
Modified Differential Evolution for Constrained Optimization

Efrén Mezura-Montes, Jesús Velázquez-Reyes and Carlos A. Coello Coello

Abstract— In this paper, we present a Differential-Evolution
based approach to solve constrained optimization problems.
The aim of the approach is to increase the probability of each
parent to generate a better offspring. This is done by allowing
each solution to generate more than one offspring but using
a different mutation operator which combines information of
the best solution in the population and also information of the
current parent to find new search directions. Three selection
criteria based on feasibility are used to deal with the constraints
of the problem and also a diversity mechanism is added to
maintain infeasible solutions located in promising areas of the
search space. The approach is tested in a set of test problems
proposed for the special session on Constrained Real Parameter
Optimization. The results obtained are discussed and some
conclusions are established.

I. INTRODUCTION

Evolutionary Algorithms (EAs) have been successfully
applied to solve optimization problems [1], [2]. However, in
their original versions, EAs lack a mechanism to deal with
the constraints of a problem. Therefore, several approaches
have been proposed to incorporate information of feasibility
into the EAs’ fitness function. The most popular approach is
the use of penalty functions [3]. The aim of penalty functions
is to decrease the fitness value of those infeasible individuals
(which do not satisfy the constraints of the problem). In this
way, feasible solutions will have more probabilities to be
selected and the EA will approach the feasible region of
the search space. However, the main drawback of penalty
functions if that they require the definition of penalty factors.
These factors will determine the degree of penalization.
If the penalty value is very high, the feasible region will
be approached mostly at random and the feasible global
optimum will be hard to get. On the other hand, if the penalty
is too low, the probability of not reaching the feasible region
will be high. Therefore, the penalty factors must be carefully
tuned as they are problem-dependent [4].

Differential Evolution (DE) is a novel EA proposed by
Storn & Price [5] to solve optimization problems mainly
in continuous search spaces. DE shares similarities with
traditional EAs. However it does not use binary encoding as a
simple genetic algorithm [6] and it does not use a probability
density function to self-adapt its parameters as an Evolution
Strategy [7]. Instead, DE performs mutation based on the
distribution of the solutions in the current population. In this

Efrén Mezura-Montes is with the Laboratorio Nacional de Informática
Avanzada, Rébsamen 80, Centro, Xalapa, Veracruz 91090, MEXICO (email:
emezura@lania.mx)

Jesús Velázquez-Reyes and Carlos A. Coello Coello are with the Evo-
lutionary Computation Group (EVOCINV) at CINVESTAV-IPN, Com-
puter Science Section. Electrical Engineering Department, Av. IPN No.
2508 Col. San Pedro Zacatenco México D.F. 07300, MEXICO (email:
jesus.velazquez@gmail.com ccoello@cs.cinvestav.mx)

way, search directions and possible stepsizes depend on the
location of the individuals selected to calculate the mutation
values.

There is more than one DE model. Such models vary in the
type of recombination operator used and also in the number
and type of solutions used to calculate the mutation values.
The most popular model is called “DE/rand/1/bin”, where
“DE” means Differential Evolution, “rand” indicates that in-
dividuals selected to compute the mutation values are chosen
at random, “1” is the number of pairs of solutions chosen and
finally “bin” means that a binomial recombination is used.
As any EA, DE lacks a mechanism to deal with constrained
search spaces [5]. The model “DE/rand/1/bin” is detailed in
Figure 1. The “CR” parameter controls the influence of the
parent in the generation of the offspring. Higher values mean
less influence of the parent. The “F” parameter scales the
influence of the set of pairs of solutions selected to calculate
the mutation value (one pair in the case of the algorithm in
Figure 1).

In this paper, we propose a DE-based approach to
solve constrained optimization problems. The original
“DE/rand/1/bin” is modified in order to incorporate infor-
mation of the best solution in the current population (but
not as the “DE/best/1/bin” does) and also information of the
current parent to define the new search directions by using
the DE mutation operator. Besides, we allow each parent to
generate more than one offspring in the same generation (in
the “DE/rand/1/bin” model, only one offspring is generated
by each parent). Finally the constraint handling mechanism
avoids the use of a penalty function. Instead, a set of feasibil-
ity rules coupled with a diversity mechanism is proposed. The
goal is to maintain, besides competitive feasible solutions,
solutions with a promising value of the objective function,
regardless of feasibility, in order to explore new regions of
the search space and to avoid premature convergence.

This paper is organized as follows: In Section II, we
summarize the previous related work. A detailed description
of our approach is given in Section III. After that, Section IV
presents the obtained results in the suggested format for the
Special Session on Constrained Optimization. These results
are discussed in Section V and finally in Section VI we state
our conclusions and some of the possible paths for future
research.

