
A Preliminary Study of Fitness Inheritance in

Evolutionary Constrained Optimization

Efrén Mezura-Montes1, Lućıa Muñoz-Dávila2, and Carlos A. Coello Coello3

1 Laboratorio Nacional de Informática Avanzada (LANIA A.C.), Rébsamen 80,
Centro, Xalapa, Veracruz, 91000, MÉXICO emezura@lania.mx

2 Instituto Tecnológico de Apizaco, Av. Instituto Tecnológico S/N, Apizaco,
Tlaxcala, MÉXICO lucy@itapizaco.edu.mx

3 Departamento de Computación, Av. IPN No. 2508, Col. San Pedro Zacatenco,
México, D.F., 07300, MÉXICO ccoello@cs.cinvestav.mx

Summary. This document presents a proposal to incorporate a fitness inheritance
mechanism into an Evolution Strategy used to solve the general nonlinear program-
ming problem. The aim is to find a trade-off between a lower number of evaluations
of each solution and a good performance of the approach. A set of test problems
taken from the specialized literature was used to test the capabilities of the proposed
approach to save evaluations and to maintain a competitive performance.

1 Introduction

The general nonlinear programming problem (NLP) is formally defined as
follows: Find x which minimizes f(x) subject to: gi(x) ≤ 0, i = 1, . . . , m,

and hj(x) = 0, j = 1, . . . , p where x ∈ IRn is the vector of solutions x =
[x1, x2, . . . , xn]T , where each xi, i = 1, . . . , n is bounded by lower and upper
limits Li ≤ xi ≤ Ui which define the search space S, F is the feasible region
and F ⊆ S; m is the number of inequality constraints and p is the number of
equality constraints (in both cases, constraints could be linear or nonlinear).

Evolutionary Algorithms (EAs) are widely used as alternative techniques
(mathematical programming approaches are always the first choice) to solve
the NLP [1].

However, three shortcomings can be identified when applying EAs to solve
the NLP:

• A set of parameter values must be defined by the user and the behavior
of the EA in the search process depend of these values.

• In the presence of constraints, a constraint-handling mechanism must be
added to the EA in order to incorporate feasibility information in its se-
lection and/or replacement process(es) and this mechanism may involve
additional parameters to be fine-tuned by the user.

2 Mezura-Montes, Muñoz-Dávila and Coello Coello

• Usually, the EA requires to perform several evaluations of the objective
function of the problem and its constraints as to find a “good” solution.
Furthermore, for some real-world problems, the evaluation of a single so-
lution may require a high computational cost.

This work is focused on the last disadvantage. A common approach to deal
with it is the use of fitness approximation models which prevent the EA to
use the original (and maybe costly) model of the problem every time a new
solution is evaluated [2]. Polynomial models, Kriging, Neural Networks and
Support Vector Machines are the main approaches used for fitness approxi-
mation [2]. In fact, some applications of them are reported in the specialized
literature [3]. But, despite the fact that the use of these models decreases the
number of evaluations required by an EA, they indeed add an extra compu-
tational cost related to its generation and updating process.

On the other hand, this work aims to propose a simpler approximation
mechanism, known as fitness inheritance [4], which prevents a new solution
of being evaluated. Instead, it inherits the fitness value from its parents. This
mechanism is added to an Evolution Strategy [5] which is used to solve the
NLP problem.

This document is organized as follows: Section 2 presents a brief summary
of approaches for evaluation savings used to solve the general NLP problem
adopting EAs. After that, Section 3 includes a description of our proposed
approach. Then, in Section 4 the experimental design, the results obtained
and their corresponding discussions are shown. Finally, Section 5 summarizes
our findings and presents some possible paths for future work.

2 Related work

There are several approaches reported in the specialized literature about fit-
ness approximation models used in EAs. However, the main efforts have been
centered either in unconstrained global optimization problems [2], or in mul-
tiobjective optimization problems [6, 7]. We will focus here on the approaches
proposed precisely to solve the general NLP problem (with constraints):

• Runarsson [8] used a nearest-neighborhood model to solve a set of NLP
problems. The results showed that, using just the information of the closest
solution in the decision space (defined by the lower and upper limits of the
decision variables (see Section 1) based on a set of solutions found during
the search provides a more competitive performance with respect to using
the average value of a set of solutions in the vicinity of the new solution
to be evaluated. The overall performance obtained in this approach is
highly competitive, but its main disadvantage is that it requires to store
a considerable high number of solutions to obtain a better approximation
of the new solutions to be generated, and this storage may be prohibitive
in some cases.

