhood relations among these sub-problems are
defined by computing the minimum Euclidean distances
between the weighted vectors. The neighborhood of each sub-
problem represents an artificial colony and the group of bees:
employed, onlooker and scout bees are responsible to solve
each sub-problem by using mainly the information from its
neighboring sub-problems.

In the proposed algorithm, each food source is exploited by
only one employed bee. In other words, the number of
employed bees is equal to the number of food sources around
the hive. The employed bee whose food source has been
abandoned by its bee becomes a scout. The position of a food
source represent a potential solution to the optimization
problem and the nectar amount of a food source corresponds to
the quality (fitness) of the associated solution.

The main steps of the proposed MOABC/D can be
summarized as follows,

1) Employed Phase: In the phase, the neighborhood of the
j-th sub-problem becomes an artificial colony. This colony can
be expressed as,



1,1 1,2 1,

2,1 2,2 2,

,1 ,2 ,

...

C

D

D
j

Tn Tn Tn D

x x x

x x x

x x x

 
 
 
 
 
 



   



 

where the subscript Tn is the size of the neighborhood, and D is
the number of design variables. In this phase, an employed bee
produces a modification on the position of the food source
(solution) for finding a new food source (new solution), and
then evaluates its quality (fitness value) of the new food source.
In MOABC/D, a new food source (vi) is generated by (4). If a
parameter value produced by this operation exceeds its
predetermined boundaries, the parameter is set to an acceptable
value.

After producing a new solution (vi) within the boundaries,
a fitness value for a minimization problem is assigned to the
solution (vi) by mean (5). A greedy selection is applied after the
new source is evaluated. If solution xj cannot be improved, its
counter of the number of trials is incremented by 1, otherwise,
the counter is reset to 0.

2) Calculate probability: In this phase, an onlooker bee
evaluates the nectar information taken from all employed bees
and chooses a food source site with a probability related to its
nectar amount. This probabilistic selection is calculated by (6).

3) Onlooker Phase: In this phase a random number (ri)
within the range [0,1] is generated for each source. If the
probability value pi associated with that source is greater than ri
then the onlooker bee produce a modification on the position of
this food source by using,

 , , , , ,

,
,

() if j d j d i d k d j d

j d
j d

x x x R MR
v

x otherwise

  
 


 

where index j corresponds to the current index of j-th sub-
problem, xi is the food source which its probability value (pi) is
greater than (ri); the index d is a random integer within the
range [1, D]. (ϕj,d) is a random number between [-1,1], (Rj,d) is
an uniformly distributed random number within the range [0,1]
and the MR is the modification rate.

As in case of the employed phase, after the new source is
evaluated, greedy selection is applied. If solution xj cannot be
improved, its counter of the number of trials is incremented by
1, otherwise, the counter is reset to 0.

4) Scout Phase: In a cycle, after all employed bees and
onlooker bees complete their searches, the algorithm checks to
see if there is any exhausted source to be abandoned. In order
to decide if a source is to be abandoned, the counters which
have been updated during search are used. If the value of the
counter is greater than the control parameter, known as the
“limit”, then the source associated with this counter is
abandoned. The food source abandoned by its bee is replaced
with a new food source discovered by the scout. This is
simulated by randomly produce a new position by using (3)
and replacing it with the abandoned one. If more than one
counter exceeds the “limit” value, one of the maximum ones
might be chosen.

Summarizing, the proposed MOABC/D algorithm can be
described in pseudo-code format in the following way:

Step1) Initialization
 Step 1.1. Generate a well-distributed set of N weighting

vectors wj = (w1
j,…,wm

j), j = 1,..N., and find the
neighborhood of each sub-problems: () { ,..., }j jB j w w

for j =1,..,N.
 Step 1.2. Generated the initial population {x1,..xN}

according to (3) and evaluated its fitness. Set trial (j) = 0.
Step 1.3. Initialize the reference point z*.

Step 2) For j = 1 to N do
Step 2.1. Determine the colony according to:

()

{1,..., } otherwise

B j if rand
C

N


 


 where rand is a random number within [0,1] and δ the
probability to select the neighborhood as the colony.
Step 2.2. Employed phase.
Step 2.3. Update the reference point z*.
Step 2.4. Update (sr) solutions. where (sr) is the maximal
number of solutions replaced by each new solution
obtained.