II. RELATED WORK

Other authors have proposed different approaches to
solve constrained optimization problems with DE-based ap-
proaches. A feasible region shrinking mechanism was pro-
posed by Storn [8]. The aim was to relax all the constraints
of the problems at the beginning of the process. As time



1 Begin
2 G=0
3 Create a random initial population ~xi

G ∀i, i = 1, . . . , NP

4 Evaluate f(~xi
G) ∀i, i = 1, . . . , NP

5 For G=1 to MAX GENERATIONS Do
6 ⇒ For i=1 to NP Do
7 Select randomly r1 6= r2 6= r3 :
8 jrand = randint(1, D)
9 For j=1 to D Do
10 If (randj [0, 1) < CR or j = jrand) Then
11 ui

j,G+1 = x
r3
j,G

+ F (x
r1
j,G

− x
r2
j,G

)

12 Else
13 ui

j,G+1 = xi
j,G

14 End If
15 ⇒ End For
16 7→ If (f(~ui

G+1) ≤ f(~xi
G)) Then

17 ~xi
G+1 = ~ui

G+1

18 Else
19 ~xi

G+1 = ~xi
G

20 7→ End If
21 End For
22 G = G + 1
23 End For
24 End

Fig. 1. “DE/rand/1/bin” algorithm. randint(min,max) is a function that
returns an integer number between min and max. rand[0, 1) is a function
that returns a real number between 0 and 1. Both are based on a uniform
probability distribution. “NP”, “MAX GENERATIONS”, “CR” and “F” are
user-defined parameters. The steps between arrows (6 to 15 and 16 to 20)
are modified in our approach and detailed in Figures 2 and 3.

goes by, the pseudo-feasible region is shrunk at each gen-
eration until it matches the real feasible region. Storn also
proposed the idea of each parent to generate more than one
offspring. However, unlike the proposed approach in this
paper, in Storn’s approach the process finishes when one
offspring is better than its parent or when NT offspring
have been generated. Moreover, his approach works over
the “DE/best/1/bin” and an aging mechanism is added to
avoid a solution to remain in the population for too long. His
approach performed well in problems with only inequality
constraints, but showed some problems when dealing with
equality constraints.

A static-penalty approach, coupled with DE to solve
engineering design was proposed by Lampinen & Zelinka
[9], [10], [11], [12]. The main drawback of the approach is
the careful tunning required for the penalty factors.

Yung-Chien and Feng-Sheng [13] proposed an Augmented
Lagrangian approach with an adaptive mechanism to update
the penalty parameters. The approach performed well against
typical EA-based techniques.

An extension of DE to solve constrained optimization
problems was proposed by Lampinen [14]. The original
DE replacement mechanism (based only on the objective
function value of the parent and its corresponding offspring)
was substituted by three selection criteria based on feasibility
originally proposed by Deb [15]:

• Between 2 feasible solutions, the one with the highest
fitness value wins.

• If one solution is feasible and the other one is infeasible,
the feasible solution wins.

• If both solutions are infeasible, the one with the lowest
sum of constraint violation is preferred.

The difference between Deb’s and Lampinen’s approach is in
the third rule. In Deb’s approach the solution with the lowest
sum of constraint violation is selected. On the other hand, in
Lampinen’s technique, the solution which Pareto-dominates
the other in the constraints space will be selected.

Mezura et al. [16] proposed a DE-based approach where
the newly generated offspring is added to the current genera-
tion (instead of including the solution to the next generation).
The idea was to allow newly generated solutions to be
selected to influence the selection of search directions of
the offspring in the current generation and to speed up
convergence. The approach used Deb’s rules [15] to handle
the constraints of the problem.

III. OUR APPROACH

As it was noted in the related work Section, all approaches
considered feasible solutions better than infeasible ones and
they work using typical DE models as a search engine. The
main motivation of this work is two-fold: (1) We argue that
the incorporation of the information of the best solution
and the current parent, coupled with a mechanism that
allows each parent to generate more than one offspring, will
increase the exploration and exploitation capabilities of the
DE algorithm when solving optimization problems and that
(2) the incorporation of a diversity mechanism will allow the
DE approach to sample the feasible region in a better way as
to reach the feasible global optimum. Hence, our approach
is based on two modifications to the original DE:

1 For k=1 to no Do
2 Select randomly r1 6= r2 6= r3 6= i
3 For j=1 to D Do
4 If (randj [0, 1) < CR or j = jrand) Then
5 childj = x

r3
j,G

+ Fα(xbest
j,G − x

r2
j,G

) + Fβ(xi
j,G − x

r1
j,G

)

6 Else
7 childj = xi

j,G

8 End If
9 End For
10 If k > 1 Then
11 If (child is better than ~ui

G+1

12 (based on the three selection criteria)) Then
13 ~ui

G+1=child
14 End If
15 Else
16 ~ui

G+1=child
17 End If
18 End For

Fig. 2. Multiple offspring pseudocode. ~ui

G+1
keeps the best offspring from

the n0 generated. ~xi

G
is the current parent and ~xbest

G
is the best individual

in the current population G. no is a user-defined parameter.