Fitness-Inheritance in Constrained Optimization 3

• Mezura-Montes and Coello Coello [9] proposed an approach based on Dif-
ferential Evolution (DE) [10] to solve the general NLP by reducing the
computational cost measured by the number of evaluations. Instead of us-
ing approximation models, the authors proposed to use features related to
the search engine, DE in this case, in order to avoid the evaluation of some
solutions and assigning a zero fitness value (death penalty). Afterwards,
these solutions are discarded. This mechanism also slowed down the con-
vergence of the approach and, for some problems, better solutions were
found. The main disadvantage of the approach is that it only works with
DE.

• Won and Ray [3] compared Kriging and Cokriging surrogate models with
radial-basis functions using a set of five constrained engineering design
problems. They found that the results obtained by using these models
were very competitive. However, these models may be more difficult to
implement.

3 Our proposed approach

Motivated by the findings of Runarsson with respect to the use of information
of the closest solution in the decision space, but trying to avoid keeping a
large set of solutions and also aiming to provide an easy implementation, we
propose a simple approach which provides competitive results, but decreasing
the number of evaluations required by the EA.

Fitness inheritance (FI) was originally proposed by Smith [4]. The idea is
to approximate the values of the objective function of an offspring based on
the values of its parents. Smith initially proposed to compute the average of
the parents’ objective function values. He alternatively proposed to use the
distance of each parent to its offspring in the decision space to determine
the amount of contribution of each parent’s objective function value to the
corresponding value of the offspring. When using FI, several evaluations may
be saved during the evolutionary process.

We then propose to use Smith’s ideas, originally incorporated into a genetic
algorithm (GA) to solve simple unconstrained optimization problems, in an
Evolution Strategy designed to solve constrained optimization problems, i.e.
the general NLP problem.

Evolution Strategies (ESs) were developed in Germany in 1964 to solve
complex hydrodynamical problems. The researchers involved in this work were
Ingo Rechenberg, Hans-Paul Schwefel and Paul Bienert [11].

The ES simulates the evolution at an individual level; thus, this approach
incorporates a crossover operator, either sexual or panmictic (more than two
parents), which, however, acts as a secondary operator. Mutation is the main
operator and it is used with random numbers generated under a Gaussian
distribution. The mutation values vary over time and are self-adaptive. The

4 Mezura-Montes, Muñoz-Dávila and Coello Coello

encoding is at a phenotypic level (i.e., no encoding is required). Parent selec-
tion is performed in a purely random process (i.e., it is not based on fitness
values) and the replacement process is deterministic and extinctive, based on
fitness value (the worst individuals have zero probability of survival).

There are several versions of ESs. The first of them is the (1 + 1)-ES.
This version has only one solution which is mutated to create one child. If the
child is better than the parent, it will replace it. The first number between
parentheses refers to the size of the parents population (one in this case), the
“+” sign refers to the type of replacement (the other possible replacement
is the “,” replacement) and the last value refers to the number of offspring
generated from the parents (also one in this case). There are other types of
ESs like the (µ + 1)-ES, (1 + λ)-ES, (µ + λ)-ES and the (µ + λ)-ES.

One feature that clearly distinguishes ESs from other EAs like GAs, is that
an ES performs a self-adaptive process with the stepsize values (σi) of each
individual for each dimension “i” of the search space. Figure 1 presents how
a solution is encoded in an ES. Both, the decision variables of the problem
and the stepsizes for each one of them are stored in one single solution. These
stepsizes are subject to recombination and mutation because they are evolving
as well.

10.1237.034 0.02 0.1

σ1,σ2
decision variables

strategy parameters

Fig. 1. Encoding of a solution in a typical Evolution Strategy. Decision variables
and strategy parameters are both represented in a single solution.

In this work we use a (µ + λ) − ES with panmictic discrete-intermediate
recombination (more than two parents are used to generate one offspring)
applied to both decision variables and strategy parameters as shown in Figure
2.

Noncorrelated Gaussian mutation is implemented as follows:

σ′
i = σi · exp(τ ′ · N(0, 1) + τ · Ni(0, 1)) (1)

x′
i = xi + σ′

i · Ni(0, 1) (2)

where σi is the stepsize of the variable xi, τ and τ ′ are interpreted as “learning
rates” and are defined by Schwefel [5] as: τ = (

√

2
√

n)−1 and τ ′ = (
√

2n)−1,
where n is the number of decision variables. Ni(x, y) is a function that returns
a real normal-distributed random number with mean x and standard deviation
y. The index i indicates that this random number is generated anew for each
decision variable or strategy parameter.