Step 3) For j = 1 to N do
Step 3.1. Determine the colony according to:

()

{1,..., } otherwise

B j if rand
C

N


 


Step 3.2. Onlooker Phase
Step 3.3. Update the reference point z*.

 Step 3.4. Update (sr) solutions.
Step 4) Scout Phase
Step 5) Stop Criterion: If the stop condition is satisfied, then

stop MOABC/D and the output becomes: {x1, .., xN} and

1{ (),..., ()}NF x F x . Otherwise go to Step 2).

B. Multi-objective Teaching-Learning Algorithm

The proposed Multi-Objective Teaching Learning
Algorithm based on Decomposition (MOTLA/D) utilizes the
Tchebycheff approach to decompose the multi-objective
problem into N scalar optimization sub-problems. The
proposed approach solves these sub-problems simultaneously.
Neighborhood relations among these sub-problems are defined
by computing the minimum Euclidean distances between the
weighted vectors. The neighborhood of each sub-problem
represents a group of learners or a class, responsible to solve
each sub-problem.

The main steps of the proposed MOTLA/D can be
summarized as follows:

1) Teacher phase: In this pahse, for the j-th sub-problem,
the size of the neighborhood becomes the number of learners
in the class. This class can be expressed as,



1,1 1,2 1,

2,1 2,2 2,

,1 ,2 ,

...

C

D

D
j

Tn Tn Tn D

x x x

x x x

x x x

 
 
 
 
 
 



   



 

where the subscript Tn is the size of the neighborhood, and D is
the number of design variables. Within the teacher phase, the
mean of the class (M) for each design variable is calculated,

 1 2[, ,...,]DM m m m  
The teacher (Mnew) for the j-th sub-problem represents the

best learner of the class Cj. Thus, the teacher is determined by

 *{ min (,)}
j

j
new j jTnx

M x g x w z


  

The solutions are updated according to the difference
between the mean of the class (M) and the new mean (Mnew) by,
  , , ,new i j i i new i F ix x r M T M    

where index j corresponds to the current index of j-th sub-
problem, ri is a random number within the range [0,1]. TF is the
teaching factor which value can be either 1 or 2, which is
decided randomly with equal probability. The new solution
(xnew) is accepted if it gives a better function value.

2) Learner Phase: In the phase for the j-th sub-problem,
two learners xi, and xk are selected randomly such that i ≠ k ≠ j.
A new solution (xnew) is generated as follows,



 () ()
()

()

k i

new j i k i

new j i i k

if f x f x
x x r x x

else
x x r x x

end


  

  
 

Additionally, a polynomial mutation operator is applied to
maintain solutions’ diversity. The new solution (xnew) is
accepted if it gives a better function value. If a parameter value
produced in the teacher o learner phase exceeds its
predetermined boundaries, the parameter is set to an acceptable
value.

The proposed MOTLA/D may be summarized as follows,

Step1) Initialization
 Step 1.1. Generate a well-distributed set of N weighting

vectors wj = (w1
j,…,wm

j), j = 1,..N. and find the
neighborhood of each sub-problems: () { ,..., }j jB j w w

for j =1,..,N.
 Step 1.2. Generated the initial population {x1,..xN}

according to (3) and evaluated its fitness.
Step 1.3. Initialize the reference point z*.

Step 2) For j = 1 to N do
Step 2.1. Determine the class according to:

()

{1,..., } otherwise

B j if rand
C

N


 


 Where rand is a random number within [0,1] and δ the
probability to select the neighborhood as the class.
Step 2.2. Teacher phase
Step 2.3. Update the reference point z*.
Step 2.4. Update (sr) solutions. where (sr) is the maximal

number of solutions replaced by each new solution obtained.
Step 3) For j = 1 to N do

Step 3.1. Determine the class according to:
()

{1,..., } otherwise

B j if rand
C

N


 


Step 3.2. Leaner Phase
Step 3.3. Update the reference point z*.