1) In order to increase the probability to generate better
offspring, each parent is allowed to generate a number
of offspring set by a user-defined parameter called
no. New offspring are created in such a way that
information of the best solution in the population and
also the parent’s own information is combined in the
mutation operator. The proposed expression for the



mutation operator is the following:

ui
j,G+1 = xr3

j,G + Fα(xbest
j,G − xr2

j,G) + Fβ(xi
j,G − xr1

j,G)
(1)

where ~xbest
G is the best solution in the current popula-

tion, ~xi
G is the current parent and ~xr1

G , ~xr2

G and ~xr3

G are
randomly selected from the current population. The Fα

and Fβ factors indicate the influence of the best and
parent solutions, respectively, in the search direction of
the offspring. It is important to note that our mutation
model is different from typical DE models [5] because
of the way we combine the information of the best
solution and the current parent with the three solutions
chosen at random. In our proposal, we maintain the
discrete recombination between the mutation vector
(calculated by using equation 1) and the current parent.
The best offspring, among the n0 generated, is selected
by using three selection criteria based on feasibility
originally proposed by Deb [15]:

• Between 2 feasible solutions, the one with the
highest fitness value wins.

• If one solution is feasible and the other one is
infeasible, the feasible solution wins.

• If both solutions are infeasible, the one with the
lowest sum of constraint violation is preferred
(
∑m

i=1 max(0, gi(~x)).
This best offspring will compete against its parent
based on the aforementioned criteria but with a diver-
sity mechanism explained in the following point. The
detailed pseudocode is presented in Figure 2.

2) The diversity mechanism will let infeasible individuals
located in promising areas of the search space to
remain in the population for the next generation. This is
controlled by a user-defined parameter called Sr which
represents the probability to select, between parent and
best offspring, based only the objective function value
(regardless of feasibility). In this way, 1 − Sr is the
probability to select between these two solutions by
using the selection criteria based on feasibility. The Sr

requires an initial value, which will be decreasing dur-
ing the first third of the process and the remaining two
thirds, the value will remain fixed at its lowest value.
This is a desired behavior, because, at the beginning
of the process more exploration of the search space is
required in order to find promising areas. On the other
hand, in the last generations of the process, the search
effort must be focused on keeping the feasible solutions
found and to discard the infeasible ones. In fact, we
are assuming that promising areas of the search space,
and more importantly, promising areas of the feasible
region have been reached. The details of the diversity
mechanism is presented in Figure 3.

IV. RESULTS

The experimental design is presented in the format re-
quired for the Special Session on Constrained Real-Parameter
Optimization. The details are presented as follows:

1 If flip(S r) Then
2 If (f(~ui

G+1) ≤ f(~xi
G)) Then

3 ~xi
G+1 = ~ui

G+1

4 Else
5 ~xi

G+1 = ~xi
G

6 End If
7 Else
8 If (~ui

G+1is better than ~xi
G

9 (based on the three selection criteria)) Then
10 ~xi

G+1 = ~ui
G+1

11 Else
12 ~xi

G+1 = ~xi
G

13 End If
14 End If

Fig. 3. Diversity Mechanism incorporated in the selection of the best
solution between parent (~xi

G
) and best offspring (~ui

G+1
). Sr is a user-

defined parameter. The selection criteria are detailed in Section III.

A. PC Configure:

System: Debian GNU/Linux 2.6.14 i686
CPU: Mobile Intel Pentium 4 - M CPU 2.20GHz
RAM: 256 MB
Language: C (gcc 3.3.5 compiler)

B. Parameters Setting

1) Parameter values used: The following parameters were
used for the 24 test problems.

• DE parameters:

– Maximum number of generations: 3333.
– Population size: 30
– CR = 0.9

• Additional Parameters:

– Number of children per solution (n0): 5
– Fα = 0.8, Fbeta = 0.1 (these values mean a higher

influence of the best solution in the population
and a moderated influence of the parent when
computing the mutation vector).

Then, we have 3333 generations × 30 solutions in the
population × 5 children per solution = 499, 950 FES almost
the 500, 000 FES required.

2) Dynamic Ranges: Based on previous experiments per-
formed to set the values per each parameter of the approach,
the following ranges are suggested.

• Population size (µ): [15, 60]
• Number or children per solution (λ): [2, 7]
• CR (discrete crossover of DE): [0.0, 0.3] ∪ [0.8, 1.0]
• Fα = [0.7, 0.9]
• Fβ = [0.1, 0.3]

The parameter Sr is adapted by using a dynamic mecha-
nism. We noted that, the probability of selecting infeasible
solutions located in promising areas of the search space
must be higher at the beginning of the process, because the
algorithm is exploring new regions. On the other hand, late in
the process, the approach must focus on the feasible region
found and must discard infeasible solutions. Therefore, we



propose a dynamic adjustment of the Sr parameter which is
implemented based on expression (2).

SrG+1
=

{

SrG
− ∆Sr

if G < GMAX/3
0.025 otherwise

(2)

The initial and final value for the parameter are Sr0
= 0.55

and SrGMAX
= 0.025, respectively, and the decrease value

is calculated as follows:

∆Sr
=

3(Sr0
− SrGMAX

)

GMAX
(3)

Then, the first third part of the process, selection will
be made in such a way that infeasible solutions with a
good value of the objective function will have a signifi-
cant probability of being selected, regardless of feasibility
(exploration). However, in the last two third parts of the
process this probability will remain fixed with a very low
value (exploitation of previously found promising regions).