Fitness-Inheritance in Constrained Optimization 5

recombination
Select randomly Parent 1 from the parent population
FOR i=1 to n DO

Select randomly Parent 2 from the parent population
IF flip(0.5) THEN

IF flip(0.5) THEN
childi = Parent 1i

ELSE
childi = Parent 2i

END IF
ELSE

childi = Parent 1i + ((Parent 2i − Parent 1i/2, 0)
END IF

END FOR
END

Fig. 2. Pseudocode of the recombination operator used in our approach. Parent 1 is
fixed during all the process, but parent 2 is chosen anew for each decision variable.
flip(P) is a function that returns TRUE with probability P .

The constraint-handling mechanism chosen is based on Deb’s feasibility
rules [12] used to rank solutions as to choose those that will remain in the
population for the next generation. Those rules are: (1) Between 2 feasible
solutions, the one with the highest fitness value wins, (2) if one solution is
feasible and the other one is infeasible, the feasible solution wins and (3)
if both solutions are infeasible, the one with the lowest sum of constraint
violation is preferred (

∑m
i=1 max(0, gi(x))). The fitness inheritance mechanism

is proposed as follows: In the recombination operator used and detailed in
Figure 2, “n + 1” parents are used, where “n” is the number of decision
variables. The inherited values for the objective function and the constraints
for the only offspring generated in each recombination and mutation process
will be calculated from this subset of parents taken from the whole population.

The Manhattan distance in the decision space is calculated between the
offspring and each one of its parents by using the following expression:
∑n

i=1 |Xpi − Xhi|, where Xp is the parent solution, Xh is the offspring and n

is the number of decision variables of the problem. The offspring will take all
its values (objective function and constraints) from the closest parent in the
decision space.

It is important to note that, in this approach, the set of solutions to be
considered to inherit their values to the offspring is adapted depending of
the dimensionality of the problem. Moreover, there is no need to store a high
number of solutions because the same parents are only considered to inherit
their values to the offspring.

In order to this fitness inheritance approach to perform well, two param-
eters were considered:

• 0 ≤ IR ≤ 1: Inheritance ratio. The percentage of the set of λ offspring
that will use the fitness inheritance mechanism. The remaining 1 − IR

solutions will be evaluated in the real model of the problem.

6 Mezura-Montes, Muñoz-Dávila and Coello Coello

• 0 ≤ RR ≤ 1: Replacement ratio. The percentage of solutions with inherited
values that will survive for the next generation.

These parameters allow the user to control the error caused by the solu-
tions with inherited values. If several solutions with approximated values are
in the population, the search may be guided by non-exact information more
frequently.

In the first and last generation all solutions are evaluated with the original
model (i.e. IR = 0) as to start from exact information and also to report the
best solution found so far.

The replacement process (i.e. to select the µ solutions from the µ + λ

which will survive for the next generation) of the ES with the FI mechanism
is designed in such a way that only a percentage of solutions with inherited
values will be in the next generation. Then, the process looks to decrease the
error generated by the solutions with non-exact values.

The complete pseudocode of our proposed Evolution Strategy with Fitness
Inheritance is detailed in Figure 3. The initial population is generated with
random values for each decision variables between its lower and upper bounds.

All stepsize values are initialized as follows: σi(0) =
(

xu
i −xl

i√
n

)

where xu
i − xl

i

are the upper and lower bounds of the decision variable i, i = 1, . . . , n.

Generate an initial population of size µ
Evaluate each solution in the population with the original model

FOR G = 1 TO Max Generations DO
FOR i=1 TO λ DO
Generate one offspring by using recombination and mutation
(Figure 2 and Equations 1 and 2)

→ If flip(IR) AND G < Max Generations THEN
→ The offspring inherits its objective function and constraints values
→ from its closest parent

ELSE
The offspring is evaluated in the original model

END IF
END FOR
Split the µ + λ solutions in two groups (solutions with inherited values
and solutions evaluated in the original model) and rank each group
based on Deb’s feasibility rules.
FOR i=1 TO µ DO

→ IF flip(RR) THEN
→ Select to survive the best individual from the group of solutions
→ with inherited values.
→ Delete this solution from its group.

ELSE
Select to survive the best individual from the group of solutions
evaluated with the original model.
Delete this solution from its group.

END IF
END FOR

END FOR

Fig. 3. Pseudocode of the (µ+λ)-ES with fitness inheritance. flip(p) returns 1 with
probability p. Steps marked with → are those where the fitness inheritance approach
is included.

Fitness-Inheritance in Constrained Optimization 7

4 Experiments and results

In the experimental design, we used 13 well-known benchmark problems found
in the specialized literature [13]. A summary of the main features per test
problem is presented in Table 1 and the complete expressions are included in
an Appendix at the end of this document. In every experiment, 30 independent
runs were performed.