 Step 3.4. Update (sr) solutions.
Step 4) Stop Criterion: If the stop condition is satisfied, then

stop MOTLA/D and the output becomes: {x1, .., xN} and

1{ (),..., ()}NF x F x . Otherwise, go to Step 2).

IV. EXPERIMENTAL RESULTS

In order to assess the performance our proposed algorithms,
the MOABC/D and MOTLA/D have been compared with
respect to two multi-objective evolutionary algorithms based
on decomposition, which are representatives of the state-of-the-
art in this area: MOEA/D-DE [9] and MOEA/D-DRA [10]. For
this comparison we have used a set of well-known test
instances. The quality of solutions obtained has been measured
using the inverted generational distance (IGD) metric.

A. Test Problems

We have tested our proposed algorithms over two groups of
well-known test functions. The first group consists on seven

unconstrained bi-objective functions (UF) taken from the CEC
2009 [11] and the second group consists of the bi-objective test
suite of Zitzler-Deb-Thiele (ZDT) [12]. We used 30 decision
variables for the UF, ZDT1, ZDT2 and ZDT3 test functions.
ZDT4 and ZDT6 were tested using 10 decision variables.

B. Inverted Generational Distance

The concept of the generational distance was introduced by
Van Veldhuizen and Lamont [13] as a way of estimating how
far the Pareto-optimal solutions obtained by the algorithm are
from those in the Pareto front of the problem. In this work, we
implement an inverted general distance metric [11] in which
we use as a reference the Pareto front, and we compare all its
elements with respect to the Pareto-optimal solutions produced
by the algorithms. This metric is described as follows,

Let P* be a set of points uniformly distributed on the Pareto
front and A be the approximation obtained by the algorithm.
IGD represents the average distance from P* to A defined as,


**

*

(,)
(,) v P

d v A
IGD A P

P
   

where d (v, A) is the minimum Euclidean distance between
v and the points in A. If the points in the set P* can
appropriately represent the Pareto front, IGD can be measure
both the diversity and convergence of set A. The smaller is the
value of this metric, better is the performance of the algorithm.
A value of IGD equal to zero implies that all obtained solutions
lies on the Pareto Front and they cover all the extension of the
Pareto front.

C. Experimental Settings

For the UF instances, ten independent runs were performed
with each algorithm whilst for the ZDT instances twenty
independent runs were performed by each algorithm. The
parameters used in each algorithm are summarized in table I,
where Spop represents the population size (600 for the UF
instances and 150 for ZDT functions). Ngen represents the
number of generations. It is worth mentioning that the stop
condition of each algorithm is the number of function
evaluations (300,000 function evaluations for UF instances and
30,000 for ZDT instances). Sr, is the number of solutions which
are replaced in the neighborhood. Tn defines the neighbor size.
Cr is the crossover rate. For MOABC/D the Cr is equal to its
MR parameter. F is the scaling factor used in the MOEA/D [9].
ηm, is the mutation index. For the algorithms using the mutation
operator, the mutation rate (Pm=1/n), was considered. δ is the
probability of select solutions from the neighborhood. For
MOEA/D-DRA, πs and Δr, represent the percentage selection
and decay rate for the utility, respectively; limit is the algorithm
parameter of the MOABC/D. In table I, the number in
parentheses indicate the values of the parameters used by each
algorithm in the ZDT test instances. The value of the
parameters used by MOEA/D-DRA in UF instances were taken
from [10], and the control parameter of the remaining
algorithms are selected through experiment.

For each test instance, the algorithms were evaluated using
the IGD metric previously indicated. The results are
summarized in table II and table III. Each of these tables

presents the average and the standard deviation (in
parentheses) of IGD metric for each test instance. The best
results for each test instance are displayed in boldface.

Figures 1-12, show the final Pareto front obtained by the
algorithms on the test instances. These plots show the final set
of Pareto-optimal solutions found by each algorithm and
correspond to the run with the lowest IGD value in each test
instance.