3) Parameter Tuning: As it can be noted in Section IV-
B.1, our approach uses the same parameters for all problems.
However, we provide the following suggestions based on
the features of the problems to be solved: when the size
of the feasible region is significant with respect to the size
of the search space, combined with a high dimensionality
(problems g02 and g19) the CR values can take values close
to either 0 or 1 e.g. to use, mostly, the values from only one
of the two solutions used in the recombination process (the
mutation vector or the current parent, See Figure 2 rows 4–
8). Furthermore, for this case of a wide feasible region, the
population size can be slightly increased and the number
of offspring can be slightly decreased. This change will
improve the algorithm’s capabilities to sample a wider area
(feasible region) in order to find the best feasible solution. In
contrast, in most of the problems of the current benchmark,
the approach will require more time to find the feasible
region (due to several equality constraints in most cases)
instead of sampling it in detail.

The remaining parameters did not require a fine tuning
and their values were obtained experimentally.

4) Parameter Tuning Cost in Terms of FES: The
only parameter that required further experiments to be
calibrated was CR. Therefore, we defined 10 values
between 0.0 and 1.0: [0.1, 0.2, 0.3, . . . , 1.0]. In this way,
The number of FES required to adjust the parameters for
these experiments were approximately 30(individuals) ×

5 (offspring per individual) × 100 (generations) ×

25 (runs) × 24 (functions) × 10 (CR values) = 9E+7
FES.

C. Results Achieved

The error values achieved when FES=5E+3, FES=5E+4
and FES=5E + 5 are presented in Table I for problems g01
to g06, in Table II for problems g07 to g12, in Table III
for problems g13 to g18 and in Table IV for problems g19
to g24. In these Tables, the c values represent the number
of violated constraints at the median solution by more than
1.0, 0.01 and 0.0001 respectively. v is the mean value of

the violations of all constraints at the median solution. The
number between parenthesis means the number of violated
constraints at the corresponding statistic value (best, median
and worst).

The statistics of the number of FES to achieve the fixed
accuracy level (≤ 0.0001), the Feasible Rate (rate of runs
where a feasible solution is found), the Success Rate (rate
of runs where the best solution is found with the accu-
racy required) and Success Performance (the mean FES for
successful runs multiplied by the number of total runs and
divided by the number of successful runs) for all 24 test
problems are summarized in Table V.

The convergence behavior for the median run (out of the
25 runs performed) for each test problem is presented in
Figure 4 for problems g01 to g06, in Figure 5 for problems
g07 to g12, in Figure 6 for problems g13 to g18 and finally
in Figure 7 for problems g19 to g24.

D. Algorithm Complexity

The results of the experiments to detect the algorithm
complexity are presented in Table VI, where T1 is the
average time to compute 10000 FES for the 24 test problems
and T2 is the average time for the proposed algorithm to
perform 10000 FES.

TABLE VI

COMPUTATIONAL COMPLEXITY (TIME GIVEN IN SECONDS)

T1 T2 (T2 − T1)/T1
0.035229 0.105034 1.981464

V. DISCUSSION OF RESULTS

The results reported in Tables I, II, III and IV, show
that our approach is able to find a very good feasible
approximation of the best solution reported by using just
5 × 10

4 FES, except in problems g10, g14, g19, g20, g21,
g22 and g23. Nonetheless, the only test problems that our
approach is not able to solve in 5 × 10

5 FES were g20 and
g22, but it is important to note that the final solution found
by the approach in problem g20 is almost feasible. Despite
the fact that the 20 constraints are violated in the best, mean
and worst cases, only one of them is violated for more than
0.01 (See Table IV column 4. It is important to remark that,
for all problems, except g20 and g22, the the best known
solution is found. This behavior is shown in left handside
graphs in Figures 4 to 7.

Another interesting behavior is how fast the approach
finds the feasible region of the problem. In most of them,
the feasible region was clearly found after 5 × 10

4 FES,
except for problems g14, g20, g21, g22 and g23. Again,
from these five problems, the feasible region is reached in
all cases except in problems g20 and g22 after 5 × 10

5

FES, but for g20, the solutions are very close to the feasible
region. This issue is confirmed in the convergence graphs
for the constraints (right handside graphs in Figures 4, 5,
6 and 7). Except for problems g20 and g22, the feasibility



TABLE I

ERROR VALUES ACHIEVED WHEN FES= 5 × 103 , FES= 5 × 104 , FES= 5 × 105 FOR PROBLEMS 1-6.

FES g01 g02 g03 g04 g05 g06

Best 8.119230(2) 0.423383(0) 0.091672(1) 1.274382(0) -84.598808(3) 0.000023(0)
Median 10.795020(0) 0.501704(0) 0.750780(1) 6.863769(0) -5.893107(3) 0.002904(0)
Worst 15.384258(0) 0.549707(0) 0.999807(1) 44.187280(0) 182.032342(3) 3.258425(0)

5 × 10
3 c 0,0,0 0,0,0 0,0,1 0,0,0 2,3,3 0,0,0

v 0.000000 0.000000 0.000386 0.000000 1.372402 0.000000
Mean 10.947525 0.502400 0.681406 12.325465 -0.637820 0.200413
Std 1.557386 0.026944 0.251153 10.263079 52.933785 0.649617
Best 0.001332(0) 0.005415(0) 0.000091(0) 0.000000(0) 0.000000(0) 0.000000(0)

