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1 Our approach

In this paper, we argue that the self-adaptation mechanism of a conventional evolu-
tion strategy combined with some (very simple) tournament rules based on feasibility
similar to some previous proposals (e.g., [1]) can provide us with a highly competitive
evolutionary algorithm for constrained optimization. In our proposal, however, no extra
mechanisms are provided to maintain diversity. In order to verify our hypothesis, we
performed a small comparative study among five different types of ES:
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with and without correlated mutation and a
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-success rule”.
The tournament rules adopted in the five types of ES implemented are the following:
Between 2 feasible solutions, the one with the highest fitness value wins, if one solu-
tion is feasible and the other one is infeasible, the feasible solution wins and if both
solutions are infeasible, the one with the lowest sum of constraint violation is preferred.
To evaluate the performance of the five types of ES under study, we decided to use ten
(out of 13) of the test functions described in [2]. The
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had the best over-

all performance (both in terms of the best solution found and in terms of its statiscal
measures). The algorithm of the type of ES adopted (due to its simplicity, we decided
to call it Simple Evolution Strategy, or SES) is presented in Figure 1.

Compared with respect to other state-of-the-art techniques (due to space limitations
we only compare with respect to [2]), our algorithm produced very competitive results
(See Table 1). Besides being a very simple approach, it is worth reminding that SES
does not require any extra parameters (besides those used with an evolution strategy)
and the number of fitness function evaluations performed (350,000) is the same used
in [2].
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Begin
t=0
Create a random initial solution � �
Evaluate
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For t=1 to MAX GENERATIONS Do
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Generate one child �,7 by the combination of the � mutations using
m=randint
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End If
End For

End

Fig. 1. SES algorithm ( Y is the number of decision variables of the problem)
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Table 1. Comparison of results between our approach (SES) and Stochastic Ranking
(SR) [2].