TABLE I. PARAMETERS FOR MOABC/D, MOTLA/D AND MOEAS/D

Parameter
MOABC/D MOTLA/D MOEA/D-DE MOEA/D-DRA
UF - (ZDT) UF - (ZDT) UF - (ZDT) UF - (ZDT)

Spop 600 - (150) 600 - (150) 600 - (150) 600 - (150)
Ngen 250 - (100) 250 - (100) 500 - (200) 500 - (200)
Tn 60 - (30) 60 - (30) 60 - (30) 60 - (30)
Sr 2 - (2) 6 - (2) 6 - (2) 6 - (2)
δ 0.9 - (0.9) 0.9 - (0.9) 0.9 - (0.9) 0.9 - (0.9)

Cr 0.4 - (0.8) - 1 - (0.5) 1 - (0.5)
limit 15 - (15) - - -
ηm - 20 - (20) 20 - (20) 20 - (20)
F - - 0.5 - (0.5) 0.5 - (0.5)
πs - - - 5
Δr - - - 0.95

D. Discussion of results

As shown in table II and table III, our proposed algorithms
outperformed both MOEA/D-DE and MOEA/D-DRA in most
of the test problems with respect to the IGD metric.

It can be observed in Table II, that in terms of IGD metric,
our proposed algorithms outperformed the MOEA/D-DE in all
UF test instance and only in some test instances are better than
MOEA/D-DRA. This table indicates that MOABC/D
outperformed MOEA/D-DRA in UF4, UF5 and UF6 test
instances meanwhile MOTLA/D outperformed MOAE/D-DRA
only in UF3 test function.

As noticed in table III, the MOABC/D outperformed both
MOEA/D-DE and MOEA/D-DRA in all ZDT test problems.
This indicates that our algorithm achieved better convergence
than these algorithms. Meanwhile MOTLA/D outperformed
MOEAD/D-DRA in all test instances and outperformed
MOEA/D-DE in most ZDT instances with exception of ZDT6.
For ZDT4, the IGD values obtained by both MOEAs/D are
very large compare with respect to the IGD values obtained by
our proposed algorithms. This poor performance can be clearly
seen in figure 11.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
0

0.2

0.4

0.6

0.8

1

1.2

1.4
UF1

f1

f2

MOABC/D
MOTLA/D
MOEA/D-DE
MOEA/D-DRA
PF

Figure 1. Approximated Pareto front obtained by MOEAs/D in UF1.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4
UF2

f1

f2

MOABC/D
MOTLA/D
MOEA/D-DE
MOEA/D-DRA
PF

Figure 2. Approximated Pareto front obtained by MOEAs/D in UF2

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

0.2

0.4

0.6

0.8

1

1.2

1.4
UF3

f1

f2

MOABC/D
MOTLA/D
MOEA/D-DE
MOEA/D-DRA
PF

Figure 3. Approximated Pareto front obtained by MOEAs/D in UF3

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

0.2

0.4

0.6

0.8

1

1.2

1.4
UF4

f1

f2

MOABC/D
MOTLA/D
MOEA/D-DE
MOEA/D-DRA
PF

Figure 4. Approximated Pareto front obtained by MOEAs/D in UF4

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

0.2

0.4

0.6

0.8

1

1.2

1.4
UF5

f1

f2

MOABC/D
MOTLA/D
MOEA/D-DE
MOEA/D-DRA
PF

Figure 5. Approximated Pareto front obtained by MOEAs/D in UF5

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4
UF6

f1

f2

MOABC/D
MOTLA/D
MOEA/D-DE
MOEA/D-DRA
PF

Figure 6. Approximated Pareto front obtained by MOEAs/D in UF6

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

0.2

0.4

0.6

0.8

1

1.2

1.4
UF7

f1

f2

MOABC/D
MOTLA/D
MOEA/D-DE
MOEA/D-DRA
PF

Figure 7. Approximated Pareto front obtained by MOEAs/D in UF7

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4
ZDT1

f1

f2

MOABC/D
MOTLA/D
MOEA/D-DE
MOEA/D-DRA
PF

Figure 8. Approximated Pareto front obtained by MOEAs/D in ZDT1

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4
ZDT2

f1

f2

MOABC/D
MOTLA/D
MOEA/D-DE
MOEA/D-DRA
PF

Figure 9. Approximated Pareto front obtained by MOEAs/D in ZDT2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
ZDT3