Median 0.004906(0) 0.048010(0) 0.000692(0) 0.000004(0) 0.000000(0) 0.000000(0)
Worst 0.020865(0) 0.386253(0) 0.004481(0) 0.000200(0) 0.000000(0) 0.000000(0)

5 × 10
4 c 0,0,0 0,0,0 0,0,0 0,0,0 0,0,0 0,0,0

v 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
Mean 0.005837 0.133469 0.001110 0.000038 0.000000 0.000000
Std 0.004386 0.133130 0.001109 0.000061 0.000000 0.000000
Best 0.000000(0) 0.000000(0) 0.000000(0) 0.000000(0) -0.000000(0) 0.000000(0)

Median 0.000000(0) 0.017460(0) 0.000000(0) 0.000000(0) 0.000000(0) 0.000000(0)
Worst 0.000000(0) 0.050393(0) 0.000000(0) 0.000000(0) 0.000000(0) 0.000000(0)

5 × 10
5 c 0,0,0 0,0,0 0,0,0 0,0,0 0,0,0 0,0,0

v 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
Mean 0.000000 0.019353 0.000000 0.000000 -0.000000 0.000000
Std 0.000000 0.012603 0.000000 0.000000 0.000000 0.000000

TABLE II

ERROR VALUES ACHIEVED WHEN FES= 5 × 103 , FES= 5 × 104 , FES= 5 × 105 FOR PROBLEMS 7-12.

FES g07 g08 g09 g10 g11 g12

Best 5.373277(0) 0.000000(0) 0.061042(0) 2412.461369(0) 0.000000(0) 0.000000(0)
Median 11.157435(0) 0.000000(0) 0.213357(0) 5760.374012(0) 0.001276(1) 0.000000(0)
Worst 27.862314(0) 0.000000(0) 0.596713(0) 18053.004122(1) 0.249784(1) 0.000000(0)

5 × 10
3 c 0,0,0 0,0,0 0,0,0 0,0,0 0,0,0 0,0,0

v 0.000000 0.000000 0.000000 0.000000 0.000012 0.000000
Mean 12.154470 0.000000 0.260198 6407.827022 0.041754 0.000000
Std 5.977032 0.000000 0.136158 3592.548347 0.080467 0.000000
Best 0.009890(0) 0.000000(0) 0.000000(0) 65.428563(0) 0.000000(0) 0.000000(0)

Median 0.026109(0) 0.000000(0) 0.000000(0) 165.928900(0) 0.000000(0) 0.000000(0)
Worst 0.051554(0) 0.000000(0) 0.000001(0) 294.886078(0) 0.000000(0) 0.000000(0)

5 × 10
4 c 0,0,0 0,0,0 0,0,0 0,0,0 0,0,0 0,0,0

v 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
Mean 0.026007 0.000000 0.000000 154.006365 0.000000 0.000000
Std 0.009174 0.000000 0.000000 59.383433 0.000000 0.000000
Best 0.000000(0) 0.000000(0) 0.000000(0) -0.000000(0) 0.000000(0) 0.000000(0)

Median 0.000000(0) 0.000000(0) 0.000000(0) -0.000000(0) 0.000000(0) 0.000000(0)
Worst 0.000000(0) 0.000000(0) 0.000000(0) 0.000000(0) 0.000000(0) 0.000000(0)

5 × 10
5 c 0,0,0 0,0,0 0,0,0 0,0,0 0,0,0 0,0,0

v 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
Mean 0.000000 0.000000 0.000000 -0.000000 0.000000 0.000000
Std 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

TABLE III

ERROR VALUES ACHIEVED WHEN FES= 5 × 103 , FES= 5 × 104 , FES= 5 × 105 FOR PROBLEMS 13-18.

FES g13 g14 g15 g16 g17 g18

Best 0.010652(3) -358.235364(3) -0.084729(2) 0.001178(0) 2.956297(4) -1.715758(6)
Median 0.166531(3) -278.662424(3) 0.024493(2) 0.005429(0) 37.981555(4) 1.045926(3)
Worst 2.089679(3) -218.841524(3) 2.649105(2) 0.064526(0) 111.600531(4) 2.399959(10)

5 × 10
3 c 0,3,3 3,3,3 0,0,2 0,0,0 3,4,4 0,3,3

v 0.059504 8.138720 0.003206 0.000000 2.309186 0.031967
Mean 0.376192 -272.995203 0.295674 0.010946 51.986707 0.681670
Std 0.458401 65.939829 0.584447 0.013484 37.640140 1.033089
Best 0.000000(0) -160.100521(3) 0.000000(0) 0.000000(0) 0.000000(0) 0.001064(0)

Median 0.000000(0) -133.726584(3) 0.000000(0) 0.000000(0) 0.000000(0) 0.004179(0)
Worst 0.384628(3) -79.394052(3) 0.000000(0) 0.000000(0) 0.000275(0) 0.191904(0)