Two experiments were executed: (1) To compare the ES with the fitness
inheritance mechanism considering that this version will perform less evalua-
tions with respect to the original ES without using fitness inheritance and (2)
to compare the ES with the fitness inheritance mechanism but now adjusting
it to perform the same number of evaluations that the original ES without
using fitness inheritance. The goal of the first experiment is to analyze the
capabilities of the FI approach to decrease the number of evaluations without
affecting the performance of the original approach. The second experiment
aims to analyze the behavior of the FI mechanism in similar conditions with
respect to the original version of the algorithm.

The following nomenclature was used in the results reported: IR-RR-

FIES. Where IR is the inheritance ratio, RR is the survival ratio. Finally,
FIES means: Fitness Inheritance Evolution Strategy.

For the first version of the ES without fitness inheritance the parame-
ters used were as follows: (100 + 300)-ES with 0-0-FIES, i.e. IR = 0% and
RR = 0%, Max Generations = 800 (240,000 evaluations). For the versions of
the ES with fitness inheritance the following parameters were used: (100+300)-
ES with 30-50-FIES i.e. IR = 30% and RR = 50%, Max Generations = 800
(167,000 evaluations). For the second version of the ES without fitness inheri-
tance the parameters used were as follows: (100+200)-ES with 0-0-FIES, i.e.
IR = 0% and RR = 0%, Max Generations = 850 (170,000 evaluations). The
statistical results obtained from the set of 30 independent runs performed per
ES version per problem are presented in Table 2.

Regarding the comparison of the first experiment 0-0-FIES (240,000 eval-
uations) and 30-50-FIES (167,000 evaluations) we observed the following: In
functions g01, g04, g06, g08 and g12 both approaches reached the best known
solution consistently. On the other hand, in functions g02, g03, g05, g07, g10
and g13 0-0-FIES obtained an overall better performance than 30-50-FIES.
However, the differences in the obtained results are not as high as expected.
These results suggest that, there is a small performance decrease when the
fitness inheritance is applied (as expected because several solutions have an in-
exact value to guide the search). However, considerable savings in the number
of evaluations (about 30%) are also achieved.

For the second experiment (both compared approaches performing the
same number of evaluations ≈ 170, 000) the following was observed: In func-
tions g03, g07, g10 and g13, 30-50-FIES obtained a “better” best result with
respect to 0-0-FIES. With respect to the worst value found, 30-50-FIES ob-
tained “better” results in problems g03, g05, g07 and g11, and 0-0-FIES was

8 Mezura-Montes, Muñoz-Dávila and Coello Coello

Table 1. Main features for each benchmark problem used in the experiments. ρ

is the estimated size of the feasible region with respect to the whole search space
[13], n is the number of decision variables, LI is the number of linear inequality
constraints , NI the number of nonlinear inequality constraints, LE is the number of
linear equality constraints and NE is the number of nonlinear equality constraints.

Problem n Type of function ρ LI NI LE NE

g01 13 quadratic 0.0003% 9 0 0 0

g02 20 nonlinear 99.9973% 0 2 0 0

g03 10 nonlinear 0.0026% 0 0 0 1

g04 5 quadratic 27.0079% 0 6 0 0

g05 4 nonlinear 0.0000% 2 0 0 3

g06 2 nonlinear 0.0057% 0 2 0 0

g07 10 quadratic 0.0000% 3 5 0 0

g08 2 nonlinear 0.8581% 0 2 0 0

g09 7 nonlinear 0.5199% 0 4 0 0

g10 8 linear 0.0020% 3 3 0 0

g11 2 quadratic 0.0973% 0 0 0 1

g12 3 quadratic 4.7697% 0 1 0 0

g13 5 nonlinear 0.0000% 0 0 0 3

better in problem g10, and both approaches provided a “similar” worst result
in problem g13. Finally, regarding the mean and standard deviation values,
30-50-FIES provided better results in problems g02, g07 and g11. The re-
sults in this second experiment suggest that the fitness inheritance mechanism,
which indeed introduces some error in the values which guide the search, is
able to promote the exploration of other regions of the search space as to ob-
tain either “better” results or a more consistent behavior to reach the vicinity
of the best known solution. This behavior was observed in problems with a
very small feasible region (g03, g05, g07, g10, g11 and g13) where some of
them have nonlinear equality constraints. In this type of problems it is very
common that the search is strongly biased by the first feasible solution found
and premature convergence inside the feasible region may occur. The incor-
poration of solutions which may be infeasible, but based on its closeness to
a feasible solution will be considered feasible (due to the inheritance process)
seems to allow the evolutionary search to explore in a different way the search
space and to approach the feasible region from different regions. These results
are far from being conclusive and more detailed experiments are necessary
to validate the aforementioned discussion. Nonetheless, the results obtained
show that fitness inheritance is a valid option to be considered in this type
of ES in order to save evaluations without considerably affecting the good
performance of the approach.