f1

f2

MOABC/D
MOTLA/D
MOEA/D-DE
MOEA/D-DRA
PF

Figure 10. Approximated Pareto front obtained by MOEAs/D in ZDT3

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

3.5
ZDT4

f1

f2

MOABC/D
MOTLA/D
MOEA/D-DE
MOEA/D-DRA
PF

Figure 11. Approximated Pareto front obtained by MOEAs/D in ZDT4

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
ZDT6

f1

f2

MOABC/D
MOTLA/D
MOEA/D-DE
MOEA/D-DRA
PF

Figure 12. Approximated Pareto front obtained by MOEAs/D in ZDT6

TABLE II. RESULTS OF INVERTED GENERATIONAL METRIC

The IGD statistics based on 10 independent runs

Test
Instances

MOABC/D MOTLA/D
MOEA/D-

DE
MOEA/D-

DRA

Average
(Std. Dev.)

Average
(Std. Dev.)

Average
(Std. Dev.)

Average
(Std. Dev.)

UF1
0.023153

(0.005069)
0.004098

(0.001017)
0.057012

(0.052169)
0.002588

(0.000695)

UF2
0.013172

(0.003303)
0.010337

(0.002558)
0.035477

(0.020442)
0.005767

(0.002693)

UF3
0.069995

(0.019425)
0.006579

(0.003987)
0.246116

(0.085832)
0.008762

(0.007035)

UF4
0.041484

(0.001177)
0.065032

(0.005339)
0.079533

(0.005295)
0.059114

(0.005599)

UF5
0.22254

(0.052683)
0.366491

(0.070979)
0.562263

(0.078414)
0.336049

(0.089490)

UF6
0.147803

(0.233392)
0.49662

(0.169310)
0.595379

(0.173685)
0.366361

(0.294446)

UF7
0.012865

(0.003923)
0.004901

(0.000651)
0.408011
0.244096)

0.002198
(0.000432)

TABLE III. RESULTS OF INVERTED GENERATIONAL METRIC

The IGD statistics based on 20 independent runs

Test
Instances

MOABC/D MOTLA/D MOEA/D-DE
MOEA/D-

DRA

Average
(Std. Dev.)

Average
(Std. Dev.)

Average
(Std. Dev.)

Average
(Std. Dev.)

ZDT1 0.0026495
(5.59E-05)

0.0026875
(8.48E-05)

0.00288
(4E-05)

0.0043255
(4.93E-03)

ZDT2
0.0025575
(2.33E-05)

0.0025395
(2.91E-05)

0.0026435
(6.08E-05)

0.0055125
(6.5E-03)

ZDT3
0.0069805
(5.9E-05)

0.0065425
(1.10E-03)

0.0074185
(0.000172)

0.0079755
(4.83E-03)

ZDT4
0.002506

(1.81E-05)
0.0023675
(1.83E-05)

1.783268
(0.75269)

1.6235585
(0.90677)

ZDT6
0.001265

(6.06E-06)
0.002635

(1.46E-05)
0.001267

(4.44E-06)
0.008002

(1.72E-02)

V. CONCLUSIONS

In this paper, we presented two multi-objective
optimization methods based on decomposition. The first
method based on intelligent behavior of honey bees and the
second one based on the teaching-learning process. Our
proposed algorithms were able to outperform two MOEAs/D,
which are representative of the state-of-the-art in the area, in
most of the test instances.

The experimental results presented show that our proposed
methods are highly competitive with respect to the algorithms

in comparison and suggest that can be appear as very
promising meta-heuristics candidates in the domain of multi-
objective optimization problems.

REFERENCES
[1] C. A. Coello Coello, G. B. Lamont, and D. A. Van Veldhuiszen,

Evolutionary Algorithms for Solving Multi-Objective Problems, 2nd ed.
New York: Springer, 2007.