5 × 10
4 c 0,0,0 3,3,3 0,0,0 0,0,0 0,0,0 0,0,0

v 0.000000 3.897770 0.000000 0.000000 0.000000 0.000000
Mean 0.015755 -125.339481 0.000000 0.000000 0.000012 0.026794
Std 0.075304 34.877157 0.000000 0.000000 0.000054 0.060866
Best -0.000000(0) 0.000002(0) 0.000000(0) 0.000000(0) 0.000000(0) 0.000000(0)

Median -0.000000(0) 0.000010(0) 0.000000(0) 0.000000(0) 0.000000(0) 0.000000(0)
Worst -0.000000(0) 0.000067(0) 0.000000(0) 0.000000(0) 0.000000(0) 0.000000(0)

5 × 10
5 c 0,0,0 0,0,0 0,0,0 0,0,0 0,0,0 0,0,0

v 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
Mean -0.000000 0.000015 0.000000 0.000000 0.000000 0.000000
Std 0.000000 0.000014 0.000000 0.000000 0.000000 0.000000

of solutions, in the worst case, is reached in 1.5 × 10
5 FES

and, in the best case, before 0.5 × 10
5. It is worth noting that

for problem g20 the sum of constraint violation continues to
decrease. It is expected, with more FES, to reach the feasible
region.

This high-rate to reach the feasible region is also confirmed
by the results provided in Table V. Except for problems g20
and g22, the feasible rate is 100% in all cases. Regarding the
success rate, except for functions g02, g19, g20 and g22, the

approach reached a value of 100% in the remaining cases.

Besides, the success performance shows that the approach
requires less than 2 × 10

5 FES to find the accuracy re-
quired for the session (only problems g14 and g23 require
2.9 × 10

5 and 3.6 × 10
5 FES respectively, and problems

g20 and g22 could not be solved). In fact, for some problems
like g01, g02, g03, g04, g05, g06, g08, g09, g11, g12, g13,
g15, g16, g17 and g24, less than 1 × 10

5 FES are required
to find the accuracy requested in the best and mean cases.



TABLE IV

ERROR VALUES ACHIEVED WHEN FES= 5 × 103 , FES= 5 × 104 , FES= 5 × 105 FOR PROBLEMS 19-24.

FES g19 g20 g21 g22 g23 g24

Best 29.147347(0) 3.659076(20) -23.659401(6) -0.396115(20) -1431.193635(6) 0.000000(0)
Median 62.667703(0) 5.013679(20) 195.769337(5) 2967.897433(19) -1129.818674(5) 0.000000(0)
Worst 120.992475(0) 6.674437(20) 707.402016(5) 19538.021295(19) 195.598037(5) 0.000031(0)

5 × 10
3 c 0,0,0 2,17,20 2,4,5 19,19,19 3,4,5 0,0,0

v 0.000000 3.044829 1.816631 7162988.231154 1.037286 0.000000
Mean 65.083141 5.110993 239.529680 5878.925317 -1008.981698 0.000001
Std 19.969016 0.756969 217.064782 6294.465923 408.074802 0.000006
Best 0.142245(0) 0.009796(20) -147.126988(5) 122.346252(20) -1699.735511(4) 0.000000(0)

Median 1.165419(0) 0.096863(20) 25.865051(5) 2649.915454(20) -1695.322919(6) 0.000000(0)
Worst 5.341293(0) 0.289732(20) 241.183053(4) 19592.602330(19) -1347.015384(5) 0.000000(0)

5 × 10
4 c 0,0,0 0,18,20 0,3,5 19,20,20 1,3,6 0,0,0

v 0.000000 0.069730 0.112701 524973.984597 0.582652 0.000000
Mean 1.527043 0.104528 17.507394 6041.750812 -1606.900798 0.000000
Std 1.250269 0.080428 113.348189 6131.150874 335.626515 0.000000
Best 0.007323(0) 0.077444(20) -0.000000(0) 2501.983748(11) 0.000000(0) 0.000000(0)

Median 0.387033(0) 0.103314(20) -0.000000(0) 9210.082460(18) 0.000000(0) 0.000000(0)
Worst 3.527083(0) 0.173136(20) 0.000000(0) 17922.361766(10) 0.000000(0) 0.000000(0)

5 × 10
5 c 0,0,0 0,1,3 0,0,0 8,9,16 0,0,0 0,0,0

v 0.000000 0.008086 0.000000 500003.133718 0.000000 0.000000
Mean 0.685658 0.105819 -0.000000 10132.618585 0.000000 0.000000
Std 0.847517 0.021688 0.000000 4808.800969 0.000000 0.000000

TABLE V

NUMBER OF FES TO ACHIEVE THE FIXED ACCURACY LEVEL ((f(~x) − f(~x∗)) ≤ 0.0001), SUCCESS RATE, FEASIBLE RATE AND SUCCESS

PERFORMANCE.