5 Conclusions and future work

An approach to incorporate a fitness inheritance mechanism to an Evolution
Strategy to solve the general NLP problem was proposed. The approach is
based on a panmictic recombination operator, where the closest one from the
set of parents (in the decision space) is chosen to inherit all their values to
the offspring. Two experiments were designed to evaluate (1) the capabilities

Fitness-Inheritance in Constrained Optimization 9

Table 2. Statistical results obtained with the three ES versions: one with fitness
inheritance 30-50-FIES (167,000 evaluations) and two without fitness inheritance
(0-0-FIES (240,000 evaluations) and 0-0-FIES (170,000 evaluations). A result in
boldface indicates either a better result or that the best know solution was reached.

Problem &
Statistical results

Stats 30-50-FIES 0-0-FIES 0-0-FIES
Best known solution (240,000) (170,000)

g01 Best -15.000 -15.000 -15.000
-15 Mean -15.000 -15.000 -15.000

Worst -15.000 -15.000 -15.000
St. Dev. 0 0 0

g02 Best 0.803534 0.803595 0.803569
0.803619 Mean 0.792789 0.787545 0.784593

Worst 0.744716 0.755566 0.754253
St. Dev. 0.012727 0.01184 0.013125

g03 Best 0.95351 0.98147 0.914961
1 Mean 0.799909 0.886853 0.804792

Worst 0.643692 0.738482 0.605035
St. Dev. 0.087753 0.06431 0.08445

g04 Best -30665.539 -30665.539 -30665.539
-30665.539 Mean -30665.539 -30665.539 -30665.539

Worst -30665.539 -30665.539 -30665.539
St. Dev. 0 0 0

g05 Best 5142.870 5126.610 5122.240
5126.498 Mean 5177.359 5204.006 5162.288

Worst 5229.140 5386.690 5391.810
St. Dev. 30.5066 114.6465 76.25770

g06 Best -6961.814 -6961.814 -6961.814
-6961.814 Mean -6961.814 -6961.814 -6961.814

Worst -6961.814 -6961.814 -6961.814
St. Dev. 0 0 0

g07 Best 24.347 24.328 24.378
24.306 Mean 24.458 24.462 24.484

Worst 24.707 24.646 24.833
St. Dev. 0.0878 0.07206 0.10997

g08 Best 0.095826 0.095826 0.095826
0.095825 Mean 0.095826 0.095826 0.095826

Worst 0.095826 0.095826 0.095826
St. Dev. 0 0 0

g09 Best 680.63 680.63 680.63
680.63 Mean 680.642 680.642 680.642

Worst 680.678 680.678 680.667
St. Dev. 0.00987 0.00987 0.007427

g10 Best 7058.1 7052.22 7063.72
7049.25 Mean 7273.402 7261.021 7252.095

Worst 7674.44 7488.69 7608.37
St. Dev. 120.559 102.93005 128.2823

g11 Best 0.75 0.75 0.75
0.75 Mean 0.75 0.7504 0.7544

Worst 0.76 0.76 0.79
St. Dev. 0.0014 0.0022 0.01

g12 Best 1.000 1.000 1.000
1 Mean 1.000 1.000 1.000

Worst 1.000 1.000 1.000
St. Dev. 0 0 0

g13 Best 0.497647 0.464606 0.992215
0.053949 Mean 0.99617813 0.92083767 0.99611781

Worst 0.999926 0.998043 0.999926
St. Dev. 0.2465 0.17461 0.00227

of the proposed inheritance approach to save evaluations without affecting
the overall performance of the original algorithm and (2) the behavior of the
fitness inheritance in similar conditions (number of evaluations) with respect
to the original algorithm. The results obtained showed that the inheritance
mechanism is able to decrease the number of evaluations required by the
original approach (about 30%) without considerably affecting its good per-
formance. Furthermore, it was initially analyzed that the fitness inheritance
mechanism is able to promote further exploration of the search space in some
problems, most of them with a small feasible region and with nonlinear in-
equality constraints, as to obtain “better” results. However, this last finding

10 Mezura-Montes, Muñoz-Dávila and Coello Coello

requires further experimentation and analysis, which in fact is part of the
future work, besides a more careful study of the effect of the IR and RR

parameters in the behavior of the evolutionary search.

Acknowledgement. The first and third authors gratefully acknowledge support from
CONACyT through projects No. 52048-Y and No. 45683-Y respectively.