[2] A. Zhou, B-Y. Qu, H. Li, S-Z. Zhao, P. N. Suganthan, and Q. Zhang,
"Multiobjective evolutionary algorithms: a survey of the state-of-the-
art", Swarm and Evolutionary Computation, Vol. 1, No. 1, pp. 32-49,
Mar 2011.

[3] C. A. Coello Coello, G. T. Pulido and M. S. Lechuga, “Handling
multiple objectives with particle swarm optimization”, IEEE
Transactions on Evolutionary Computation, Vol. 8, No. 3, pp. 256--279,
June 2004.

[4] R. Hedayatzadeh, B. Hasanizadeh, R. Akbari, and K. Ziarati, “A
multiobjective artificial bee colony for optimizing multi-objective
problems,” International Conference on Advanced Computer Theory and
Engineering (ICACTE), vol. 5, pp. V5-277 - V5-281, August 2010.

[5] T. Niknam, F. Golestaneh, and M. S. Sadeghi, “θ-Multiobjective
Teaching-Learning-Based optimization for Dynamic Economic
Emission Dispatch,” IEEE System Journal, vol. 6, no. 2, June 2012.

[6] K. Deb, S. Agrawal, A. Pratab, and T. Merayivan, “A fast and elitist
multiobjective genetic algorithm: NSGA-II,” IEEE Transactions on
Evolutionary Computation, vol. 6, no. 2, April 2002.

[7] E. Zitzeler, M. Laumanns and L. Thiele, “SPEA-2: Improving the
strength Pareto evolutionary algorithm,” Computer Engineering and
Networks Laboratory, Swiss Federal Institute of Technology,
Switzerland, TIK-Report, no. 103, 2001.

[8] Q. Zhang, and H. Li, “MOEA/D: A multiobjective evolutionary
algorithm based on decomposition,” IEEE Transaction on Evolutionary
Computation, vol. 11, no. 6, pp. 712-731, December 2007.

[9] H. Li, and Q. Zhang, “Multiobjective optimization problems with
complicate Pareto sets, MOEA/D and NSGA-II,” IEEE Transactions on
Evolutionary Computation, vol. 13, no.2, pp. 284-302, April 2009.

[10] Q. Zhang, W. Liu, and H. Li, “The performance of a new version of
MOEA/D on CEC09 unconstrained MOP test instances,” IEEE congress
on Evolutionary Computation, Trondheim Norway, May 2009.

[11] Q. Zhang, A. Zhou, S. Zhao, P. N. Suganthan, W. Liu and S. Tiwari,
“Multiobjective optimization test instances for the CEC 2009 special
session and competition,” School of Computer Science and Electronic
Engineering, University of Essex, Technical-Report CES-487, April
2009.

[12] E. Zitzler, K. Deb, and L. Thiele, “Comparison of multiobjective
evolutionary algorithms: Empirical results,” Evolutionary computation,
vol. 8, no. 2, pp. 173-195, Summer 2000.

[13] D. A. Van Veldhuizen, and G. B. Lamont, “Multiobjective Evolutionary
algorithm research: A history and analysis,” Department of Electrical
and Computer Engineering, Air Force Institute of Technology,
Technical-Report TR-98-03, October 1998.

[14] S. Zapotecas Martínez, and C. A. Coello Coello, “A multi-objective
particle swarm optimizer based on decomposition,” in proceedings of the
Genetic and Evolutionary Computation Conference (GECCO 2011),
Dublin, Ireland, July 12-16, 2011.

[15] K. Miettinen, Nonlinear Multiobjective Optimization. Norwell, MA:
Kluwer, 1999.

[16] D. Karaboga, “An idea based on a honey bee swarm for numerical
optimization,” Erciyes University, Engineering Faculty, Computer
Engineering Department, Technical-Report TR06, October 2005.

[17] B. Akay, and D. Karaboga, “A modified artificial bee colony for Real-
parameters optimization,” Information Sciences, vol. 192, no. 1, pp. 120-
142, June 2012.

[18] R. V. Rao, V. J. Savsani, and D. P. Vakhaira, “Teaching-learning based
optimization: a novel method for constrained mechanical design
optimization problems,” Computer-Aided Design, vol. 43, no. 3, pp.
303-315, March 2011.