Prob. Best Median Worst Mean Std Feasible Rate Success Rate Success Performance
g01 63300 75000 90900 75373 6708.9211 100% 100% 75373
g02 53250 71100 245550 96222 49862.6724 100% 16% 96222
g03 36000 45300 61350 44988 7145.6599 100% 100% 44988
g04 33900 39300 61950 41562 8129.8251 100% 100% 41562
g05 19350 20550 24000 21306 2021.5994 100% 100% 21306
g06 4650 5250 5250 5202 162.7759 100% 100% 5202
g07 124650 176400 380400 194202 65471.8878 100% 100% 194202
g08 900 900 1350 918 88.1816 100% 100% 918
g09 14850 15000 19200 16152 1753.2530 100% 100% 16152
g10 152400 163500 179850 164160 5916.4685 100% 100% 164160
g11 1200 1200 4950 3000 1873.4994 100% 100% 3000
g12 1200 1200 1650 1308 192.1874 100% 100% 1308
g13 19500 19950 24450 21732 2127.8101 100% 100% 21732
g14 208236 298072 408036 291642 49861.3046 100% 100% 291642
g15 9750 9750 11850 10458 959.5499 100% 100% 10458
g16 7950 8700 9450 8730 718.7489 100% 100% 8730
g17 20400 26550 34950 26364 3824.0952 100% 100% 26364
g18 54000 118050 133800 103482 17633.3314 100% 100% 103482
g19 NA NA NA NA NA 100% NA NA
g20 NA NA NA NA NA NA NA NA
g21 82350 120450 201150 112566 23401.8876 100% 100% 112566
g22 NA NA NA NA NA NA NA NA
g23 247500 374400 476250 360420 81403.4508 100% 100% 360420
g24 1650 1650 1950 1794 149.8800 100% 100% 1794

The convergence behavior is detailed in the left handside
graphs in Figures 4, 5, 6 and 7. It is important to remark that
some plots are cut on its left edge. This cut means that until
the corresponding FES, the first feasible solution was found.
For problems g01 g04 g05 and g06 (left handside graph in
Figure 4) a good convergence (less than 2 × 10

5 FES) was
obtained for the six test problems. For Problems g02 and
g03, the approach converged after 4 × 10

5 FES.

A similar fast convergence was found for problems g07 to
g12 (left handside graph in Figure 5), but in this case it is
clear that for problems g07 and g10, convergence is reached
after 3.5 × 10

5 FES. For problems g13 to g18 (left handside
graph in Figure 6) a fast convergence is also obtained, except
for problems g14 and g18 where the approach converges
after 3.5 × 10

5 and 2.5 × 10
5 FES respectively. In fact,

for problem g14, the first feasible solution is found after
1.5 × 10

5 FES. These results are confirmed with the results
provided in Table III, column 4, where it can be noted that
the first feasible solution for problem g14 is found after
5 × 10

4 FES. Finally, in the left handside graph in Figure 7
we can observe that for problem g19 convergence is clearly
reached after 3.5 × 10

5 FES. For problems g20 and g22,

the approach has an irregular behavior because the sum of
constraint violation was never decreased (see right handside
graph in Figure 7). For problem g21 the first feasible solution
was reached after 0.5 × 10

5 and convergence is obtained
after 2 × 10

5 FES and for problem g23, the first feasible
solution was found after 1 × 10

5 FES and the best known
solution is reached after 3.5 × 10

5 FES. Problem g24 is
solved very fast; thus, the plot is a vertical line in the graph.

The results obtained for the computational complexity in
Table VI show that the proposed approach is fast and that it
does not add a significant computational cost. This is mainly
because DE is a very simple algorithm whose main operators
only perform simple arithmetic operations. Moreover, DE
does not require any sorting nor encoding mechanism.

All these results suggest a very competitive overall perfor-
mance of the proposed approach. However, some sources of
difficulty were found. Our approach seems to have difficulties
with the combination of a high dimensionality (≥ 22) as well
as a considerable number of nonlinear inequality constraints
(≥ 11). These features are found precisely in problems g20
and g22. However, in problem g20, solutions very close
to be feasible were found. As mentioned in Section IV-



B.3, the inconsistent performance showed in functions g02
and g19 were because of the CR parameter. Values of
CR = 0.2 for problem g02 and CR = 0.99 for g19 clearly
improves the quality and robustness of the results. These
two problems share the features previously detected as a
reason to modify the CR values (high dimensionality: 20 and
15 variables respectively and a considerable large feasible
region with respect to the whole search space: 99% and 33%
respectively).

VI. CONCLUSIONS AND FUTURE WORK

A novel DE-based approach was proposed to solve con-
strained optimization problems. The main features of our
approach are the multiple offspring mechanism added to
DE in order to increase the probability of each parent to
generate a better solution. This is due to a new mutation
operator which uses information of the best solution in the
current population and also information of the current parent
to find new search directions. To deal with the constraints
of the problem, three criteria based on feasibility are used.
Furthermore, a diversity mechanism to maintain infeasible
solutions with a good value of the objective function is added
in the comparison between parent and best offspring. The
results obtained showed a very competitive performance of
the approach, based on quality of results (even some best
known solutions were improved), number of FES required to
find the feasible region and number of FES to reach (or even
improve) the best known solution. Furthermore, the experi-
ments suggested that, when a problem has a combination of
a dimensionality higher than 22 with more than 11 nonlinear
equality constraints, the approach is not able to solve it in the
number of FES used in the experiments. Finally, the average
computational cost of the approach (measured in seconds)
seems to be very acceptable. As part of our future work,
we intend to analyze more in-depth the behavior of the CR
parameter because the approach was sensitive to its value
in problems with a large feasible region. Finally, we plan
to extend the approach to solve multiobjective optimization
problems.