Appendix

The details of the benchmark functions used are the following:

• g01:

Minimize: f(x) = 5

∑

4

i=1
xi − 5

∑

4

i=1
x2

i
−

∑

13

i=5
xi

subject to:
g1(x) = 2x1 + 2x2 + x10 + x11 − 10 ≤ 0
g2(x) = 2x1 + 2x3 + x10 + x12 − 10 ≤ 0
g3(x) = 2x2 + 2x3 + x11 + x12 − 10 ≤ 0
g4(x) = −8x1 + x10 ≤ 0
g5(x) = −8x2 + x11 ≤ 0
g6(x) = −8x3 + x12 ≤ 0
g7(x) = −2x4 − x5 + x10 ≤ 0
g8(x) = −2x6 − x7 + x11 ≤ 0
g9(x) = −2x8 − x9 + x12 ≤ 0

where the bounds are 0 ≤ xi ≤ 1 (i = 1, . . . , 9), 0 ≤ xi ≤ 100 (i = 10, 11, 12) and 0 ≤ x13 ≤ 1. The
global optimum is located at x∗ = (1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 3, 3, 1) where f(x∗) = −15. Constraints g1, g2,
g3, g4, g5 and g6 are active.

• g02:

Maximize: f(x) =

∣

∣

∣

∣

∑n

i=1
cos4(xi)−2

∏n

i=1
cos2(xi)

√
∑

n

i=1
ix2

i

∣

∣

∣

∣

subject to:

g1(x) = 0.75 −
∏

n

i=1
xi ≤ 0

g2(x) =

∑n

i=1
xi − 7.5n ≤ 0

where n = 20 and 0 ≤ xi ≤ 10 (i = 1, . . . , n). The global maximum is unknown; the best reported solution

is: f(x∗) = 0.803619. Constraint g1 is close to being active (g1 = −10−8).

• g03:

Maximize: f(x) =

(√
n

)n ∏n

i=1
xi

subject to:

h(x) =

∑n

i=1
x2

i
− 1 = 0

where n = 10 and 0 ≤ xi ≤ 1 (i = 1, . . . , n). The global maximum is located at x∗
i

= 1/
√

n (i = 1, . . . , n)

where f(x∗) = 1.

• g04:

Minimize: f(x) = 5.3578547x2
3

+ 0.8356891x1x5 + 37.293239x1 − 40792.141

subject to:
g1(x) = 85.334407 + 0.0056858x2x5 + 0.0006262x1x4 − 0.0022053x3x5 − 92 ≤ 0
g2(x) = −85.334407 − 0.0056858x2x5 − 0.0006262x1x4 + 0.0022053x3x5 ≤ 0

g3(x) = 80.51249 + 0.0071317x2x5 + 0.0029955x1x2 + 0.0021813x2
3

− 110 ≤ 0

g4(x) = −80.51249 − 0.0071317x2x5 − 0.0029955x1x2 − 0.0021813x2
3

+ 90 ≤ 0

g5(x) = 9.300961 + 0.0047026x3x5 + 0.0012547x1x3 + 0.0019085x3x4 − 25 ≤ 0
g6(x) = −9.300961 − 0.0047026x3x5 − 0.0012547x1x3 − 0.0019085x3x4 + 20 ≤ 0

where: 78 ≤ x1 ≤ 102, 33 ≤ x2 ≤ 45, 27 ≤ xi ≤ 45 (i = 3, 4, 5). The global optimum is located at
x∗ = (78, 33, 29.995256025682, 45, 36.775812905788) where f(x∗) = −30665.539. Constraints g1 and g6
are active.

• g05

Minimize:f(x) = 3x1 + 0.000001x3
1

+ 2x2 + (0.000002/3)x3
2

subject to:
g1(x) = −x4 + x3 − 0.55 ≤ 0
g2(x) = −x3 + x4 − 0.55 ≤ 0
h3(x) = 1000 sin(−x3 − 0.25) + 1000 sin(−x4 − 0.25) + 894.8 − x1 = 0
h4(x) = 1000 sin(x3 − 0.25) + 1000 sin(x3 − x4 − 0.25) + 894.8 − x2 = 0
h5(x) = 1000 sin(x4 − 0.25) + 1000 sin(x4 − x3 − 0.25) + 1294.8 = 0

Fitness-Inheritance in Constrained Optimization 11

where 0 ≤ x1 ≤ 1200, 0 ≤ x2 ≤ 1200, −0.55 ≤ x3 ≤ 0.55, and −0.55 ≤ x4 ≤ 0.55. The best known
solution is x∗ = (679.9453, 1026.067, 0.1188764, −0.3962336) where f(x∗) = 5126.4981.