ACKNOWLEDGMENT

The third author acknowledges support from Mexican
Consejo Nacional de Ciencia y Tecnologı́a (CONACyT)
through project number 42435-Y.

REFERENCES

[1] Zbigniew Michalewicz. Genetic Algorithms + Data Structures =
Evolution Programs. Springer-Verlag, third edition, 1996.

[2] Carlos A. Coello Coello, David A. Van Veldhuizen, and Gary B. La-
mont. Evolutionary Algorithms for Solving Multi-Objective Problems.
Kluwer Academic Publishers, New York, June 2002. ISBN 0-3064-
6762-3.

[3] Alice E. Smith and David W. Coit. Constraint Handling Techniques—
Penalty Functions. In Thomas Bäck, David B. Fogel, and Zbigniew
Michalewicz, editors, Handbook of Evolutionary Computation, chapter
C 5.2. Oxford University Press and Institute of Physics Publishing,
1997.

[4] K. Miettinen, M.M. Makela, and J. Toivanen. Numerical comparison
of some penalty-based constraint handling techniques in genetic al-
gorithms. Journal of Global Optimization, 27(4):427–446, December
2003.

[5] Kenneth V. Price. An introduction to differential evolution. In
David Corne, Marco Dorigo, and Fred Glover, editors, New Ideas in
Optimization, pages 79–108. Mc Graw-Hill, UK, 1999.

[6] David E. Goldberg. Genetic Algorithms in Search, Optimization
and Machine Learning. Addison-Wesley Publishing Co., Reading,
Massachusetts, 1989.

[7] Hans-Paul Schwefel, editor. Evolution and Optimization Seeking. John
Wiley & Sons, New York, 1995.

[8] Rainer Storn. System Design by Constraint Adaptation and Differential
Evolution. IEEE Transactions on Evolutionary Computation, 3(1):22–
34, April 1999.

[9] Jouni Lampinen and Ivan Zelinka. Mechanical Engineering Design
Optimization by Differential Evolution. In David Corne, Marco
Dorigo, and Fred Glover, editors, New Ideas in Optimization, pages
127–146. Mc Graw-Hill, UK, 1999.

[10] Jouni Lampinen and Ivan Zelinka. Mixed Variable Non-Linear Opti-
mization by Differential Evolution. In Proceedings of Nostradamus’99,
2nd International Prediction Conference, pages 45–55. Zlin, Czech
Republic. Technical University of Brno, Faculty of Technology Zlin,
Department of Automatic Control, October 1999. ISBN 80-214-1424-
3.

[11] Jouni Lampinen and Ivan Zelinka. Mixed Integer-Discrete-Continuous
Optimization by Differential Evolution, Part 1: the optimization
method. In Pavel Ošmera, editor, Proceedings of MENDEL’99,
5th International Mendel Conference on Soft Computing, pages 71–
76. Brno, Czech Republic. Brno University of Technology, Faculty
of Mechanical Engineering, Institute of Automation and Computer
Science, June 1999. ISBN 80-214-1131-7.

[12] Jouni Lampinen and Ivan Zelinka. Mixed Integer-Discrete-Continuous
Optimization by Differential Evolution, Part 2: a practical example. In
Pavel Ošmera, editor, Proceedings of MENDEL’99, 5th International
Mendel Conference on Soft Computing, pages 77–81. Brno, Czech
Republic. Brno University of Technology, Faculty of Mechanical
Engineering, Institute of Automation and Computer Science, June
1999. ISBN 80-214-1131-7.

[13] Yung-Chien Lin, Kao-Shing Hwang, and Feng-Sheng Wang. Hybrid
Differential Evolution with Multiplier Updating Method for Nonlinear
Constrained Optimization Problems. In Proceedings of the Congress
on Evolutionary Computation 2002 (CEC’2002), volume 1, pages
872–877, Piscataway, New Jersey, May 2002. IEEE Service Center.

[14] Jouni Lampinen. A Constraint Handling Approach for the Diifferential
Evolution Algorithm. In Proceedings of the Congress on Evolutionary
Computation 2002 (CEC’2002), volume 2, pages 1468–1473, Piscat-
away, New Jersey, May 2002. IEEE Service Center.

[15] Kalyanmoy Deb. An Efficient Constraint Handling Method for
Genetic Algorithms. Computer Methods in Applied Mechanics and
Engineering, 186(2/4):311–338, 2000.

[16] Efrén Mezura-Montes and Carlos A. Coello Coello. An Improved
Diversity Mechanism for Solving Constrained Optimization Problems
Using a Multimembered Evolution Strategy. In Kalyanmoy Deb et.
al., editor, Proceedings of the Genetic and Evolutionary Computation
Conference (GECCO’2004), pages 700–712, Heidelberg, Germany,
June 2004. Seattle, WA, Springer Verlag. Lecture Notes in Computer
Science Vol. 3102.



Fig. 4. Convergence Graph for Problems 1-6

Fig. 5. Convergence Graph for Problems 7-12

Fig. 6. Convergence Graph for Problems 13-18

Fig. 7. Convergence Graph for Problems 19-24