• g06

Minimize: f(x) = (x1 − 10)3 + (x2 − 20)3

subject to:

g1(x) = −(x1 − 5)2 − (x2 − 5)2 + 100 ≤ 0

g2(x) = (x1 − 6)2 + (x2 − 5)2 − 82.81 ≤ 0

where 13 ≤ x1 ≤ 100 and 0 ≤ x2 ≤ 100. The global optimum is located at x∗ = (14.095, 0.84296)
where f(x∗) = −6961.81388. Both constraints are active.

• g07

Minimize: f(x) = x2
1

+ x2
2

+ x1x2 − 14x1 − 16x2 + (x3 − 10)2 + 4(x4 − 5)2 + (x5 − 3)2 + 2(x6 − 1)2 +

5x2
7

+ 7(x8 − 11)2 + 2(x9 − 10)2 + (x10 − 7)2 + 45

subject to:
g1(x) = −105 + 4x1 + 5x2 − 3x7 + 9x8 ≤ 0
g2(x) = 10x1 − 8x2 − 17x7 + 2x8 ≤ 0
g3(x) = −8x1 + 2x2 + 5x9 − 2x10 − 12 ≤ 0

g4(x) = 3(x1 − 2)2 + 4(x2 − 3)2 + 2x2
3

− 7x4 − 120 ≤ 0

g5(x) = 5x2
1

+ 8x2 + (x3 − 6)2 − 2x4 − 40 ≤ 0

g6(x) = x2
1

+ 2(x2 − 2)2 − 2x1x2 + 14x5 − 6x6 ≤ 0

g7(x) = 0.5(x1 − 8)2 + 2(x2 − 4)2 + 3x2
5

− x6 − 30 ≤ 0

g8(x) = −3x1 + 6x2 + 12(x9 − 8)2 − 7x10 ≤ 0

where −10 ≤ xi ≤ 10 (i = 1, . . . , 10). The global optimum is located at x∗ = (2.171996, 2.363683, 8.773926,
5.095984, 0.9906548, 1.430574, 1.321644, 9.828726, 8.280092, 8.375927) where f(x∗) = 24.3062091. Con-
straints g1, g2, g3, g4, g5 and g6 are active.

• g08

Maximize: f(x) =
sin3(2πx1) sin(2πx2)

x3
1
(x1+x2)

subject to:

g1(x) = x2
1

− x2 + 1 ≤ 0

g2(x) = 1 − x1 + (x2 − 4)2 ≤ 0

where 0 ≤ x1 ≤ 10 and 0 ≤ x2 ≤ 10. The global optimum is located at x∗ = (1.2279713, 4.2453733)
where f(x∗) = 0.095825.

• g09

Minimize: f(x) = (x1 − 10)2 + 5(x2 − 12)2 + x4
3

+ 3(x4 − 11)2 + 10x6
5

+ 7x2
6

+ x4
7

− 4x6x7 − 10x6 − 8x7
subject to:

g1(x) = −127 + 2x2
1

+ 3x4
2

+ x3 + 4x2
4

+ 5x5 ≤ 0

g2(x) = −282 + 7x1 + 3x2 + 10x2
3

+ x4 − x5 ≤ 0

g3(x) = −196 + 23x1 + x2
2

+ 6x2
6

− 8x7 ≤ 0

g4(x) = 4x2
1

+ x2
2

− 3x1x2 + 2x2
3

+ 5x6 − 11x7 ≤ 0

where −10 ≤ xi ≤ 10 (i = 1, . . . , 7). The global optimum is located at x∗ = (2.330499, 1.951372,
−0.4775414, 4.365726, −0.6244870, 1.038131, 1.594227) where f(x∗) = 680.6300573. Two constraints are
active (g1 and g4).

• g10
Minimize: f(x) = x1 + x2 + x3
subject to: g1(x) = −1 + 0.0025(x4 + x6) ≤ 0
g2(x) = −1 + 0.0025(x5 + x7 − x4) ≤ 0
g3(x) = −1 + 0.01(x8 − x5) ≤ 0
g4(x) = −x1x6 + 833.33252x4 + 100x1 − 83333.333 ≤ 0
g5(x) = −x2x7 + 1250x5 + x2x4 − 1250x4 ≤ 0
g6(x) = −x3x8 + 1250000 + x3x5 − 2500x5 ≤ 0

where 100 ≤ x1 ≤ 10000, 1000 ≤ xi ≤ 10000, (i = 2, 3), 10 ≤ xi ≤ 1000, (i = 4, . . . , 8). The global op-
timum is located at x∗ = (579.19, 1360.13, 5109.92, 182.0174, 295.5985, 217.9799, 286.40, 395.5979), where
f(x∗) = 7049.25. g1, g2 and g3 are active.

• g11

Minimize: f(x) = x2
1

+ (x2 − 1)2

subject to:

h(x) = x2 − x2
1

= 0

where: −1 ≤ x1 ≤ 1, −1 ≤ x2 ≤ 1. The global optimum is located at x∗ = (±1/
√

2, 1/2) where
f(x∗) = 0.75.

• g12

Maximize: f(x) =
100−(x1−5)2−(x2−5)2−(x3−5)2

100
subject to:

g1(x) = (x1 − p)2 + (x2 − q)2 + (x3 − r)2 − 0.0625 ≤ 0

where 0 ≤ xi ≤ 10 (i = 1, 2, 3) and p, q, r = 1, 2, . . . , 9. The feasible region of the search space consists

of 93 disjointed spheres. A point (x1, x2, x3) is feasible if and only if there exist p, q, r such the above

12 Mezura-Montes, Muñoz-Dávila and Coello Coello

inequality (5) holds. The global optimum is located at x∗ = (5, 5, 5) where f(x∗) = 1.

• g13
Minimize: f(x) = ex1x2x3x4x5

subject to:

g1(x) = x2
1

+ x2
2

+ x2
3

+ x2
4

+ x2
5

− 10 = 0

g2(x) = x2x3 − 5x4x5 = 0

g3(x) = x3
1

+ x3
2

+ 1 = 0

where −2.3 ≤ xi ≤ 2.3 (i = 1, 2) and −3.2 ≤ xi ≤ 3.2 (i = 3, 4, 5). The global optimum is located at
x∗ = (−1.717143, 1.595709, 1.827247, −0.7636413, −0.763645) where f(x∗) = 0.0539498.

References

1. Michalewicz, Z. and Fogel, D. B. (2004) How to Solve It: Modern Heuristics,
2nd edition. Springer, Berlin, Germany.

2. Jin, Y. (2005) A comprehensive survey of fitness approximation in evolutionary
computation. Soft Computing - A Fusion of Foundations, Methodologies and
Applications, 9(1), 3–12.

3. Won, K.-S. and Ray, T. (2004) Performance of kriging and cokriging based
Surrogate Models within the Unified Framework for Surrogate Assisted Opti-
mization. Proceedings of the IEEE Congress on Evolutionary Computation 2004,
Piscataway, New Jersey, June, pp. 1577–1585. IEEE Service Center.

4. Smith, R. E., Dike, B. A., and Stegmann, S. A. (1995) Fitness Inheritance in
Genetic Algorithms. SAC ’95: Proceedings of the 1995 ACM Symposium on
Applied Computing, Nashville, Tennessee, USA, pp. 345–350. ACM Press.

5. Bäck, T. (1996) Evolutionary Algorithms in Theory and Practice. Oxford Uni-
versity Press, New York.

6. Reyes-Sierra, M. and Coello Coello, C. A. (2005) Fitness Inheritance in Multi-
Objective Particle Swarm Optimization. 2005 IEEE Swarm Intelligence Sym-
posium (SIS’05), Pasadena, California, USA, June, pp. 116–123. IEEE Press.

7. Voutchkov, I. and Keane, A. (2006) Multiobjective Optimization Using Surro-
gates. In Parmee, I. (ed.), Proceedings of the Seventh International Conference
on Adaptive Computing in Design and Manufacture (ACDM’2006), Bristol, UK,
April, pp. 167–175. The Institute for People-centred Computation.

8. Runarsson, T. P. (2004) Constrained Evolutionary Optimization by Approxi-
mate Ranking and Surrogate Models. Proceedings of 8th Parallel Problem Solv-
ing From Nature, September, pp. 401–410. UK, Springer. LNCS Vol. 3242.

9. Mezura-Montes, E. and Coello Coello, C. A. (2005) Saving Evaluations in Dif-
ferential Evolution for Constrained Optimization. Sixth Mexican International
Conference on Computer Science (ENC’05), September, pp. 274–281. IEEE
Computer Society Press.

10. Price, K. V., Storn, R. M., and Lampinen, J. A. (2005) Differential Evolution.
A Practical Approach to Global Optimization. Springer, Berlin.

11. Schwefel, H.-P. (1995) Evolution and Optimum Seeking. Wiley, New York.
12. Deb, K. (2000) An Efficient Constraint Handling Method for Genetic Algo-

rithms. Comp. Methods in Applied Mechanics and Engineering, 186(2-4), 311–
338.

13. Michalewicz, Z. and Schoenauer, M. (1996) Evolutionary Algorithms for Con-
strained Parameter Optimization Problems. Evolutionary Computation, 4(1),
1–32.

